JP2002018274A - Method for operating treatment apparatus and method for detecting abnormality of treatment apparatus - Google Patents

Method for operating treatment apparatus and method for detecting abnormality of treatment apparatus

Info

Publication number
JP2002018274A
JP2002018274A JP2000201731A JP2000201731A JP2002018274A JP 2002018274 A JP2002018274 A JP 2002018274A JP 2000201731 A JP2000201731 A JP 2000201731A JP 2000201731 A JP2000201731 A JP 2000201731A JP 2002018274 A JP2002018274 A JP 2002018274A
Authority
JP
Japan
Prior art keywords
frequency power
state
principal component
power supply
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000201731A
Other languages
Japanese (ja)
Other versions
JP4610021B2 (en
Inventor
Takeshi Sentoda
剛士 仙洞田
Shinji Sakano
真治 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2000201731A priority Critical patent/JP4610021B2/en
Priority to TW090116292A priority patent/TW499702B/en
Priority to PCT/JP2001/005758 priority patent/WO2002003441A1/en
Priority to US10/332,011 priority patent/US7054786B2/en
Priority to AU2001267913A priority patent/AU2001267913A1/en
Priority to CNB018122485A priority patent/CN1197130C/en
Publication of JP2002018274A publication Critical patent/JP2002018274A/en
Application granted granted Critical
Publication of JP4610021B2 publication Critical patent/JP4610021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that there is no technique objectively judging a high-frequency power supply or a treatment chamber of a treatment apparatus is stabilized heretofore, and the experience and perception of an operator is required in order to judge whether the high-frequency power or the treatment chamber of the treatment apparatus is stabilized. SOLUTION: A method for estimating the attrition rate of expendables has a process for preliminarily calculating a standard residual score Q0 using the measuring data of the high-frequency power supply 18 of the stabilized treatment apparatus 10, a process for measuring a plurality of electrical data of the arbitrary treatment apparatus 10 immediately after starting, a process for calculating a comparing residual score Q using the high-frequency power supply and a precess for comparing both Q, Q0 to detect the stable state of the high-frequency power supply 18 of the arbitrary treatment apparatus 10 from the difference (Q-Q0) of both of them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、処理装置の運転方法及
び処理装置の異常検出方法に関し、更に詳しくは、例え
ば処理装置の高周波電源の印加状態が処理室の状態に応
じて確実に安定状態に達した状態で運転できる処理装置
の運転方法及び処理装置の異常検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a processing apparatus and a method for detecting an abnormality in the processing apparatus. The present invention relates to a method of operating a processing device that can be operated in a state where the temperature has reached the maximum value, and a method of detecting abnormality of the processing device.

【0002】[0002]

【従来の技術】処理装置(以下、単に「処理装置」と称
す。)はエッチング処理や成膜処理等に用いられる。こ
の種の処理装置は、例えば、処理室内の電極に高周波電
力を印加すると共に処理室内にプロセスガスを導入し、
処理室内でプロセスガスのプラズマを発生させ、半導体
ウエハ等の被処理体に所定のプラズマ処理を施すように
している。処理装置には高周波電源が用いられている
が、被処理体の処理は高周波電源が処理室内の状態に応
じて安定した後行う。ところが、処理装置の始動直後に
は高周波電源が処理室の状態に馴染むまでは不安定で長
時間に渡って安定しない。
2. Description of the Related Art A processing apparatus (hereinafter, simply referred to as a "processing apparatus") is used for an etching process, a film forming process and the like. This type of processing apparatus applies, for example, high-frequency power to electrodes in a processing chamber and introduces a process gas into the processing chamber.
A plasma of a process gas is generated in the processing chamber, and a target object such as a semiconductor wafer is subjected to a predetermined plasma process. Although a high-frequency power supply is used in the processing apparatus, the processing of the object to be processed is performed after the high-frequency power supply is stabilized according to the state in the processing chamber. However, immediately after the start of the processing apparatus, the high-frequency power supply is unstable and not stable for a long time until it adapts to the state of the processing chamber.

【0003】例えば図8(a)はマッチング回路の高周
波に関連するパラメータ(電圧)の変動を示した図であ
り、同図の(b)はマッチング回路の整合状態を特徴づ
けるコンデンサのパラメータ(電気容量)の変動を示し
た図であるが、いずれも変動しており安定状態を判断し
難い。図8の(a)に示すパラメータではロット初期の
ピークが観られるが、安定化したか否かの判断が難し
い。また、処理室内も高周波電力を印加した環境に馴染
むには相当の時間を必要とし、なかなか安定しない。そ
のため、従来はオペレータの経験と勘によって高周波電
源や処理室内が安定したか否かを判断し、安定域に達し
たと判断した時にウエハ等の被処理体を処理室内へ投入
し、所定の処理を施していた。尚、図8の運転条件は、
保守点検後、処理室内を4日間真空引きした後デポジシ
ョンの少ない条件を示している。デポジションの少ない
条件について後述する。
[0003] For example, FIG. 8A is a diagram showing a change in a parameter (voltage) related to a high frequency of a matching circuit, and FIG. 8B is a diagram showing a parameter (electricity) of a capacitor characterizing the matching state of the matching circuit. FIG. 5 shows the fluctuation of the capacitance, but it is difficult to judge the stable state because of the fluctuation. With the parameters shown in FIG. 8A, a peak at the beginning of the lot is observed, but it is difficult to determine whether or not the stabilization has been achieved. In addition, the processing chamber requires a considerable amount of time to adapt to the environment to which high-frequency power is applied, and is not easily stabilized. For this reason, conventionally, it is determined whether or not the high-frequency power supply and the processing chamber are stabilized based on the experience and intuition of the operator, and when it is determined that the stable area has been reached, an object to be processed such as a wafer is put into the processing chamber and the predetermined processing is performed. Was given. The operating conditions in FIG.
After the maintenance and inspection, the processing chamber is evacuated for 4 days, and the condition of little deposition is shown. The conditions for less deposition will be described later.

【0004】また、処理装置を保守点検する時には消耗
品を交換したり、クリーニングを行うが、処理装置は精
密機械であるため、その組立には細心の注意を要する。
例えば、高周波電源や処理室内の各部品のネジ止めに少
しでも緩みがあったり、部品の取付ミスがあったりする
とプラズマが不安定になる。そのためこのようなミスは
到底許されるものではない。
[0004] Also, when maintenance and inspection of the processing apparatus are performed, consumables are replaced and cleaning is performed. However, since the processing apparatus is a precision machine, careful assembly is required.
For example, the plasma becomes unstable if there is any looseness in the screwing of the high-frequency power supply or each component in the processing chamber, or if there is a mistake in mounting the components. Therefore, such mistakes are far from tolerable.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来は
処理装置の高周波電源や処理室内が安定したか否かを客
観的に判断する手法がなく、オペレータの経験と勘に頼
らざるを得ないため、その客観的手法の確立が待望され
ている。また、処理装置を安定状態に導くための処理条
件を評価することができないため、その評価は試行錯誤
に頼らざるを得なかった。
However, conventionally, there is no method of objectively determining whether the high-frequency power supply of the processing apparatus or the processing chamber is stable or not, and the operator must rely on the experience and intuition of the operator. Establishment of the objective method is expected. Further, it is not possible to evaluate processing conditions for bringing the processing apparatus to a stable state, and thus the evaluation has to rely on trial and error.

【0006】また、従来は万一、部品の取付ミスに気付
かずに処理装置を稼働すれば、処理装置を開けることな
く取付ミスを検出する手法がなかったため、その原因究
明に多大な時間と労力を必要としていた。
Conventionally, if a processing apparatus is operated without noticing a component mounting error, there is no method for detecting the mounting error without opening the processing apparatus. Needed.

【0007】本発明は、上記課題を解決するためになさ
れたもので、始動後の処理装置の安定状態を客観的に判
断することができ、条理条件を最適化して運転できる処
理装置の運転方法を提供することを目的としている。ま
た、処理装置を開けることなく部品の取付ミスによる異
常を確実に検出することができ、しかも取付ミスを分類
することができる処理装置の異常検出方法を併せて提供
することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method of operating a processing apparatus capable of objectively judging a stable state of the processing apparatus after starting and optimizing a condition. It is intended to provide. It is another object of the present invention to provide a method of detecting an abnormality of a processing apparatus, which can reliably detect an abnormality due to a component mounting error without opening the processing apparatus, and can classify the mounting error.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に記載
の処理装置の運転方法は、高周波電源から処理室内の電
極に高周波電力を印加してプラズマを発生させて被処理
体を処理する際に、上記処理室内の状態に応じて変化す
る上記高周波電源の複数の電気的データを測定する測定
器で測定された複数の測定データを用いて多変量解析を
行って上記高周波電源の印加状態を検出して処理装置を
運転する方法であって、処理装置の処理室内の状態に応
じて上記高周波電源の印加状態が安定化した時の上記測
定データを用いて予め基準用の多変量解析を行う工程
と、始動直後から任意の処理装置の複数の電気的データ
を測定する工程と、複数の測定データを用いて比較用の
多変量解析を行う工程と、比較多変量解析結果と基準多
変量解析結果を比較して両者の差から上記任意の処理装
置の上記高周波電源が上記処理室内の状態に応じて安定
状態に達したことを検出する工程とを有することを特徴
とするものである。
According to a first aspect of the present invention, there is provided a method of operating a processing apparatus, wherein a high-frequency power is applied to an electrode in a processing chamber from a high-frequency power source to generate plasma, thereby processing an object to be processed. At this time, a multivariate analysis is performed using a plurality of measurement data measured by a measuring instrument that measures a plurality of electrical data of the high-frequency power supply that changes according to a state in the processing chamber, and an application state of the high-frequency power supply Is a method of operating the processing apparatus by detecting the multivariate analysis for the reference in advance using the measurement data when the application state of the high-frequency power supply is stabilized according to the state of the processing chamber of the processing apparatus. Performing, a step of measuring a plurality of electrical data of any processing apparatus immediately after starting, a step of performing a multivariate analysis for comparison using a plurality of measured data, a result of a comparative multivariate analysis and a reference multivariate. Compare analysis results The high frequency power from the difference between both the arbitrary processor Te is characterized in that a step of detecting that has reached a steady state according to the state of the processing chamber.

