JP2002016465A - Frequency control working device for piezoelectric element - Google Patents

Frequency control working device for piezoelectric element

Info

Publication number
JP2002016465A
JP2002016465A JP2001134446A JP2001134446A JP2002016465A JP 2002016465 A JP2002016465 A JP 2002016465A JP 2001134446 A JP2001134446 A JP 2001134446A JP 2001134446 A JP2001134446 A JP 2001134446A JP 2002016465 A JP2002016465 A JP 2002016465A
Authority
JP
Japan
Prior art keywords
frequency
piezoelectric element
processing
adjustment
frequency adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001134446A
Other languages
Japanese (ja)
Other versions
JP3525119B2 (en
Inventor
Takeshi Gomi
武 五味
Yukihiro Endo
幸弘 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001134446A priority Critical patent/JP3525119B2/en
Publication of JP2002016465A publication Critical patent/JP2002016465A/en
Application granted granted Critical
Publication of JP3525119B2 publication Critical patent/JP3525119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve frequency control accuracy and mechanical ability by varying a distance between a frequency control source and a piezoelectric element. SOLUTION: The frequency of a piezoelectric element 3 is measured by a network analyzer 1, the optimal distance between the piezoelectric element 3 and a frequency control source 9 is calculated by an arithmetic processor 15, and the frequency control source 9 is moved by a driving device 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水晶振動子等の圧電素子
をスパツタエッチングまたはイオンビームを照射して周
波数の合わせ込みを行なう周波数調整加工装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency adjusting apparatus for adjusting the frequency of a piezoelectric element such as a quartz oscillator by sputtering or irradiating an ion beam.

【0002】[0002]

【従来の技術】従来の水晶振動子に代表される圧電素子
の周波数調整方法は質量を付加して所望の周波数を得る
蒸着周波数調整方法が一般的であったが、近年、新たな
方法として質量を軽減して所望の周波数を得るスパッタ
エッチングあるいはイオンビーム周波数調整方法が開発
されてきている。
2. Description of the Related Art Conventionally, a method of adjusting the frequency of a piezoelectric element typified by a quartz oscillator has generally been a deposition frequency adjusting method of obtaining a desired frequency by adding a mass. Sputter etching or an ion beam frequency adjusting method for obtaining a desired frequency by reducing the frequency has been developed.

【0003】以下、後者の周波数調整技術について説明
する。所定の切り出し角度と形状に切断研磨され仕上げ
られた圧電素子はベース電極を形成するため、圧電素子
の表裏に電極形状を模したマスクを密着させ、通常、真
空中で銀等の金属膜を蒸着させる。この時、周波数は膜
厚モニタで管理され共振周波数は所望値に対して500
〜2000ppm低く設定される。
Hereinafter, the latter frequency adjustment technique will be described. A piezoelectric element that has been cut and polished to a predetermined cut-out angle and shape is used to form a base electrode. Let it. At this time, the frequency is controlled by a film thickness monitor, and the resonance frequency is 500
20002000 ppm lower.

【0004】次に、この圧電素子を保持器に機械的な結
合と電気的な導通をさせるために、半田や導電性接着剤
等を用いてマウントする。
[0004] Next, the piezoelectric element is mounted on the retainer using a solder, a conductive adhesive or the like in order to provide mechanical connection and electrical conduction.

【0005】そして、周波数調整加工装置では、周波数
調整加工を行う前に圧電素子の共振周波数を測定して合
わせ込み周波数との周波数差を求め、周波数調整加工の
加工レートからスパッタエッチングまたはイオンビーム
を照射する時間を割り出し、周波数調整加工を行うとき
は測定系を電気的に切り離してから周波数調整加工を行
ない、これらの作業を数回繰り返えすことで上記周波数
差が零になるよう合わせ込みを行なう。
[0005] In the frequency adjustment processing apparatus, before performing the frequency adjustment processing, the resonance frequency of the piezoelectric element is measured to obtain a frequency difference from the fitted frequency, and the sputter etching or ion beam is generated from the processing rate of the frequency adjustment processing. The irradiation time is determined, and when performing frequency adjustment processing, the measurement system is electrically disconnected, then frequency adjustment processing is performed, and these operations are repeated several times to adjust the frequency difference to zero. Do.

【0006】なお、加工レートは一般的にベース電極の
面積が大きい程遅くなり、また、圧電素子に印可される
加工エネルギーが大きい程速くなるため、周波数と加工
条件毎に適正値を予め求めておく。
The processing rate generally decreases as the area of the base electrode increases, and increases as the processing energy applied to the piezoelectric element increases. Therefore, an appropriate value is determined in advance for each frequency and processing condition. deep.