【0009】また、本発明の請求項2に記載の処理装置
の運転方法は、高周波電源から処理室内の電極に高周波
電力を印加してプラズマを発生させて被処理体を処理す
る際に、上記処理室内の状態に応じて変化する上記高周
波電源の複数の電気的データを測定する測定器で測定さ
れた複数の測定データを用いて主成分分析を行って上記
高周波電源の印加状態を検出して処理装置を運転する方
法であって、処理装置の処理室内の状態に応じて上記高
周波電源の印加状態が安定化した時の上記測定データを
用いて予め基準用の主成分分析を行う工程と、始動直後
から任意の処理装置の複数の電気的データを測定する工
程と、複数の測定データを用いて比較用の主成分分析を
行う工程と、比較主成分分析結果と基準主成分分析結果
を比較して両者の差から上記任意の処理装置の高周波電
源が上記処理室内の状態に応じて安定状態に達したこと
を検出する工程とを有することを特徴とするものであ
る。
In the method of operating a processing apparatus according to a second aspect of the present invention, when a high-frequency power is applied to an electrode in a processing chamber from a high-frequency power source to generate plasma and process a target object, Detecting the application state of the high-frequency power supply by performing a principal component analysis using a plurality of measurement data measured by a measuring instrument that measures a plurality of electrical data of the high-frequency power supply that changes according to the state in the processing chamber A method of operating the processing device, a step of performing a principal component analysis for reference in advance using the measurement data when the application state of the high-frequency power supply is stabilized according to the state of the processing chamber of the processing device, Immediately after starting, measuring a plurality of electrical data of any processing device, performing a principal component analysis for comparison using multiple measured data, comparing the results of the comparative principal component analysis and the results of the reference principal component analysis And then both From one in which the high-frequency power supply of the arbitrary processing apparatus, comprising the step of detecting that has reached a steady state according to the state of the processing chamber.

【0010】また、本発明の請求項3に記載の処理装置
の運転方法は、請求項1または請求項2に記載の発明に
おいて、上記電気的データとして少なくとも基本波及び
高調波それぞれの電圧値、電流値、インピーダンス及び
位相角を用いることを特徴とするものである。
According to a third aspect of the present invention, there is provided a method of operating a processing apparatus according to the first or second aspect, wherein the electrical data includes at least a voltage value of each of a fundamental wave and a harmonic, It is characterized by using a current value, an impedance and a phase angle.

【0011】また、本発明の請求項4に記載の処理装置
の運転方法は、請求項2または請求項3に記載の発明に
おいて、主成分分析で残差得点または主成分得点を求め
た後、残差得点または主成分得点を比較することを特徴
とするものである。
According to a fourth aspect of the present invention, there is provided a method for operating a processing apparatus according to the second or third aspect, wherein the residual score or the principal component score is obtained by principal component analysis. It is characterized by comparing the residual score or the principal component score.

【0012】また、本発明の請求項5に記載の処理装置
の運転方法は、請求項2〜請求項4のいずれか1項に記
載の発明において、残差得点の比較結果に基づいて処理
条件及び/または稼働条件を判断することを特徴とする
ものである。
According to a fifth aspect of the present invention, there is provided a method for operating a processing apparatus according to any one of the second to fourth aspects, wherein the processing conditions are based on a comparison result of residual scores. And / or determining operating conditions.

【0013】また、本発明の請求項6に記載の処理装置
の異常検出方法は、高周波電源から処理室内の電極に高
周波電力を印加してプラズマを発生させて被処理体を処
理する際に、上記処理室内の状態に応じて変化する上記
高周波電源の複数の電気的データを測定する測定器で測
定された複数の測定データを用いて多変量解析を行って
上記高周波電源の印加状態を検出して処理装置の異常を
検出する方法であって、正常な処理装置の処理室内の状
態に応じて上記高周波電源の印加状態が安定化した時の
上記測定データを用いて予め基準用の多変量解析を行う
工程と、任意の処理装置の複数の電気的データを測定す
る工程と、複数の測定データを用いて比較用の多変量解
析を行う工程と、比較多変量解析結果と基準多変量解析
結果を比較して両者の差から上記任意の処理装置の異常
を検出する工程とを有することを特徴とするものであ
る。
In the method for detecting an abnormality of a processing apparatus according to claim 6 of the present invention, when a high-frequency power is applied to an electrode in a processing chamber from a high-frequency power source to generate plasma and process an object to be processed, Detecting the application state of the high-frequency power supply by performing a multivariate analysis using a plurality of measurement data measured by a measuring device that measures a plurality of electrical data of the high-frequency power supply that changes according to the state in the processing chamber A method for detecting abnormalities in the processing apparatus by using the measurement data when the application state of the high-frequency power supply is stabilized according to the state of the processing chamber of the normal processing apparatus. Performing a multi-variate analysis using a plurality of measurement data, performing a multi-variate analysis for comparison using a plurality of measurement data, a comparison multi-variate analysis result and a reference multivariate analysis result. Compare both From difference is characterized in that a step of detecting an abnormality of said any processor.

【0014】また、本発明の請求項7に記載の処理装置
の異常検出方法は、高周波電源から処理室内の電極に高
周波電力を印加してプラズマを発生させて被処理体を処
理する際に、上記処理室内の状態に応じて変化する上記
高周波電源の複数の電気的データを測定する測定器で測
定された複数の測定データを用いて主成分分析を行って
上記高周波電源の印加状態を検出して処理装置の異常を
検出する方法であって、正常な処理装置の処理室内の状
態に応じて上記高周波電源の印加状態が安定化した時の
上記測定データを用いて予め基準用の主成分分析を行う
工程と、任意の処理装置の複数の電気的データを測定す
る工程と、複数の測定データを用いて比較用の主成分分
析を行う工程と、比較主成分分析結果と基準主成分分析
結果を比較して両者の差から上記任意の処理装置の異常
を検出する工程とを有することを特徴とするものであ
る。
According to a seventh aspect of the present invention, there is provided a method for detecting abnormality in a processing apparatus, comprising the steps of: applying a high-frequency power from a high-frequency power source to an electrode in a processing chamber to generate plasma; Detecting the applied state of the high-frequency power supply by performing principal component analysis using a plurality of measurement data measured by a measuring device that measures a plurality of electrical data of the high-frequency power supply that changes according to the state in the processing chamber A method for detecting an abnormality of the processing apparatus by using the measurement data when the application state of the high-frequency power supply is stabilized according to the state of the processing chamber of the normal processing apparatus. Performing a step of measuring a plurality of electrical data of an arbitrary processing device; a step of performing a principal component analysis for comparison using the plurality of measurement data; a result of the comparative principal component analysis and a result of the reference principal component analysis Compare both From difference is characterized in that a step of detecting an abnormality of said any processor.

【0015】また、本発明の請求項8に記載の処理装置
の異常検出方法は、請求項6または請求項7に記載の発
明において、上記電気的データとして少なくとも基本波
及び高調波それぞれの電圧値、電流値、インピーダンス
及び位相角を用いることを特徴とするものである。
In the method for detecting an abnormality of a processing apparatus according to claim 8 of the present invention, in the invention according to claim 6 or 7, at least a voltage value of each of a fundamental wave and a harmonic is used as the electrical data. , Current value, impedance and phase angle.

【0016】また、本発明の請求項9に記載の処理装置
の異常検出方法は、請求項7または請求項8に記載の発
明において、主成分分析で残差得点または主成分得点を
求めた後、残差得点または主成分得点を比較することを
特徴とすることを特徴とするものである。
According to a ninth aspect of the present invention, there is provided a method for detecting an abnormality in a processing apparatus according to the seventh or eighth aspect, wherein a residual score or a principal component score is obtained by principal component analysis. , And comparing the residual score or the principal component score.

【0017】また、本発明の請求項10に記載の処理装
置の異常検出方法は、請求項5〜請求項9のいずれか1
項に記載の発明において、残差行列の成分に即して異常
箇所を分類することを特徴とするものである。
Further, according to a tenth aspect of the present invention, there is provided a method for detecting an abnormality in a processing apparatus according to any one of the fifth to ninth aspects.
In the invention described in the section, an abnormal part is classified according to a component of a residual matrix.

【0018】[0018]

【発明の実施の形態】以下、図1〜図8に示す実施形態
の基づいて本発明を説明する。まず、本発明の処理装置
の運転方法及び処理装置の異常検出方法が適用された処
理装置の一例について図1を参照しながら説明する。本
実施形態に用いられる処理装置10は、例えば図1に示
すように、アルミニウム等の導電性材料からなる接地さ
れた処理室11と、この処理室11内の底面に配設され
且つ被処理体としてのウエハWを載置する載置台を兼ね
た電極12と、回転磁場を付与する磁場形成手段13と
を備え、制御装置14の制御下で処理室11の上下両電
極間で発生する電界に磁場形成手段13による回転磁界
Bが作用し、高密度プラズマでウエハWに対して均一な
プラズマ処理を行う。処理室11にはガス供給管15が
接続され、ガス供給管15を介してガス供給源(図示せ
ず)から処理室11内へプロセスガスを供給する。処理
室11の側面には図示しない真空排気装置に連結された
ガス排出管16が接続され、真空排気装置及びガス排出
管16を介して処理室11内を減圧して所定の真空度に
保持する。電極12には高調波測定器17、マッチング
回路18を介して高周波電源19が接続され、高周波電
源19から電極12へ高周波電力を印加し処理室11内
でプロセスガスのプラズマを発生させ、電極12上の半
導体ウエハW表面に例えば所定のエッチング処理を施
す。また、電極12の周縁部にはフォーカスリング20
が配置され、フォーカスリング20を介してプラズマを
ウエハW上へ収束する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the embodiments shown in FIGS. First, an example of a processing apparatus to which a method of operating a processing apparatus and a method of detecting an abnormality of the processing apparatus according to the present invention will be described with reference to FIG. As shown in FIG. 1, for example, a processing apparatus 10 used in the present embodiment includes a grounded processing chamber 11 made of a conductive material such as aluminum, An electrode 12 also serving as a mounting table for mounting a wafer W thereon, and a magnetic field forming means 13 for applying a rotating magnetic field, and an electric field generated between the upper and lower electrodes of the processing chamber 11 under the control of the controller 14. The rotating magnetic field B generated by the magnetic field forming means 13 acts to perform uniform plasma processing on the wafer W with high-density plasma. A gas supply pipe 15 is connected to the processing chamber 11, and supplies a process gas into the processing chamber 11 from a gas supply source (not shown) via the gas supply pipe 15. A gas exhaust pipe 16 connected to a vacuum exhaust device (not shown) is connected to a side surface of the processing chamber 11, and the inside of the processing chamber 11 is depressurized and maintained at a predetermined degree of vacuum through the vacuum exhaust device and the gas exhaust pipe 16. . A high-frequency power supply 19 is connected to the electrode 12 via a harmonic measuring device 17 and a matching circuit 18. High-frequency power is applied from the high-frequency power supply 19 to the electrode 12 to generate a process gas plasma in the processing chamber 11. For example, a predetermined etching process is performed on the surface of the upper semiconductor wafer W. Further, a focus ring 20 is provided on the periphery of the electrode 12.
Are arranged, and the plasma is focused on the wafer W via the focus ring 20.

【0019】ところで、本実施形態では13.56MH
zの高周波電力を電極12に印加しているが、電極12
には13.56MHzの高周波電力の他に、これを基本
波とする高調波(例えば27.12MHz、40.68
MHz)が印加される。ところが、電圧、電流、位相及
びインピーダンス等の電気的データは処理装置10の始
動直後には不安定でなかなか安定しない。しかも、処理
室11内の状態を客観的に知る術がない。そこで、本実
施形態ではこれらの電圧、電流、位相及びインピーダン
ス等の電気的データを測定し、各測定値を利用して処理
装置10の安定状態、具体的には処理室11内での所定
のプラズマ処理に必要な安定状態を検出するようにして
いる。
In this embodiment, 13.56 MH is used.
z is applied to the electrode 12,
In addition to the 13.56 MHz high-frequency power, harmonics having this as a fundamental wave (for example, 27.12 MHz, 40.68 MHz)
MHz). However, electrical data such as voltage, current, phase, and impedance are unstable immediately after the start of the processing device 10 and are not easily stabilized. Moreover, there is no way to objectively know the state inside the processing chamber 11. Therefore, in the present embodiment, the electrical data such as the voltage, current, phase, and impedance are measured, and the measured values are used to stabilize the processing apparatus 10, specifically, a predetermined state in the processing chamber 11. A stable state required for plasma processing is detected.

【0020】即ち、電極12とマッチング回路18の間
に介在する高調波測定器17を用いて高周波電源19の
基本波及びその高調波の電圧、電流、位相及びインピー
ダンスを処理装置の始動時から高周波電源19が安定す
るまで間欠的に測定し、これらの測定値をそれぞれ制御
装置14内に逐次取り込む。この制御装置14には多変
量解析プログラムとして例えば主成分分析用のプログラ
ムが格納され、このプログラムを介して測定値の主成分
分析を行って処理装置の安定状態を検出する。
That is, the fundamental wave of the high frequency power supply 19 and the voltage, current, phase and impedance of the harmonic wave are measured using the harmonic measuring device 17 interposed between the electrode 12 and the matching circuit 18 from the start of the processing device to the high frequency. The measurement is intermittently performed until the power supply 19 is stabilized, and these measured values are sequentially taken into the control device 14. The control device 14 stores, for example, a program for principal component analysis as a multivariate analysis program, and performs a principal component analysis of measured values via this program to detect a stable state of the processing device.

【0021】例えば本実施形態で主成分分析を行う場合
には、高周波電源19からの処理室11内の電極12へ
の印加状態が安定化した処理装置(以下、「基準処理装
置」と称す。)を使って、高周波電源19の基本波及び
その高調波の電圧、電流、位相及びインピーダンスそれ
ぞれ電気的データとして間欠的に測定して各周波数の測
定値V(f)、I(f)、P(f)、Z(f)を得る。
そして、これら各種の測定値の相対値を求め、各種の測
定値をそれぞれ無次元化する。この際、各種の測定値と
無次元化した相対値との対応関係は例えば測定データの
配列順に合わせて明確にしておく。次いで、無次元化し
た各種の測定値(以下、単に「相対測定値」と称す。)
の測定個数がn個で、安定するまでm回の測定を行う
と、基準処理装置の全の相対測定データが入った行列は
数1で表される。次いで、制御装置14において全ての
相対測定値に基づいて平均値、最大値、最小値、分散値
を求めた後、これらの計算値に基づいた分散共分散行列
を用いて複数の無次元測定データの主成分分析を行って
固有値及びその固有ベクトルを求める。固有値は無次元
測定データの分散の大きさを表し、固有値の大きさ順
に、第1主成分、第2主成分、・・・第n主成分として
定義されている。また、各固有値にはそれぞれに属する
固有ベクトルがある。通常、主成分の次数が高いほどデ
ータの評価に対する寄与率が低くなり、その利用価値が
薄れる。
For example, when principal component analysis is performed in the present embodiment, a processing device in which the state of application of the high frequency power supply 19 to the electrode 12 in the processing chamber 11 is stabilized (hereinafter referred to as a “reference processing device”). ), The voltage, current, phase and impedance of the fundamental wave and its harmonics of the high-frequency power supply 19 are intermittently measured as electrical data, and the measured values V (f n ) and I (f n ) of each frequency are measured. , P (f n ) and Z (f n ).
Then, the relative values of these various measured values are obtained, and the various measured values are rendered dimensionless. At this time, the correspondence between various measured values and the dimensionless relative values is clarified, for example, according to the arrangement order of the measured data. Next, various dimensionless measured values (hereinafter, simply referred to as “relative measured values”).
When the number of measurements is n and the measurement is performed m times until it becomes stable, a matrix containing all the relative measurement data of the reference processing device is expressed by Expression 1. Next, the controller 14 calculates an average value, a maximum value, a minimum value, and a variance value based on all the relative measurement values, and then uses a variance-covariance matrix based on these calculated values to obtain a plurality of dimensionless measurement data. Is performed to obtain an eigenvalue and its eigenvector. The eigenvalue indicates the magnitude of the variance of the dimensionless measurement data, and is defined as a first principal component, a second principal component,..., An nth principal component in the order of the magnitude of the eigenvalue. Also, each eigenvalue has an eigenvector belonging to it. Normally, the higher the degree of the principal component, the lower the contribution to the evaluation of the data, and the less its usefulness.

【数1】 (Equation 1)

【0022】例えばm回の測定でそれぞれn個の相対測
定値を採り、i番目の測定のj番目の固有値に対応する
第j主成分は数2で表される。そして、この第j主成分
tijに具体的なi番目の相対測定値(xi1
i2、・・・、xin)を代入して得られた値がi番
目の測定における第j主成分の得点になる。従って、第
j主成分の得点tは数3で定義され、第j主成分の固
有ベクトルPは数4で定義される。tは測定間の関
係を表す得点である。また、Pは測定値間の重みを表
す固有ベクトルである。そして、第j主成分の得点t
を行列Xと固有ベクトルPを用いると数5で表され
る。また、行列Xを各主成分の得点とそれぞれの固有ベ
クトルを用いると数6で表される。
For example, n relative measurement values are taken in each of the m measurements, and the j-th principal component corresponding to the j-th eigenvalue of the i-th measurement is expressed by Equation 2. Then, the i-th relative measurement value (x i1 ,
x i2 ,..., x in ) are the scores of the j-th principal component in the i-th measurement. Accordingly, the score t j of the j-th principal component is defined by Expression 3, and the eigenvector P j of the j-th principal component is defined by Expression 4. t j is a score representing the relationship between the measurements. Further, the eigenvector P j is representative of the weight between measurements. Then, the score t j of the j-th principal component
Represented by using the number 5 of the matrix X and eigenvectors P j. The matrix X is expressed by Equation 6 using the scores of the principal components and the respective eigenvectors.

【数2】 (Equation 2)

【数3】 (Equation 3)

【数4】 (Equation 4)

【数5】 (Equation 5)

【数6】 (Equation 6)

【0023】従って、主成分分析では多種類の測定デー
タがあっても例えば第1主成分及び第2主成分、多くて
も第3主成分までの少数の統計データとして纏め、少数
の統計データを調べるだけで運転状態を評価し、把握す
ることができる。例えば一般的に第1、第2主成分の固
有値の累積寄与率が90%を超えれば、第1、第2主成
分に基づいた評価は信頼性の高いものになる。第1主成
分は上述のように測定データが最も大きく分散する方向
を示し、処理装置の運転状態の総合的な評価を行う指標
となり、処理装置の運転状態の経時的変化の判断、評価
に適している。第2主成分は第1主成分とは直交する方
向に分散し、正常な運転状態からの瞬間的なずれの指標
となり、運転状態の突発的変化の判断、評価に適してい
る。
Therefore, in the principal component analysis, even if there are many types of measurement data, for example, the first and second principal components and at most the third principal component are collected as a small number of statistical data, and the small number of statistical data are collected. The driving condition can be evaluated and grasped simply by checking. For example, in general, if the cumulative contribution ratio of the eigenvalues of the first and second principal components exceeds 90%, the evaluation based on the first and second principal components becomes highly reliable. The first principal component indicates the direction in which the measured data is most dispersed as described above, and serves as an index for comprehensively evaluating the operating state of the processing apparatus, and is suitable for determining and evaluating the change over time in the operating state of the processing apparatus. ing. The second principal component is dispersed in a direction orthogonal to the first principal component and serves as an index of an instantaneous deviation from a normal operation state, and is suitable for judging and evaluating a sudden change in the operation state.