【0007】[0007]

【発明が解決しようとする課題】周波数調整加工の加工
レートが同じ周波数帯であっても各々の圧電素子で違っ
てしまうこと、またはスパッタガンやイオンビームガン
の周波数調整源に起因し加工レートが不安定でばらつき
をもつことから、予め求めた加工レートと実際の加工レ
ートが異なり、周波数調整後の共振周波数が合わせ込み
周波数からずれてしまっていた。
Even if the processing rate of the frequency adjustment processing is the same in the same frequency band, the processing rate is different due to the difference in each piezoelectric element or the frequency adjustment source of a sputter gun or an ion beam gun. Because of the stability and variation, the processing rate obtained in advance and the actual processing rate are different, and the resonance frequency after frequency adjustment has deviated from the matching frequency.

【0008】また、周波数調整加工の加工レートは、周
波数調整源の印加電流を可変することにより制御してい
たが、周波数調整源を定常状態で維持させるためにはあ
る一定以上の電力を供給する必要があり、微小な加工レ
ートを確保するのは困難であった。
Further, the processing rate of the frequency adjustment processing is controlled by varying the applied current of the frequency adjustment source. However, in order to maintain the frequency adjustment source in a steady state, a certain amount of power or more is supplied. Therefore, it was difficult to secure a minute processing rate.

【0009】更に、前述の如く各々の圧電素子で周波数
調整前の周波数が大きくばらついているため、加工レー
トが固定であると、合わせ込み周波数との差が大きい圧
電素子は加工時間が長くなり、機械能力を低下させる原
因となっていた。
Further, as described above, since the frequency before frequency adjustment varies greatly among the respective piezoelectric elements, if the processing rate is fixed, the processing time of a piezoelectric element having a large difference from the set frequency becomes longer. This was the cause of the decrease in mechanical capacity.

【0010】一方、従来の方法では、スパッタエッチン
グまたはイオンビームを照射するとプラスに帯電したア
ルゴンイオンが圧電素子の電極膜にぶつかるため、電極
膜にはプラス電荷が帯電する。帯電したプラス電荷はア
ースに流れようとするが、周波数を測定する測定系が接
続されていると、測定系を通じて発振回路や伝送波測定
器(この測定器を以下ネットワークアナライザと称す)
に流れてしまう。発振回路やネットワークアナライザは
交流信号で動作するものであるため、直流電流が流れる
と機能を破壊する危険性があり周波数調整加工時には電
気的に測定系を切り離す必要があった。
On the other hand, in the conventional method, when sputter etching or ion beam irradiation is performed, positively charged argon ions collide with the electrode film of the piezoelectric element, so that the electrode film is charged with positive charges. The charged positive charge tends to flow to the ground, but if a measurement system for measuring the frequency is connected, an oscillation circuit or transmission wave measurement device (hereinafter, this measurement device is referred to as a network analyzer) through the measurement system
Will flow to. Oscillation circuits and network analyzers operate on an AC signal, so there is a risk that their function will be destroyed if a DC current flows, and it is necessary to electrically disconnect the measurement system during frequency adjustment processing.

【0011】また、微小な加工レートが得られなかった
り、機械能力を低下させないように加工レートを大きく
してしまうと、周波数調整源をシャッターもしくは電源
で遮断したときに時間差が生じて、合わせ込み周波数に
対し調整量が多くなり過ぎ所望の周波数に合わせること
ができない。
If a small processing rate cannot be obtained or if the processing rate is increased so as not to lower the mechanical ability, a time difference occurs when the frequency adjustment source is shut off by a shutter or a power source, and the adjustment is made. The amount of adjustment is too large for the frequency and cannot be adjusted to the desired frequency.

【0012】そこで、本発明の目的は、圧電素子の共振
周波数を測定しながら周波数調整加工を行い、周波数調
整源と圧電素子の距離を可変にすることにより最適な加
工レート(最短時間で目標とする周波数に精度良く調整
加工すること)を得るとともに精度のよい周波数調整加
工を効率よく行うことにある。
Therefore, an object of the present invention is to perform frequency adjustment processing while measuring the resonance frequency of a piezoelectric element, and to make the distance between the frequency adjustment source and the piezoelectric element variable so that the optimum processing rate (the target can be set in the shortest time). To perform the frequency adjustment processing with high precision) and efficiently perform the frequency adjustment processing with high precision.