【0024】しかしながら、第1主成分は一般的に固有
ベクトルや第1主成分得点等を観てデータを如何なる傾
向にあるかなど総合的に評価することはできるが、第
1、第2主成分ではそれぞれの固有ベクトルが一義的に
決まるため、個々の測定データが測定毎に如何なる状態
にあり如何なる変化をしているかまで多面的に把握する
ことができない。そこで、本実施形態では処理室11内
に応じて高周波電源49の印加状態が安定状態に達した
ことを検出する手法として、寄与率の低い第(k+1)
以上の高次の主成分を一つに纏めた数7で定義する残差
行列E(各行の成分は高周波の基本波及びその高調波の
各相対測定値に対応し、各列の成分は測定回数に対応す
る)を作る。そして、この残差行列Eを数6に当て填め
ると数6は数8で表される。更に、基準処理装置の残差
行列Eの残差得点を基準残差得点Qとして求め、この
残差得点Qを基準にして任意の処理装置(以下、「比
較処理装置」と称す。)が始動した後安定状態に達する
までを検出するようにしている。一般に、残差得点Q
は行ベクトルeとその転置ベクトルe の積として
表され、各残差成分の2乗の和となり、プラス成分及び
マイナス成分を相殺することなく確実に残差として求め
られるようにしてある。従って、測定毎の基準処理装置
の残差得点Qと比較処理装置の残差得点Qを比較す
ることで比較処理装置が安定状態に達しているか否かを
判断することができる。そして、比較処理装置のある時
点での残差得点Qが同一時点での基準処理装置の残差
得点Qから外れた場合には残差行列Eの数10で表さ
れる各行の行ベクトルeの成分を観れば、その時点で
いずれの測定値に大きなズレがあったかが判り、異常の
原因を特定することができる。
However, the first principal component can be generally evaluated by observing eigenvectors, the first principal component score, and the like to see how the data tends to be. Since each eigenvector is uniquely determined, it is not possible to grasp from various aspects how the individual measurement data is in each state and how it changes. Therefore, in the present embodiment, as a method of detecting that the application state of the high-frequency power supply 49 has reached a stable state according to the inside of the processing chamber 11, the (k + 1) th low-contribution ratio is used.
The residual matrix E defined by Equation 7 in which the above high-order principal components are integrated into one (the components in each row correspond to the relative measurement values of the high-frequency fundamental wave and its harmonics, and the components in each column are measured. (Corresponding to the number of times). Then, when this residual matrix E is applied to Expression 6, Expression 6 is expressed by Expression 8. Moreover, it obtains a residual score of residual matrix E of the reference processing unit based residual score Q 0, any processor to the residual score Q 0 to the reference (hereinafter referred to as "comparison unit".) Is detected until it reaches a stable state after starting. In general, the residual score Q i
Is expressed as the product of the row vector e i and its transposed vector e i T , and is the sum of the squares of the respective residual components, so that the residual components can be reliably obtained without canceling the plus and minus components. . Therefore, comparison processing unit can determine whether the reached steady state by comparing the residual scores Q i of the comparison processing unit and residual scores Q 0 of the reference processing unit for each measurement. Then, row vector of each row represented by the number 10 of the residual matrix E if residual score Q i at point in the comparison processing unit is out of the residual scores Q 0 of the reference processing unit at the same time Looking at the components of e i, can there was a significant deviation in any of the measured values at that time understand, identify the cause of the abnormality.

【数7】 (Equation 7)

【数8】 (Equation 8)

【数9】 (Equation 9)

【数10】 (Equation 10)

【0025】即ち、比較処理装置の安定状態を検出する
には、基準処理装置について残差行列Eの残差得点Q
を予め求める。そして、基準処理装置で得られた残差得
点Q及び固有ベクトル等の定数を任意の処理装置の主
成分分析プログラムに設定し、この設定条件の下で任意
の処理装置の電気的データから残差得点Qを求める。次
いで、比較処理装置の残差得点Qの基準処理装置の残差
得点Qからの差(ずれ量)を求め、この残差得点の差
(Q−Q)に基づいて比較処理装置での高周波電源4
9の印加状態が安定状態に達しているか否かを判断す
る。即ち、残差得点の差(Q−Q)が大きければ、そ
の任意の処理装置は基準処理装置からのずれが大きく不
安定であることを示し、差(Q−Q)が小さければ基
準処理装置とのずれが小さく安定状態に近いことを示
す。基準処理装置の残差得点Q=0にすれば、残差得
点Qがそのまま基準レベルからのずれ量になる。尚、変
数の値は平均値が0になるように計算されているものと
する。
That is, in order to detect the stable state of the comparison processing device, the residual score Q 0 of the residual matrix E is used for the reference processing device.
Is obtained in advance. Then, constants such as the residual score Q 0 and the eigenvector obtained by the reference processor are set in the principal component analysis program of the arbitrary processor, and the residual data is obtained from the electrical data of the arbitrary processor under the set conditions. Find the score Q. Then, obtain the difference (deviation amount) from residual scores Q 0 of the reference processor of residual scores Q of the comparison processing unit, in the comparison processing unit based on the difference between the residual score (Q-Q 0) High frequency power supply 4
It is determined whether the application state of No. 9 has reached a stable state. That is, if the difference (Q−Q 0 ) in the residual score is large, it indicates that the deviation from the reference processing device is large and unstable, and if the difference (Q−Q 0 ) is small, the reference value is small. This indicates that the deviation from the processing apparatus is small and close to a stable state. If the residual score Q 0 of the reference processor is set to 0, the residual score Q becomes the amount of deviation from the reference level as it is. It is assumed that the values of the variables are calculated so that the average value becomes zero.

【0026】本実施形態の処理装置の運転方法を下記の
状態A、B及び処理条件A、Bを(1)〜(4)のよう
に適宜組み合わせてウエハを処理し、処理している間の
基本及びその高調波の測定値V(f)、I(f)、P
(f)、Z(f)の相対測定値及び残差得点Qを図2〜
図5に示した。尚、任意の処理装置の主成分プログラム
には基準処理装置で得られた主成分分析結果が予め設定
されている。各図におけるプロットはウエハ1枚当たり
の平均値を示している。また、下記の処理条件でデポジ
ションの値は、デポジション量の少ない条件を1とし、
デポジション量の多い条件をデポジション量の少ない条
件に対する相対値で示してある。 I.状態 状態A:処理室内を12時間真空引きした状態 状態B:処理室内を4日間真空引きした状態 II.処理条件 処理条件A:デポジションの少ない条件 ウエハ処理時間:1分 高周波電力:1700W 処理室圧力:45mTorr プロセスガス:C=10sccm、CO=50sccm、
Ar=200sccmO=5sccm デポジション:1(相対値) 処理条件B:デポジションの多い条件 ウエハ処理時間:1分 高周波電力:1500W 処理室圧力:53mTorr プロセスガス:C=16sccm、CO=300sccm Ar=400sccm デポジション:1.95(相対値)
The method of operating the processing apparatus according to the present embodiment is performed by appropriately combining the following conditions A and B and processing conditions A and B as shown in (1) to (4) to process the wafer. Basic and its harmonic measurement values V (f n ), I (f n ), P
(f n ), the relative measurement value of Z (f n ) and the residual score Q are shown in FIG.
As shown in FIG. The principal component analysis result obtained by the reference processing device is set in advance in the principal component program of an arbitrary processing device. The plot in each figure shows the average value per wafer. In the following processing conditions, the value of the deposition is set to 1 when the deposition amount is small,
The condition with a large amount of deposition is shown as a relative value to the condition with a small amount of deposition. I. State A: The processing chamber is evacuated for 12 hours. State B: The processing chamber is evacuated for 4 days. II. Processing conditions Processing conditions A: Conditions with little deposition Wafer processing time: 1 minute High-frequency power: 1700 W Processing chamber pressure: 45 mTorr Process gas: C 4 F 8 = 10 sccm, CO = 50 sccm
Ar = 200 sccm O 2 = 5 sccm Deposition: 1 (relative value) Processing condition B: Conditions with many deposition Wafer processing time: 1 minute High frequency power: 1500 W Processing chamber pressure: 53 mTorr Process gas: C 4 F 8 = 16 sccm, CO = 300 sccm Ar = 400 sccm Deposition: 1.95 (relative value)

【0027】まず、図2、図3を参照しながら保守点検
後の処理条件の違いによる安定化の差について説明す
る。 (1)処理室11内を状態Aに導いた後、処理装置をデ
ポジションの少ない処理条件Aに設定した。この状態で
ウエハを処理室11内に搬入してウエハを処理した。ウ
エハ搬入直後(始動直後)から高調波測定器17を用い
て高周波電源19の基本波及び高調波の電圧、電流、位
相及びインピーダンスを約0.2秒毎に測定し、それぞ
れの測定値V(f)、I(f)、P(f)、Z
(f)のウエハ毎の平均値を求め、基準処理装置のそ
れぞれの値との比を採り、それぞれの測定値の変動の様
子を図2の(a)に示した。図2の(a)に示す結果に
よれば、処理開始直後から各測定値は緩慢に基準値(=
1)に収束し、○印当たりから概ね基準値レベルに達し
安定化状態になったと判断されるが、○印以降でも上下
の振れが認められる。図2の(a)でも図8に示す従来
の手法と比較すれば安定状態を判断し易い。これに対
し、本実施形態の方法により上記測定値から残差得点Q
を求めた結果、図3の(a)に示すようになった。図3
の(a)では複数の測定値が残差得点Qとして一つに纏
まり、図2の(a)と比較しても基準値からのずれが判
断し易く、安定状態はウエハの処理枚数で100〜12
0枚の範囲にあると判断できる。それ以降でも残差得点
Qが周期的に若干増加する傾向が認められる。
First, a difference in stabilization due to a difference in processing conditions after maintenance and inspection will be described with reference to FIGS. (1) After the inside of the processing chamber 11 was brought to the state A, the processing apparatus was set to the processing condition A with little deposition. In this state, the wafer was loaded into the processing chamber 11 and processed. Immediately after the wafer is loaded (immediately after start-up), the voltage, current, phase and impedance of the fundamental wave and harmonics of the high-frequency power supply 19 are measured every 0.2 seconds using the harmonic measuring device 17, and the measured values V ( f n ), I (f n ), P (f n ), Z
The average value of (f n ) for each wafer was determined, and the ratio to the respective values of the reference processing apparatus was taken. FIG. 2 (a) shows how the measured values fluctuated. According to the results shown in FIG. 2A, immediately after the start of the processing, each measured value slowly decreases to the reference value (=
It is determined that the convergence has been achieved in 1) and the reference value level has been substantially reached from the vicinity of the mark, and the state has been stabilized. However, even after the mark, up and down swings are recognized. Also in FIG. 2A, it is easier to determine a stable state compared to the conventional method shown in FIG. On the other hand, according to the method of the present embodiment, the residual score Q
As a result, was obtained as shown in FIG. FIG.
In (a), a plurality of measured values are combined into one as a residual score Q, and the deviation from the reference value can be easily determined even when compared with (a) in FIG. ~ 12
It can be determined that there is no image. Even thereafter, the residual score Q tends to increase slightly periodically.

【0028】(2)(1)と同様に処理室11内を上記
の状態Aに導いた後、(1)とは違ってデポジションの
多い処理条件Bに設定した。そして、ウエハを処理室1
1内に搬入してウエハを処理し、処理装置の始動直後か
ら高周波電源19の印加状態が安定するまでの測定値を
得た後、各測定値について(1)の場合と同様に基準値
との比を採り、その結果を図2の(b)に示した。図2
の(b)に示す結果によれば、各測定値は(1)の場合
と比較して早く安定状態に向かうが、振れ幅の小さい安
定状態に達するのは○印当たりからで(1)の場合と余
り変わらない。これに対し、本実施形態の方法で検討す
ると、図3の(b)に示す結果からも明らかなように残
差得点Qが(1)の場合よりも早く基準値に収束して安
定状態に達し、安定状態の時点を判断し易いことが判
る。基準処理装置を用いて安定状態を判断する残差得点
を予め定めておけば比較処理装置の安定状態を確実に判
断することができる。
(2) After the inside of the processing chamber 11 was brought into the above-mentioned state A in the same manner as in (1), processing conditions B with many depositions were set unlike in (1). Then, the wafer is placed in the processing chamber 1
After processing the wafer by loading it into the apparatus 1 and obtaining measured values from immediately after the start of the processing apparatus until the applied state of the high-frequency power supply 19 is stabilized, each measured value is set to the reference value in the same manner as in (1). The results are shown in FIG. 2 (b). FIG.
According to the result shown in (b), each measured value goes to a stable state earlier than in the case of (1). Not much different from the case. On the other hand, when the method of this embodiment is examined, the residual score Q converges to the reference value earlier than in the case of (1) and becomes stable, as is clear from the result shown in FIG. It can be seen that it is easy to judge the point of the stable state. If the residual score for determining the stable state using the reference processing device is determined in advance, the stable state of the comparison processing device can be reliably determined.

【0029】次に、図4、図5を参照しながら保守点検
後の処理室内の状態の違いによる安定化の差について説
明する。 (3)処理室11内を状態Aに導いた後、処理装置をデ
ポジションの少ない処理条件Aに設定した。そして、ウ
エハを処理室11内に搬入してウエハを処理し、処理装
置の始動直後から高周波電源19の印加状態が安定する
までの測定値を得た後、各測定値について(1)の場合
と同様に基準値との比を採り、その結果を図4の(a)
に示した。図4の(a)に示す結果によれば、各測定値
が緩慢に基準値に収束し、安定状態に達するのが遅いこ
とが判る。ウエハ120枚前後の○印当たりで安定状態
になったと判断されるが、それ以降でも上下に振れる測
定値があり、安定化の判断が難しいことが判る。これに
対し、本実施形態の方法で検討すると、図5の状態Aに
示す結果からも明らかなように高調波測定器17の測定
値の結果とは異なり、残差得点Qが基準値に収束するま
でに予想外の時間が掛かり、○印当たりで初めて安定状
態になることが判る。
Next, a difference in stabilization due to a difference in the state of the processing chamber after the maintenance and inspection will be described with reference to FIGS. (3) After the inside of the processing chamber 11 was brought to the state A, the processing apparatus was set to the processing condition A with little deposition. Then, the wafer is carried into the processing chamber 11, the wafer is processed, and measurement values from immediately after the start of the processing apparatus until the application state of the high-frequency power supply 19 is stabilized are obtained. The ratio with the reference value is taken in the same manner as in the above, and the result is shown in FIG.
It was shown to. According to the result shown in FIG. 4A, it is understood that each measured value slowly converges to the reference value, and the stable state is slowly reached. It is determined that a stable state has been reached at around the ○ mark around 120 wafers. However, even after that, there are measured values that fluctuate up and down, and it is understood that the determination of stabilization is difficult. In contrast, when the method of the present embodiment is examined, the residual score Q converges to the reference value, unlike the result of the measurement value of the harmonic measuring device 17 as is apparent from the result shown in the state A of FIG. It takes an unexpected amount of time to complete, and it turns out that a stable state is reached only when the circle mark is reached.

【0030】(4)処理室11内を状態Bに導いた後、
(3)の場合と同様に処理装置をデポジションの少ない
処理条件Aに設定した。そして、ウエハを処理室11内
に搬入してウエハを処理し、処理装置の始動直後から高
周波電源19の印加状態が安定するまでの測定値を得た
後、各測定値について(1)の場合と同様に基準値との
比を採り、その結果を図4の(b)に示した。図4の
(b)に示す結果によれば、各測定値が(3)の場合よ
りも早く基準値に収束し、早く安定状態に達しているこ
とが判る。また、本実施形態の方法で検討すると、図5
の状態Bに示すように残差得点Qは基準値に到達するの
が早いが、ウエハ100以内では変動があり完全に安定
するのは100枚以上であることが明瞭に判る。
(4) After the inside of the processing chamber 11 is brought to the state B,
As in the case of (3), the processing apparatus was set to the processing condition A with little deposition. Then, the wafer is carried into the processing chamber 11, the wafer is processed, and measurement values from immediately after the start of the processing apparatus until the application state of the high-frequency power supply 19 is stabilized are obtained. In the same manner as in the above, the ratio with the reference value was taken, and the result is shown in FIG. According to the result shown in FIG. 4B, it is understood that each measured value converges to the reference value earlier than in the case of FIG. When the method of this embodiment is examined, FIG.
As shown in the state B, it is clear that the residual score Q reaches the reference value quickly, but within 100 wafers, it fluctuates and 100 or more wafers are completely stable.

【0031】以上説明したように本実施形態によれば、
電極12とマッチング回路18の間に高調波測定器17
を設け、この高調波測定器17を用い、安定化した処理
装置10の基本波及び高調波それぞれの電圧値、電流
値、位相及びインピーダンス等の電気的データの測定値
V(f)、I(f)、P(f)、Z(f)を用
いて予め基準となる主成分分析を行って基準となる残差
得点Qを求めた後、保守点検後の処理装置10の始動
直後から高調波測定器17で電気的データを測定し、こ
の測定値V(f)、I(f)、P(f)、Z(f
)を用いて比較用の主成分分析を行って比較用の残差
得点Qを求め、比較残差得点Qと基準残差得点Qを比
較して両者Q、Qの差から保守点検後の処理装置10
の高周波電源の安定状態を検出するようにしたため、膨
大な測定値があってもこれらのデータを一つの纏めた残
差得点Qを基準値を比較するだけで保守点検後の処理装
置10、具体的には処理室11内の安定状態を客観的且
つ確実に評価し、判断することができる。また、本実施
形態によれば、単に安定状態に達した時点を評価、判断
できるばかりでなく、安定状態に導くには処理室11内
の真空引き時間等の処理条件を如何に設定すれば良いか
を評価、判断することができる。
As described above, according to the present embodiment,
Harmonic measuring device 17 between electrode 12 and matching circuit 18
And using the harmonic measuring device 17, the measured values V (f n ), I (I) of the electrical data such as the voltage value, the current value, the phase, and the impedance of the fundamental wave and the harmonic of the stabilized processing device 10 are obtained. (F n ), P (f n ), and Z (f n ) are used to perform a reference principal component analysis in advance to obtain a reference residual score Q 0 . Immediately after the start, electrical data is measured by the harmonic measuring device 17 and the measured values V (f n ), I (f n ), P (f n ), Z (f
performing principal component analysis for comparison seeking residual scores Q for comparison with n), maintenance from both Q, the difference in Q 0 by comparing the comparison residual scores Q and the reference residual scores Q 0 Subsequent processing device 10
In order to detect the stable state of the high-frequency power supply, even if there is an enormous amount of measured values, these data are combined into a single residual score Q and the reference value is compared with the processing device 10 after maintenance and inspection. Specifically, a stable state in the processing chamber 11 can be objectively and reliably evaluated and determined. Further, according to the present embodiment, not only can the point of time at which a stable state is reached be evaluated and judged, but also the processing conditions such as the evacuation time in the processing chamber 11 can be set to lead to a stable state. Can be evaluated and judged.