【0013】[0013]

【課題を解決するための手段】(1)本発明の圧電素子
の周波数調整加工装置は、スパッタエッチングまたはイ
オンビームを照射することにより圧電素子の周波数調整
を行う加工装置において、前記圧電素子に帯電するプラ
ス電荷を除去する電荷除去手段と前記圧電素子の周波数
を測定する周波数測定手段と前記圧電素子の周波数を調
整する周波数調整手段とを備え、前記電荷除去手段で前
記プラス電荷を除去して前記周波数測定手段で前記圧電
素子の周波数を測定しながら、周波数調整手段により前
記圧電素子の周波数を調整加工することを特徴とする。 (2)(1)の圧電素子の周波数調整加工装置におい
て、前記電荷除去手段が前記圧電素子とアースとの間に
接続されたコイルであることを特徴とする。 (3)(1)の圧電素子の周波数調整加工装置におい
て、前記周波数調整手段と前記圧電素子との距離を駆動
装置により可変にすることにより周波数調整加工の加工
レートを制御することを特徴とする。 (4)(3)の圧電素子の周波数加工装置において、前
記圧電素子の周波数と合わせ込み周波数との周波数差を
外部演算処理装置により常に管理しながら最適となる加
工レートが得られるように、前記周波数調整手段と前記
圧電素子との距離を前記駆動手段により制御することを
特徴とする。 (5)(1)〜(4)の圧電素子の周波数調整加工装置
において、前記周波数調整手段と前記圧電素子との距離
が異なる周波数調整手段を少なくとも2個以上備えて構
成されたことを特徴とする。
(1) A frequency adjusting and processing apparatus for a piezoelectric element according to the present invention is a processing apparatus for adjusting the frequency of a piezoelectric element by sputter etching or irradiating an ion beam. A charge removing means for removing the positive charge, a frequency measuring means for measuring the frequency of the piezoelectric element, and a frequency adjusting means for adjusting the frequency of the piezoelectric element, wherein the positive charge is removed by the charge removing means. The frequency of the piezoelectric element is adjusted by the frequency adjusting means while the frequency of the piezoelectric element is measured by the frequency measuring means. (2) In the frequency adjusting and processing apparatus for a piezoelectric element according to (1), the charge removing means is a coil connected between the piezoelectric element and ground. (3) In the frequency adjustment processing apparatus for a piezoelectric element according to (1), a processing rate of the frequency adjustment processing is controlled by making a distance between the frequency adjustment means and the piezoelectric element variable by a driving device. . (4) In the frequency processing device for a piezoelectric element of (3), the frequency difference between the frequency of the piezoelectric element and the matching frequency is constantly managed by an external processing unit so that an optimum processing rate is obtained. The distance between the frequency adjusting means and the piezoelectric element is controlled by the driving means. (5) The apparatus for adjusting a frequency of a piezoelectric element according to any one of (1) to (4), characterized in that the apparatus is provided with at least two or more frequency adjusting units having different distances between the frequency adjusting unit and the piezoelectric element. I do.

【0014】[0014]

【作用】測定系のインピーダンス整合回路(これを以下
フィクスチャと称す)は通常は抵抗のみからなるが、電
荷除去手段として圧電素子とアースとの間にコイルを接
続したインピーダンス整合回路を用いることにより、測
定系に流れ込む直流分を遮断でき交流分だけをバイパス
できる。その結果、測定系を破壊することがなく、圧電
素子の周波数を測定できる。
The impedance matching circuit of the measuring system (hereinafter referred to as a fixture) is usually composed of only a resistor. However, by using an impedance matching circuit in which a coil is connected between a piezoelectric element and ground as a charge removing means. The DC component flowing into the measurement system can be cut off, and only the AC component can be bypassed. As a result, the frequency of the piezoelectric element can be measured without destroying the measurement system.

【0015】また、周波数調整加工の加工レートは、周
波数調整源と圧電素子の距離が長くなるにつれて減少
し、ある距離を越えると零になるため、合わせ込み周波
数と圧電素子の周波数差が数百〜数千ppmあるような
場合は距離を短くして加工レートを速くし、周波数差が
数十ppm以内のような場合は距離を長くすることで加
工レートを遅くし、周波数調整源の印加電流を可変する
ことなく自由に加工レートを制御できる。
The processing rate of the frequency adjustment processing decreases as the distance between the frequency adjustment source and the piezoelectric element increases, and becomes zero when the distance exceeds a certain distance. When the frequency difference is within several tens of ppm, the processing rate is reduced by increasing the distance. The machining rate can be controlled freely without changing the machining speed.

【0016】[0016]

【実施例】以下、本発明の実施例を図1、図2、図3及
び図4により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3 and 4. FIG.

【0017】(実施例1)図1は、本発明の周波数調整
加工装置の模式図である。
(Embodiment 1) FIG. 1 is a schematic view of a frequency adjustment processing apparatus according to the present invention.

【0018】周波数調整手段すなわち周波数調整源9の
内部には、ステンレス製のφ10mmの電極棒6があ
り、直流電源13が接続されている。周波数調整源9の
外周部7は、円筒状をしたφ100mmのステンレスで
覆われている。電極棒6と外周部7は絶縁されており、
外周部7はアースシールドされている。周波数調整源9
及び圧電素子3は、真空容器10の内部に納められてお
り、真空容器10は、メカニカルブースタポンプ11を
介して、ロータリーポンプ12で真空排気される。
Inside the frequency adjusting means, that is, the frequency adjusting source 9, there is an electrode rod 6 of φ10 mm made of stainless steel, and a DC power supply 13 is connected. The outer peripheral portion 7 of the frequency adjusting source 9 is covered with a cylindrical stainless steel of φ100 mm. The electrode rod 6 and the outer peripheral part 7 are insulated,
The outer peripheral part 7 is earth-shielded. Frequency adjustment source 9
The piezoelectric element 3 is housed in a vacuum container 10, and the vacuum container 10 is evacuated by a rotary pump 12 via a mechanical booster pump 11.

【0019】真空容器10を10-3Torrレベルに真
空排気したのち、周波数調整源9の内部にガスボンベ8
よりアルゴンガスを10ー1〜10ー2Torr程度の真空
度になるよう流入させ、電極棒6に直流電圧を印加する
ことにより、電極棒6とアースシールドされた外周部7
の間でアルゴンプラズマが発生する。発生したプラズマ
によりアルゴンガスはラジカル及びイオンとなり、イオ
ン化されたアルゴンガスは、電極棒6の先端方向に設け
られたφ3mmの噴き出し口5から飛び出して、対向に
位置した水晶振動子等の圧電素子3の表面に衝突する。
アルゴンイオンが圧電素子3に衝突することで電極膜4
の銀を弾き飛ばすため、電極の質量は減少し、その結果
圧電素子3の周波数は低い周波数から高い周波数へ変化
する。
After evacuating the vacuum vessel 10 to a level of 10 −3 Torr, the gas cylinder 8 is placed inside the frequency adjustment source 9.
Further, an argon gas is introduced so as to have a degree of vacuum of about 10 -1 to 10 -2 Torr, and a DC voltage is applied to the electrode rod 6.
Between which an argon plasma is generated. The argon gas is converted into radicals and ions by the generated plasma, and the ionized argon gas is ejected from the φ3 mm ejection port 5 provided in the direction of the tip of the electrode rod 6, and the piezoelectric element 3 such as a quartz oscillator or the like positioned opposite thereto. Colliding with the surface.
When the argon ions collide with the piezoelectric element 3, the electrode film 4 is formed.
Of the piezoelectric element 3, the frequency of the piezoelectric element 3 changes from a low frequency to a high frequency.

【0020】アルゴンイオンが衝突することにより変化
する圧電素子3の周波数は、フィクスチャ2を介して、
周波数測定手段すなわちネットワークアナライザ1によ
って共振させることで測定できる。ネットワークアナラ
イザ1とフィクスチャ2の接続は、50Ω系の同軸ケー
ブルを用いる。
The frequency of the piezoelectric element 3 changed by the collision of argon ions is transmitted through the fixture 2
It can be measured by resonating with a frequency measuring means, that is, the network analyzer 1. The connection between the network analyzer 1 and the fixture 2 uses a 50Ω coaxial cable.

【0021】図3は、本発明のフィクスチャの回路図で
ある。
FIG. 3 is a circuit diagram of a fixture according to the present invention.

【0022】抵抗19、20、21はπ型に配置され、
コイル22は抵抗21と並列になるように接続されてい
る。コイル22は圧電素子3とアースを短絡するように
接続されているため、圧電素子3にプラス電荷が帯電し
て信号線に直流分が流れてもコイル22によりアースに
落ちる。よって、ネットワークアナライザ1には交流分
だけが流れ込み、圧電素子3の周波数を測定することが
できる。
The resistors 19, 20, and 21 are arranged in a π type,
The coil 22 is connected in parallel with the resistor 21. Since the coil 22 is connected to short-circuit the ground with the piezoelectric element 3, even if a positive charge is charged on the piezoelectric element 3 and a DC component flows through the signal line, the coil 22 drops to the ground. Therefore, only the alternating current flows into the network analyzer 1 and the frequency of the piezoelectric element 3 can be measured.