【0032】次に、本発明の処理装置の異常検出方法の
一実施形態について説明する。本実施形態の処理装置の
異常検出方法も主成分分析における残差得点Qを使用す
る点では上記実施形態の処理装置の運転方法と共通して
いる。但し、本実施形態では正常な処理装置、即ち、処
理室11内及び高周波電源19における部品等の取付ミ
スがなく、仕様に則って正確に組み立てられている処理
装置を基準処理装置として使用する。本実施形態では処
理装置の始動後の高周波電源19の印加状態が不安定な
状態を脱し安定状態に達した段階で基本波及びその高調
波の電気的データを測定することは云うまでもない。
Next, an embodiment of a method for detecting an abnormality of a processing apparatus according to the present invention will be described. The abnormality detection method of the processing apparatus of the present embodiment is also common to the operation method of the processing apparatus of the above embodiment in that the residual score Q in the principal component analysis is used. However, in the present embodiment, a normal processing device, that is, a processing device that is correctly assembled in accordance with the specifications without mounting errors of components and the like in the processing chamber 11 and the high-frequency power supply 19 is used as the reference processing device. In the present embodiment, it is needless to say that the electrical data of the fundamental wave and its harmonics are measured when the applied state of the high-frequency power supply 19 has been released from the unstable state and reached the stable state after the start of the processing apparatus.

【0033】そこで、本実施形態においても上記実施形
態と同様に、基準処理装置に関する基本波及びその高調
波の電圧、電流、位相及びインピーダンスそれぞれ電気
的データとして間欠的に測定して各周波数の測定値V
(f)、I(f)、P(f)、Z(f)を得る。そし
て、基準処理装置に関し、数9で定義される残差得点Q
を予め求める。基準処理装置で得られた固有ベクトル
等の定数を任意の処理装置の主成分分析プログラムに設
定し、この設定条件の下で任意の処理装置の電気的デー
タから残差得点Qを求める。次いで、基準処理装置の残
差得点Qと任意の処理装置の残差得点Qとの差(ずれ
量)を求め、この残差得点の差(Q−Q)に基づいて
任意の処理装置が安定状態になっているか否かを判断す
る。即ち、残差得点の差(Q−Q)が大きければ、そ
の任意の処理装置には処理室及び/または高周波電源1
9の部品の取付ミス等があることを示す。差(Q−
)が許容値以下であればその処理装置は正常と判断
される。また、残差得点Qが他の残差得点と異なる値を
表した時には、残差行列Eの異なる値を示した行、例え
ばi番目の測定結果の残差得点が基準残差得点Qとは異
なる値である場合には、i番目の行のeの残差成分e
ijを観ることにより、どの変数(測定値)が残差得点
Qのズレに寄与しているかを判断することができる。こ
のことから、異常の原因と残差の大きい変数(基本波、
高調波の電圧、電流等)を関連づけることにより、異常
の原因を分類することができる。
Therefore, in the present embodiment, similarly to the above embodiment, the voltage, current, phase and impedance of the fundamental wave and its harmonics related to the reference processing device are intermittently measured as electrical data, and the measurement of each frequency is performed. Value V
(f n ), I (f n ), P (f n ) and Z (f n ) are obtained. Then, regarding the reference processing device, the residual score Q defined by Expression 9
0 is obtained in advance. Constants such as eigenvectors obtained by the reference processor are set in a principal component analysis program of an arbitrary processor, and a residual score Q is obtained from electrical data of the arbitrary processor under the set conditions. Then, determine the difference between the residual score Q of residual scores Q 0 and any processor of the reference processing unit (shift amount), any of the processing apparatus based on the difference of the residual score (Q-Q 0) Is determined to be in a stable state. That is, if the difference between the residual score (Q-Q 0) is large, and its optional processing device processing chamber and / or the high frequency power source 1
9 indicates that there is a mounting error or the like of the component No. 9. Difference (Q-
If Q 0 ) is equal to or less than the allowable value, the processing device is determined to be normal. When the residual score Q represents a value different from the other residual scores, a row indicating a different value of the residual matrix E, for example, the residual score of the ith measurement result is different from the reference residual score Q. If the values are different, the residual component e of e i in the i-th row
By watching ij , it is possible to determine which variable (measured value) contributes to the deviation of the residual score Q. From this, the cause of the anomaly and variables with large residuals (fundamental wave,
By associating the voltages and currents of the harmonics, the cause of the abnormality can be classified.

【0034】図6は残差得点Qと部品取付ミスとの関係
を示すグラフである。図6においてN1及びN2は正常
な処理装置の残差得点、状態Aはネジがない時の残差得
点、状態Cはカバーがない時の残差得点、状態Dは状態
Aとは別の部分のネジがない時の残差得点、状態Eは状
態Cとは別の部位のカバーがない時の残差得点、状態F
はネジが緩んでいる時の残差得点、状態Gは部品がない
時の残差得点を示している。例えば、状態Aの残差得点
を示した行の残差成分を観ると図7の(a)のようにな
っている。この状態Aにおけるネジがないと、基本波の
電圧及びインピーダンスがマイナス側に特に大きく振
れ、3倍波の電流及び基本波の位相がプラス側に特に大
きく振れていることが判る。状態Cにおけるカバーがな
いと、同図に(b)のように基本波の電圧及びインピー
ダンスがマイナス側に特に大きく振れ、位相がプラス側
に比較的大きく振れていることが判る。状態Gにおける
部品がないと、基本波の電流及び位相がマイナス側に特
に大きく振れ、基本波のインピーダンスがプラス側に特
に大きく振れていることが判る。従って、部品の種類、
取付部位等と残差得点の大きい成分との関係を分類する
ことが可能である。この関係を予め把握しておくこと
で、残差得点への寄与率の高い成分を知ることにより如
何なる異常があるか判断することができる。
FIG. 6 is a graph showing the relationship between the residual score Q and a component mounting error. In FIG. 6, N1 and N2 are residual scores of a normal processing apparatus, state A is a residual score without screws, state C is a residual score without covers, and state D is a part different from state A. Is the residual score when there is no screw, and the state E is the residual score when there is no cover of a part other than the state C, and the state F is
Indicates a residual score when the screw is loose, and state G indicates a residual score when there is no component. For example, looking at the residual component of the row indicating the residual score in state A, the result is as shown in FIG. If there is no screw in this state A, it can be seen that the voltage and impedance of the fundamental wave swing particularly largely to the minus side, and the current of the third harmonic and the phase of the fundamental wave swing particularly greatly to the plus side. If there is no cover in the state C, it can be seen that the voltage and impedance of the fundamental wave greatly swing to the minus side and the phase relatively swings to the plus side as shown in FIG. If there are no components in the state G, it can be seen that the current and the phase of the fundamental wave greatly swing to the minus side, and the impedance of the fundamental wave swings particularly greatly to the plus side. Therefore, the type of parts,
It is possible to classify the relationship between the attachment site and the like and the component with the largest residual score. By grasping this relationship in advance, it is possible to determine what abnormality is present by knowing a component having a high contribution rate to the residual score.

【0035】以上説明したように本実施形態によれば、
正常な処理装置の高周波電源19の測定データを用いて
予め主成分分析を行って基準用の残差得点を求めた後、
任意の処理装置の複数の電気的データを測定して得られ
た複数の測定データを用いて主成分分析を行って比較用
の残差得点を求め、次いで、比較残差得点Qと基準残差
得点Qを比較して両者Q、Qの差から任意の処理装
置の異常を検出するようにしたため、処理装置を開ける
ことなく部品の取付ミスによる異常を確実に検出するこ
とができ、しかも取付ミスを残差行列Eの成分から分類
することができる。
As described above, according to this embodiment,
After performing principal component analysis in advance using measurement data of the high-frequency power supply 19 of the normal processing apparatus to obtain a residual score for reference,
Principal component analysis is performed using a plurality of measurement data obtained by measuring a plurality of electrical data of an arbitrary processing device to obtain a residual score for comparison. Then, a comparative residual score Q and a reference residual both Q by comparing the score Q 0, since that to detect the abnormality of any of the processing unit from the difference between the Q 0, it is possible to reliably detect the abnormality by the component mounting mistakes without opening the processing apparatus, moreover Mounting errors can be classified from the components of the residual matrix E.

【0036】尚、上記実施形態では、主成分分析を用い
た処理装置の運転方法及び異常検出方法について説明し
たが、多変量解析の手法を用いても本発明を実現するこ
とができる。
In the above embodiment, the method of operating the processing apparatus and the method of detecting an abnormality using the principal component analysis have been described. However, the present invention can be realized by using a multivariate analysis technique.

【0037】[0037]

【発明の効果】本発明の請求項1〜請求項5に記載の発
明によれば、始動後の処理装置の安定状態を客観的に判
断することができ、条理条件を最適化して運転できる処
理装置の運転方法を提供することができる。
According to the first to fifth aspects of the present invention, it is possible to objectively determine the stable state of the processing apparatus after starting, and to optimize the conditions for operation. A method of operating the device can be provided.

【0038】また、本発明の請求項5〜請求項10に記
載の発明によれば、処理装置を開けることなく部品の取
付ミスによる異常を確実に検出することができ、しかも
取付ミスを分類することができる処理装置の異常検出方
法を提供することができる。
Further, according to the present invention, an abnormality due to a component mounting error can be reliably detected without opening the processing device, and the mounting error is classified. It is possible to provide a method of detecting an abnormality of a processing device that can perform the processing.

【図1】本発明の処理装置の運転方法及び異常検出方法
を適用する処理装置の一例を示す構成図である。
FIG. 1 is a configuration diagram illustrating an example of a processing apparatus to which a method for operating a processing apparatus and an abnormality detection method according to the present invention are applied.

【図2】(a)、(b)はそれぞれ高調波測定器を用い
て処理装置の電気的データが安定化するまでの推移を示
すグラフである。
FIGS. 2 (a) and 2 (b) are graphs each showing a transition until electrical data of a processing device is stabilized using a harmonic measuring device.