【0023】また、抵抗19、20を省略した簡易的な
回路でも同様の効果が得られる。
Similar effects can be obtained with a simple circuit in which the resistors 19 and 20 are omitted.

【0024】測定した圧電素子3の周波数は、外部の演
算処理装置15に送られ、合わせ込み周波数との測定差
から最適な加工レートを算出する。算出された加工レー
トを得るための圧電素子3と噴き出し口5の距離を割り
出して、周波数調整源9の駆動装置14へ信号を送り、
周波数調整源9を前後に移動させる。
The measured frequency of the piezoelectric element 3 is sent to an external arithmetic processing unit 15 to calculate an optimum processing rate from a measured difference from the fitted frequency. The distance between the piezoelectric element 3 and the ejection port 5 for obtaining the calculated processing rate is determined, and a signal is sent to the driving device 14 of the frequency adjustment source 9.
The frequency adjustment source 9 is moved back and forth.

【0025】圧電素子3と噴き出し口5の距離は5〜2
0mmまで可変できる機構になっており、周波数調整加
工を開始する前は5mmの距離に保たれている。加工が
始まると周波数調整源9は前記周波数差からプログラム
された周波数差と加工レートの設定値により周波数調整
加工しながら徐々に後方へ移動し加工レートを速い状態
から遅くさせて行き、圧電素子3の共振周波数が合わせ
込み周波数と一致したとき、プラズマの発生を遮断す
る。
The distance between the piezoelectric element 3 and the ejection port 5 is 5 to 2
The mechanism is variable up to 0 mm, and is kept at a distance of 5 mm before starting the frequency adjustment processing. When the processing is started, the frequency adjustment source 9 gradually moves backward while performing the frequency adjustment processing according to the frequency difference programmed from the frequency difference and the set value of the processing rate, and gradually lowers the processing rate from the fast state. When the resonance frequency matches the matching frequency, the generation of plasma is cut off.

【0026】圧電素子3へのアルゴンイオンの照射及び
遮断には直流電源13を直接開閉してもよいし、プラズ
マを連続発生させた状態でシャッタ16をシャッタ駆動
機構17で制御して開閉してもよい。
The DC power supply 13 may be directly opened and closed to irradiate and shut off the argon ions to the piezoelectric element 3, or the shutter 16 may be opened and closed by controlling the shutter 16 with a shutter driving mechanism 17 while plasma is continuously generated. Is also good.

【0027】図4は、本発明の一つの周波数調整源を設
けた周波数調整加工装置で周波数調整した圧電素子の周
波数変化の過程を示す図である。
FIG. 4 is a diagram showing a process of changing the frequency of the piezoelectric element whose frequency has been adjusted by the frequency adjustment processing device provided with one frequency adjustment source according to the present invention.

【0028】直流電源を投入すると、圧電素子の周波数
は合わせ込み周波数へ徐々に近づき、合わせ込み周波数
近傍になったところで周波数調整源9を圧電素子3から
遠ざけることで、最適な加工レートを得ることが可能と
なる。
When a DC power supply is turned on, the frequency of the piezoelectric element gradually approaches the matching frequency. When the frequency approaches the matching frequency, the frequency adjusting source 9 is moved away from the piezoelectric element 3 to obtain an optimum processing rate. Becomes possible.

【0029】(実施例2)また、さらに効率的な周波数
調整制御装置とするための説明を図2の模式図を用いて
行なう。
(Embodiment 2) A description will be given of a more efficient frequency adjustment control device with reference to the schematic diagram of FIG.

【0030】本装置は、3箇所の周波数調整源9a〜9
cを有し、左から大まかな周波数調整を行なう粗調
(H)、中間的な調整を行なう粗微調(M)、最終の合
わせ込みを行なう微調(L)から構成され、調整用の圧
電素子3は搬送機構18により粗調、粗微調、微調のス
テップで搬送され周波数調整される。
This apparatus has three frequency adjusting sources 9a to 9
and a coarse adjustment (H) for rough frequency adjustment from the left, a coarse fine adjustment (M) for intermediate adjustment, and a fine adjustment (L) for final adjustment, and a piezoelectric element for adjustment. 3 is conveyed by the conveying mechanism 18 in steps of coarse adjustment, coarse fine adjustment, and fine adjustment, and the frequency is adjusted.