【図3】(a)、(b)はそれぞれ図2の(a)、
(b)に対応する電気的データの残差得点が安定化する
までの推移を示すグラフである。
FIGS. 3 (a) and 3 (b) are FIGS. 2 (a) and 2 (b), respectively.
It is a graph which shows transition until the residual score of electrical data corresponding to (b) is stabilized.

【図4】(a)、(b)はそれぞれ高調波測定器を用い
て処理装置の電気的データが安定化するまでの推移を示
すグラフである。
FIGS. 4 (a) and 4 (b) are graphs showing transitions until electrical data of a processing device is stabilized using a harmonic measuring device.

【図5】(a)、(b)はそれぞれ図2の(a)、
(b)に対応する電気的データの残差得点が安定化する
までの推移を示すグラフである。
FIGS. 5 (a) and 5 (b) are (a) and (b) of FIG. 2, respectively.
It is a graph which shows transition until the residual score of electrical data corresponding to (b) is stabilized.

【図6】正常な処理装置及び異常な処理装置の電気的デ
ータに基づく残差得点を示すグラフである。
FIG. 6 is a graph showing residual scores based on electrical data of a normal processing device and an abnormal processing device.

【図7】(a)〜(c)はそれぞれ異常な処理装置の電
気的データの残差成分を示すグラフである。
FIGS. 7A to 7C are graphs each showing a residual component of electrical data of an abnormal processing device.

【図8】従来使用されていた処理装置の始動直後の電気
的データの変動を示すグラフである。
FIG. 8 is a graph showing a change in electrical data immediately after the start of a conventionally used processing apparatus.

【符号の説明】[Explanation of symbols]

10 処理装置 11 処理室 12 電極 19 高周波電源 W ウエハ(被処理体) DESCRIPTION OF SYMBOLS 10 Processing apparatus 11 Processing chamber 12 Electrode 19 High frequency power supply W Wafer (object to be processed)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05H 1/46 H01L 21/302 C Fターム(参考) 4G075 AA24 AA30 AA41 AA51 AA61 AA65 BC06 CA14 CA25 CA43 CA62 CA65 DA04 DA11 DA18 EB01 EB42 EC21 ED08 FB02 FC11 4K030 FA03 HA11 JA14 JA17 JA18 KA02 KA39 KA41 5F004 AA01 AA09 BA08 BB11 BB13 BD04 CA02 CA03 CA08 CB07 DA00 DA23 DA26 5F045 AA08 BB02 BB03 BB10 BB20 DP03 DQ10 EB02 EH14 EH16 GB08 GB16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05H 1/46 H01L 21/302 C F term (Reference) 4G075 AA24 AA30 AA41 AA51 AA61 AA65 BC06 CA14 CA25 CA43 CA62 CA65 DA04 DA11 DA18 EB01 EB42 EC21 ED08 FB02 FC11 4K030 FA03 HA11 JA14 JA17 JA18 KA02 KA39 KA41 5F004 AA01 AA09 BA08 BB11 BB13 BD04 CA02 CA03 CA08 CB07 DA00 DA23 DA26 5F045 AA08 BB02 BB03 E03GB10E20 GB20

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 高周波電源から処理室内の電極に高周波
電力を印加してプラズマを発生させて被処理体を処理す
る際に、上記処理室内の状態に応じて変化する上記高周
波電源の複数の電気的データを測定する測定器で測定さ
れた複数の測定データを用いて多変量解析を行って上記
高周波電源の印加状態を検出して処理装置を運転する方
法であって、処理装置の処理室内の状態に応じて上記高
周波電源の印加状態が安定化した時の上記測定データを
用いて予め基準用の多変量解析を行う工程と、始動直後
から任意の処理装置の複数の電気的データを測定する工
程と、複数の測定データを用いて比較用の多変量解析を
行う工程と、比較多変量解析結果と基準多変量解析結果
を比較して両者の差から上記任意の処理装置の上記高周
波電源が上記処理室内の状態に応じて安定状態に達した
ことを検出する工程とを有することを特徴とする処理装
置の運転方法。
When a high frequency power is applied to an electrode in a processing chamber from a high frequency power supply to generate a plasma and process an object to be processed, a plurality of electric powers of the high frequency power supply change according to a state in the processing chamber. A multivariate analysis using a plurality of measurement data measured by a measuring device to measure the static data, to detect the application state of the high-frequency power supply, and to operate the processing apparatus. A step of performing a multivariate analysis for reference in advance using the measurement data when the application state of the high-frequency power supply is stabilized according to a state, and measuring a plurality of electrical data of an arbitrary processing apparatus immediately after starting. The step and the step of performing a multivariate analysis for comparison using a plurality of measurement data, and comparing the comparison multivariate analysis result and the reference multivariate analysis result, the high-frequency power source of the arbitrary processing apparatus The above processing chamber Detecting that a stable state has been reached according to the state of the inside of the processing apparatus.
【請求項2】 高周波電源から処理室内の電極に高周波
電力を印加してプラズマを発生させて被処理体を処理す
る際に、上記処理室内の状態に応じて変化する上記高周
波電源の複数の電気的データを測定する測定器で測定さ
れた複数の測定データを用いて主成分分析を行って上記
高周波電源の印加状態を検出して処理装置を運転する方
法であって、処理装置の処理室内の状態に応じて上記高
周波電源の印加状態が安定化した時の上記測定データを
用いて予め基準用の主成分分析を行う工程と、始動直後
から任意の処理装置の複数の電気的データを測定する工
程と、複数の測定データを用いて比較用の主成分分析を
行う工程と、比較主成分分析結果と基準主成分分析結果
を比較して両者の差から上記任意の処理装置の高周波電
源が上記処理室内の状態に応じて安定状態に達したこと
を検出する工程とを有することを特徴とする処理装置の
運転方法。
2. When a high frequency power is applied to an electrode in a processing chamber from a high frequency power supply to generate a plasma and process an object to be processed, a plurality of electric powers of the high frequency power supply change according to a state in the processing chamber. A main component analysis using a plurality of measurement data measured by a measuring device that measures the dynamic data, detects the application state of the high-frequency power supply, and operates the processing device, and the method includes: Performing a principal component analysis for reference in advance using the measurement data when the application state of the high-frequency power supply is stabilized according to a state, and measuring a plurality of electrical data of an arbitrary processing apparatus immediately after startup The step of performing a principal component analysis for comparison using a plurality of measurement data; and comparing the result of the comparison principal component analysis with the result of the reference principal component analysis. In the processing chamber Detecting that a stable state has been reached according to the state.
【請求項3】 上記電気的データとして少なくとも基本
波及び高調波それぞれの電圧値、電流値、インピーダン
ス及び位相角を用いることを特徴とする請求項1または
請求項2に記載の処理装置の運転方法。
3. The method according to claim 1, wherein at least a voltage value, a current value, an impedance, and a phase angle of each of a fundamental wave and a harmonic are used as the electrical data. .
【請求項4】 主成分分析で残差得点または主成分得点
を求めた後、残差得点または主成分得点を比較すること
を特徴とする請求項2または請求項3に記載の処理装置
の運転方法。
4. The operation of the processing apparatus according to claim 2, wherein after the residual score or the principal component score is obtained by the principal component analysis, the residual score or the principal component score is compared. Method.
【請求項5】 残差得点の比較結果に基づいて処理条件
及び/または稼働条件を判断することを特徴とする請求
項2〜請求項4のいずれか1項に記載の処理装置の運転
方法。
5. The operating method according to claim 2, wherein the processing condition and / or the operating condition are determined based on a result of the comparison of the residual scores.
【請求項6】 高周波電源から処理室内の電極に高周波
電力を印加してプラズマを発生させて被処理体を処理す
る際に、上記処理室内の状態に応じて変化する上記高周
波電源の複数の電気的データを測定する測定器で測定さ
れた複数の測定データを用いて多変量解析を行って上記
高周波電源の印加状態を検出して処理装置の異常を検出
する方法であって、正常な処理装置の処理室内の状態に
応じて上記高周波電源の印加状態が安定化した時の上記
測定データを用いて予め基準用の多変量解析を行う工程
と、任意の処理装置の複数の電気的データを測定する工
程と、複数の測定データを用いて比較用の多変量解析を
行う工程と、比較多変量解析結果と基準多変量解析結果
を比較して両者の差から上記任意の処理装置の異常を検
出する工程とを有することを特徴とする処理装置の異常
検出方法。
6. When a high-frequency power is applied from a high-frequency power source to an electrode in a processing chamber to generate a plasma and process an object to be processed, a plurality of electric powers of the high-frequency power source change according to a state in the processing chamber. A multi-variate analysis using a plurality of measurement data measured by a measuring device that measures the dynamic data, detects the application state of the high-frequency power supply, and detects an abnormality of the processing device, the normal processing device Performing a multivariate analysis for reference in advance using the measurement data when the application state of the high-frequency power supply is stabilized according to the state in the processing chamber, and measuring a plurality of electrical data of an arbitrary processing apparatus And the step of performing a multivariate analysis for comparison using a plurality of measurement data, and comparing the comparison multivariate analysis result and the reference multivariate analysis result to detect an abnormality of the above-described arbitrary processing apparatus from a difference between the two. Having a process of A method for detecting an abnormality of a processing device.
【請求項7】 高周波電源から処理室内の電極に高周波
電力を印加してプラズマを発生させて被処理体を処理す
る際に、上記処理室内の状態に応じて変化する上記高周
波電源の複数の電気的データを測定する測定器で測定さ
れた複数の測定データを用いて主成分分析を行って上記
高周波電源の印加状態を検出して処理装置の異常を検出
する方法であって、正常な処理装置の処理室内の状態に
応じて上記高周波電源の印加状態が安定化した時の上記
測定データを用いて予め基準用の主成分分析を行う工程
と、任意の処理装置の複数の電気的データを測定する工
程と、複数の測定データを用いて比較用の主成分分析を
行う工程と、比較主成分分析結果と基準主成分分析結果
を比較して両者の差から上記任意の処理装置の異常を検
出する工程とを有することを特徴とする処理装置の異常
検出方法。
7. When a high-frequency power is applied to an electrode in a processing chamber from a high-frequency power source to generate a plasma and process an object to be processed, a plurality of electric powers of the high-frequency power source change according to a state in the processing chamber. A main component analysis using a plurality of measurement data measured by a measuring device for measuring dynamic data to detect an applied state of the high-frequency power supply, thereby detecting an abnormality of the processing device. Performing a principal component analysis for reference in advance using the measurement data when the application state of the high-frequency power supply is stabilized according to the state in the processing chamber, and measuring a plurality of electrical data of an arbitrary processing apparatus Performing a principal component analysis for comparison using a plurality of measurement data; and comparing the comparison principal component analysis result and the reference principal component analysis result to detect an abnormality of the above-described arbitrary processing apparatus from a difference between the two. Having a process of A method for detecting an abnormality of a processing device.
【請求項8】 上記電気的データとして少なくとも基本
波及び高調波それぞれの電圧値、電流値、インピーダン
ス及び位相角を用いることを特徴とする請求項6または
請求項7に記載の処理装置の異常検出方法。
8. The abnormality detection of a processing apparatus according to claim 6, wherein at least a voltage value, a current value, an impedance, and a phase angle of each of a fundamental wave and a harmonic are used as the electrical data. Method.
【請求項9】 主成分分析で残差得点または主成分得点
を求めた後、残差得点または主成分得点を比較すること
を特徴とすることを特徴とする請求項7または請求項8
に記載の処理装置の異常検出方法。
9. The method according to claim 7, wherein the residual score or the principal component score is obtained by the principal component analysis, and then the residual score or the principal component score is compared.
3. The method for detecting an abnormality of a processing device according to claim 1.
【請求項10】 残差行列の成分に即して異常箇所を分
類することを特徴とする請求項6〜請求項9のいずれか
1項に記載の処理装置の異常検出方法。
10. The abnormality detection method for a processing device according to claim 6, wherein the abnormal part is classified according to the components of the residual matrix.
JP2000201731A 2000-07-04 2000-07-04 Processing device operating method and processing device abnormality detection method Expired - Lifetime JP4610021B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000201731A JP4610021B2 (en) 2000-07-04 2000-07-04 Processing device operating method and processing device abnormality detection method
TW090116292A TW499702B (en) 2000-07-04 2001-07-03 Method for monitoring operation of processing apparatus
PCT/JP2001/005758 WO2002003441A1 (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus
US10/332,011 US7054786B2 (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus
AU2001267913A AU2001267913A1 (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus
CNB018122485A CN1197130C (en) 2000-07-04 2001-07-03 Operation monitoring method for treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201731A JP4610021B2 (en) 2000-07-04 2000-07-04 Processing device operating method and processing device abnormality detection method