【0031】粗調は、ベース電極上がりの2000pp
m程度からのばらつきを所望の共振周波数の合わせ込み
値に対し200ppmまでの合わせ込みを受け持ち圧電
素子3と周波数調整源9aとの距離は5mm程度と他の
周波数調整源に比べ近い距離を設定し、これにより加工
レートは約800ppm/秒と速い加工レートが得られ
る。
Rough adjustment is performed at 2000 pp rising from the base electrode.
The variation from about m is adjusted to 200 ppm with respect to the desired resonance frequency adjustment value, and the distance between the piezoelectric element 3 and the frequency adjustment source 9a is set to about 5 mm, which is shorter than other frequency adjustment sources. As a result, a high processing rate of about 800 ppm / sec can be obtained.

【0032】粗微調は、粗調上がりの圧電素子3を50
ppmまでの合わせ込みを受け持ち圧電素子3と周波数
調整源9bとの距離は10mm程度に設定し、加工レー
トは約100ppm/秒が得られる。
In the coarse / fine adjustment, the piezoelectric element 3 with the coarse adjustment is set to 50
The distance between the piezoelectric element 3 and the frequency adjustment source 9b is set to about 10 mm, and the processing rate is about 100 ppm / sec.

【0033】微調は、粗微調上がりの圧電素子3を0p
pmまでの合わせ込みを受け持ち、圧電素子3と周波数
調整源9cとの距離は20mm程度に設定し、加工レー
トは約20ppm/秒の遅い加工レートが得られる。
The fine adjustment is performed by setting the piezoelectric element 3 having the coarse / fine adjustment to 0p.
pm, the distance between the piezoelectric element 3 and the frequency adjustment source 9c is set to about 20 mm, and a processing rate as low as about 20 ppm / sec can be obtained.

【0034】周波数調整源9a〜9cは、個々に圧電素
子3の共振周波数をフィクスチャ2を介してネットワー
クアナライザ1で測定し、外部演算装置15で合わせ込
み周波数との周波数差を管理し、最適加工レートとなる
よう駆動装置14へ制御信号を送り圧電素子3と周波数
調整源9a〜9cまでの距離を可変させる。
The frequency adjusting sources 9a to 9c individually measure the resonance frequency of the piezoelectric element 3 by the network analyzer 1 via the fixture 2, manage the frequency difference with the adjusted frequency by the external arithmetic unit 15, and optimize the frequency. A control signal is sent to the drive unit 14 to change the distance between the piezoelectric element 3 and the frequency adjustment sources 9a to 9c so that the processing rate is achieved.

【0035】個々の周波数調整手段の動作については、
図1における説明と同じであるので省略する。
Regarding the operation of each frequency adjusting means,
The description is the same as that in FIG.

【0036】なお、本発明は上記実施例に限定されるこ
となく、幾多の変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made.

【0037】[0037]

【発明の効果】本発明によれば、スパッタエッチングま
たはイオンビームにより周波数調整加工を行う加工装置
において、圧電素子の周波数を測定しながら周波数調整
加工を行い、さらに、加工レートを自由にコントロール
できるため、所望の共振周波数に対する合わせ込み精度
は数ppmまでのずれにおさめることができる。
According to the present invention, in a processing apparatus for performing frequency adjustment processing by sputter etching or ion beam, the frequency adjustment processing is performed while measuring the frequency of the piezoelectric element, and the processing rate can be freely controlled. The matching accuracy with respect to the desired resonance frequency can be kept within a deviation of up to several ppm.

【0038】また、加工レートを常に最適にコントロー
ルすることに加え、複数の周波数調整手段を用いること
により、従来の装置に比べ加工時間を大幅に短縮でき
る。
Further, in addition to always controlling the processing rate optimally, by using a plurality of frequency adjusting means, the processing time can be greatly reduced as compared with the conventional apparatus.

【0039】さらに、圧電素子とアースとの間にコイル
を接続するという簡易な構成により、加工時間の短縮、
加工精度の向上という大きな効果が得られる。
Further, a simple structure of connecting a coil between the piezoelectric element and the ground reduces processing time,
A great effect of improving the processing accuracy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の周波数調整制御装置の模式図。FIG. 1 is a schematic diagram of a frequency adjustment control device of the present invention.

【図2】本発明の他の周波数調整制御装置の模式図。FIG. 2 is a schematic diagram of another frequency adjustment control device of the present invention.

【図3】本発明のフィクスチャの回路図。FIG. 3 is a circuit diagram of a fixture according to the present invention.

【図4】圧電素子の周波数調整過程をグラフにした図。FIG. 4 is a graph showing a frequency adjustment process of the piezoelectric element.

【符号の説明】[Explanation of symbols]

1 ネットワークアナライザ 2 フィクスチャ 3 圧電素子 4 電極膜 5 噴き出し口 6 電極棒 7 外周部 8 ガスボンベ 9 周波数調整源 10 真空容器 11 メカニカルブースタポンプ 12 ロータリポンプ 13 直流電源 14 駆動装置 15 外部演算装置 16 シャッタ 17 シャッタ駆動機構 20 圧電素子搬送機構 19 抵抗 20 抵抗 21 抵抗 22 コイル DESCRIPTION OF SYMBOLS 1 Network analyzer 2 Fixture 3 Piezoelectric element 4 Electrode film 5 Outlet 6 Electrode rod 7 Outer peripheral part 8 Gas cylinder 9 Frequency adjustment source 10 Vacuum container 11 Mechanical booster pump 12 Rotary pump 13 DC power supply 14 Driving device 15 External computing device 16 Shutter 17 Shutter drive mechanism 20 Piezoelectric element transport mechanism 19 Resistance 20 Resistance 21 Resistance 22 Coil

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 スパッタエッチングまたはイオンビーム
を照射することにより圧電素子の周波数調整を行う加工
装置において、 前記圧電素子に帯電するプラス電荷を除去する電荷除去
手段と前記圧電素子の周波数を測定する周波数測定手段
と前記圧電素子の周波数を調整する周波数調整手段とを
備え、 前記電荷除去手段で前記プラス電荷を除去して前記周波
数測定手段で前記圧電素子の周波数を測定しながら、前
記周波数調整手段により前記圧電素子の周波数を調整加
工することを特徴とする圧電素子の周波数調整加工装
置。
1. A processing apparatus for adjusting the frequency of a piezoelectric element by sputter etching or irradiating an ion beam, comprising: a charge removing means for removing a positive charge charged on the piezoelectric element; and a frequency for measuring the frequency of the piezoelectric element. Measuring means and frequency adjusting means for adjusting the frequency of the piezoelectric element, wherein the positive charge is removed by the charge removing means and the frequency of the piezoelectric element is measured by the frequency measuring means. A frequency adjustment processing apparatus for a piezoelectric element, wherein the frequency of the piezoelectric element is adjusted.
【請求項2】 前記電荷除去手段が前記圧電素子とアー
スとの間に接続されたコイルであることを特徴とする請
求項1記載の圧電素子の周波数調整加工装置。
2. The apparatus according to claim 1, wherein said charge removing means is a coil connected between said piezoelectric element and ground.
【請求項3】 前記周波数調整手段と前記圧電素子との
距離を駆動装置により可変にすることにより周波数調整
加工の加工レートを制御することを特徴とする請求項1
記載の圧電素子の周波数調整加工装置。
3. The processing rate of the frequency adjustment processing is controlled by making a distance between the frequency adjustment means and the piezoelectric element variable by a driving device.
A frequency adjustment processing device for a piezoelectric element according to claim 1.
【請求項4】 前記圧電素子の周波数と合わせ込み周波
数との周波数差を外部演算処理装置により常に管理しな
がら最適となる加工レートが得られるように、前記周波
数調整手段と前記圧電素子との距離を前記駆動手段によ
り制御することを特徴とする請求項3記載の圧電素子の
周波数調整加工装置。
4. A distance between the frequency adjusting means and the piezoelectric element so that an optimum processing rate can be obtained while constantly managing a frequency difference between a frequency of the piezoelectric element and a matching frequency by an external processing unit. 4. The frequency adjustment processing apparatus for a piezoelectric element according to claim 3, wherein the driving means is controlled by the driving means.
【請求項5】 前記周波数調整手段と前記圧電素子との
距離が異なる周波数調整手段を少なくとも2個以上備え
て構成されたことを特徴とする請求項1乃至4いずれか
記載の圧電素子の周波数調整加工装置。
5. The frequency adjustment of a piezoelectric element according to claim 1, wherein at least two frequency adjustment means having different distances between said frequency adjustment means and said piezoelectric element are provided. Processing equipment.
JP2001134446A 1993-05-27 2001-05-01 Frequency adjustment processing device Expired - Lifetime JP3525119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134446A JP3525119B2 (en) 1993-05-27 2001-05-01 Frequency adjustment processing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-126311 1993-05-27
JP12631193 1993-05-27
JP2001134446A JP3525119B2 (en) 1993-05-27 2001-05-01 Frequency adjustment processing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11304194A Division JP3500185B2 (en) 1993-05-27 1994-05-26 Frequency adjustment processing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002205858A Division JP3573142B2 (en) 1993-05-27 2002-07-15 Frequency adjustment processing device