Publications (2)

Publication Number Publication Date
JP2002018274A true JP2002018274A (en) 2002-01-22
JP4610021B2 JP4610021B2 (en) 2011-01-12

Family

ID=18699371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201731A Expired - Lifetime JP4610021B2 (en) 2000-07-04 2000-07-04 Processing device operating method and processing device abnormality detection method

Country Status (1)

Country Link
JP (1) JP4610021B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100622A (en) * 2000-09-22 2002-04-05 Alps Electric Co Ltd Plasma processing apparatus, method for estimating its performance and maintaining it, and system for managing and confirming its performance
JP2004241628A (en) * 2003-02-06 2004-08-26 Hitachi High-Technologies Corp Method of controlling semiconductor treatment device
US6899766B2 (en) 2002-05-02 2005-05-31 Hitachi High-Technologies Corporation Diagnosis method for semiconductor processing apparatus
JP2006501684A (en) * 2002-10-01 2006-01-12 東京エレクトロン株式会社 Method and system for analyzing plasma process data
US7147747B2 (en) 2003-03-04 2006-12-12 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
JP2007503097A (en) * 2003-08-18 2007-02-15 エム ケー エス インストルメンツ インコーポレーテッド Power control loop with multiple normalization modes
US7231321B2 (en) 2004-11-10 2007-06-12 Tokyo Electron Limited Method of resetting substrate processing apparatus, storage medium storing program for implementing the method, and substrate processing apparatus
JP2008544443A (en) * 2005-06-10 2008-12-04 バード テクノロジーズ グループ インク. System and method for analyzing power flow in a semiconductor plasma generation system
WO2015029777A1 (en) * 2013-08-28 2015-03-05 堺ディスプレイプロダクト株式会社 Plasma processing device and method for monitoring plasma processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212414A (en) * 1990-08-16 1992-08-04 Fuji Electric Co Ltd Plasma process equipment
JPH07258853A (en) * 1993-04-14 1995-10-09 Texas Instr Inc <Ti> Method and device for discriminating state of process
JPH09266199A (en) * 1996-03-29 1997-10-07 Hitachi Ltd Method and apparatus for evaluating plasma
JPH10125660A (en) * 1996-08-29 1998-05-15 Fujitsu Ltd Plasma processor, process monitoring method and fabrication of semiconductor device
JPH10135091A (en) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd Method and device for extracting abnormality of process working process
JPH1187323A (en) * 1997-05-12 1999-03-30 Applied Materials Inc Method and apparatus for monitoring processes using multiple parameters of semiconductor wafer processing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212414A (en) * 1990-08-16 1992-08-04 Fuji Electric Co Ltd Plasma process equipment
JPH07258853A (en) * 1993-04-14 1995-10-09 Texas Instr Inc <Ti> Method and device for discriminating state of process
JPH09266199A (en) * 1996-03-29 1997-10-07 Hitachi Ltd Method and apparatus for evaluating plasma
JPH10125660A (en) * 1996-08-29 1998-05-15 Fujitsu Ltd Plasma processor, process monitoring method and fabrication of semiconductor device
JPH10135091A (en) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd Method and device for extracting abnormality of process working process
JPH1187323A (en) * 1997-05-12 1999-03-30 Applied Materials Inc Method and apparatus for monitoring processes using multiple parameters of semiconductor wafer processing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100622A (en) * 2000-09-22 2002-04-05 Alps Electric Co Ltd Plasma processing apparatus, method for estimating its performance and maintaining it, and system for managing and confirming its performance
US6899766B2 (en) 2002-05-02 2005-05-31 Hitachi High-Technologies Corporation Diagnosis method for semiconductor processing apparatus
JP2006501684A (en) * 2002-10-01 2006-01-12 東京エレクトロン株式会社 Method and system for analyzing plasma process data
US7147748B2 (en) 2003-01-29 2006-12-12 Hitachi High-Technologies Corporation Plasma processing method
JP2004241628A (en) * 2003-02-06 2004-08-26 Hitachi High-Technologies Corp Method of controlling semiconductor treatment device
US7147747B2 (en) 2003-03-04 2006-12-12 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
JP2007503097A (en) * 2003-08-18 2007-02-15 エム ケー エス インストルメンツ インコーポレーテッド Power control loop with multiple normalization modes
US7231321B2 (en) 2004-11-10 2007-06-12 Tokyo Electron Limited Method of resetting substrate processing apparatus, storage medium storing program for implementing the method, and substrate processing apparatus
JP2008544443A (en) * 2005-06-10 2008-12-04 バード テクノロジーズ グループ インク. System and method for analyzing power flow in a semiconductor plasma generation system
WO2015029777A1 (en) * 2013-08-28 2015-03-05 堺ディスプレイプロダクト株式会社 Plasma processing device and method for monitoring plasma processing device
US9666417B2 (en) 2013-08-28 2017-05-30 Sakai Display Products Corporation Plasma processing apparatus and method for monitoring plasma processing apparatus

Also Published As

Publication number Publication date
JP4610021B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP3630931B2 (en) Plasma processing apparatus, process monitoring method, and semiconductor device manufacturing method
US7054786B2 (en) Operation monitoring method for treatment apparatus
KR100560886B1 (en) System and method for monitoring and controlling gas plasma processes
JP4464276B2 (en) Plasma processing method and plasma processing apparatus
US6197116B1 (en) Plasma processing system
US6332961B1 (en) Device and method for detecting and preventing arcing in RF plasma systems
JP4995419B2 (en) Method and system for controlling a process using material process tools and performance data
KR100612736B1 (en) Plasma processing method and apparatus
US6441620B1 (en) Method for fault identification in a plasma process
JP4317701B2 (en) Processing result prediction method and prediction apparatus
US20060226786A1 (en) Inductively-coupled plasma etch apparatus and feedback control method thereof
WO2011063246A2 (en) Methods and apparatus for controlling a plasma processing system
US6826489B2 (en) Fault classification in a plasma process chamber
US20150301100A1 (en) Using modeling for identifying a location of a fault in an rf transmission system for a plasma system
TW201826058A (en) Anomaly detection method and semiconductor manufacturing apparatus
US7389203B2 (en) Method and apparatus for deciding cause of abnormality in plasma processing apparatus
JP2002018274A (en) Method for operating treatment apparatus and method for detecting abnormality of treatment apparatus
JP2009049382A (en) Method for drying etching and dry etching apparatus
JP2008287999A (en) Plasma treatment device and its control method
JP4570736B2 (en) How to monitor operating conditions
JP4220378B2 (en) Processing result prediction method and processing apparatus
US6599759B2 (en) Method for detecting end point in plasma etching by impedance change
JP4675266B2 (en) Prediction method and prediction apparatus for processing result of substrate processing apparatus
TWI299064B (en) Method of apparatus for real-time control and monitor of deposition process
JP2004079727A (en) Method and system for detecting etching end point, etching device and etching end point detection program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4610021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term