Publications (2)

Publication Number Publication Date
JP2002016465A true JP2002016465A (en) 2002-01-18
JP3525119B2 JP3525119B2 (en) 2004-05-10

Family

ID=26462529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134446A Expired - Lifetime JP3525119B2 (en) 1993-05-27 2001-05-01 Frequency adjustment processing device

Country Status (1)

Country Link
JP (1) JP3525119B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295381A (en) * 1985-06-24 1986-12-26 ラム・リサーチ・コーポレイション Plasma etching apparatus
JPS6334643B2 (en) * 1979-03-16 1988-07-12 Motorola Inc
JPH02130915A (en) * 1988-11-11 1990-05-18 Anelva Corp Plasma processing equipment
JPH02248042A (en) * 1989-03-22 1990-10-03 Nec Corp Dry etching device
JPH03209906A (en) * 1990-01-11 1991-09-12 Yamanashi Denpa Kk Vapor deposition controller for adjusting frequency of crystal resonator
JPH04196708A (en) * 1990-11-28 1992-07-16 Kinseki Ltd Frequency adjustment device and method for piezoelectric element
JPH04196610A (en) * 1990-11-26 1992-07-16 Seiko Epson Corp Frequency adjustment method for piezoelectric vibrator
JPH0548363A (en) * 1991-02-19 1993-02-26 Showa Shinku:Kk Continuous film forming device for crystal resonator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334643B2 (en) * 1979-03-16 1988-07-12 Motorola Inc
JPS61295381A (en) * 1985-06-24 1986-12-26 ラム・リサーチ・コーポレイション Plasma etching apparatus
JPH02130915A (en) * 1988-11-11 1990-05-18 Anelva Corp Plasma processing equipment
JPH02248042A (en) * 1989-03-22 1990-10-03 Nec Corp Dry etching device
JPH03209906A (en) * 1990-01-11 1991-09-12 Yamanashi Denpa Kk Vapor deposition controller for adjusting frequency of crystal resonator
JPH04196610A (en) * 1990-11-26 1992-07-16 Seiko Epson Corp Frequency adjustment method for piezoelectric vibrator
JPH04196708A (en) * 1990-11-28 1992-07-16 Kinseki Ltd Frequency adjustment device and method for piezoelectric element
JPH0548363A (en) * 1991-02-19 1993-02-26 Showa Shinku:Kk Continuous film forming device for crystal resonator

Also Published As

Publication number Publication date
JP3525119B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
CN107017145B (en) For the uniformity controlling circuit in impedance matching circuit
KR101993880B1 (en) Plasma-treatment apparatus
JP3140934B2 (en) Plasma equipment
EP0976141B1 (en) Apparatus and method for controlling ion energy and plasma density in a plasma processing system
WO2018186901A1 (en) High power resonance pulse ac hedp sputtering source and method for material processing
KR20150051879A (en) Plasma processing apparatus
US5662782A (en) Method and apparatus for adjusting a resonance frequency of piezoelectric elements
JP2002294460A (en) Plasma processing apparatus with microwave and plasma process controlling method
CN102912306B (en) Device and process for computerized automatic control high power pulsed magnetron spluttering
JP3573142B2 (en) Frequency adjustment processing device
JPH0661185A (en) Plasma processing device
JP3701994B2 (en) Piezoelectric element, piezoelectric vibrator, manufacturing method thereof, and processing apparatus
JP2002016465A (en) Frequency control working device for piezoelectric element
JP2001332948A (en) Frequency adjustment working device for piezoelectric element
JP3500185B2 (en) Frequency adjustment processing device
JPH10135757A (en) Frequency control method for piezoelectric element
US7022937B2 (en) Plasma processing method and apparatus for performing uniform plasma processing on a linear portion of an object
JP2737377B2 (en) Plasma processing equipment
JP2001217677A (en) Tuning-fork type piezoelectric vibrating piece and its manufacturing method, its frequency adjusting process device, and tuning-fork type piezoelectric vibrator
JP3422724B2 (en) Frequency adjustment device for piezoelectric element
JP3038828B2 (en) Plasma processing method
WO2022103765A1 (en) Systems and methods for radiofrequency signal generator-based control of impedance matching system
TWI821868B (en) Ion milling device
JPH05234697A (en) Microwave plasma treating device
JP2005187860A (en) Sputtering apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

EXPY Cancellation because of completion of term