JP2002014084A - Liquid chromatograph - Google Patents

Liquid chromatograph

Info

Publication number
JP2002014084A
JP2002014084A JP2000197500A JP2000197500A JP2002014084A JP 2002014084 A JP2002014084 A JP 2002014084A JP 2000197500 A JP2000197500 A JP 2000197500A JP 2000197500 A JP2000197500 A JP 2000197500A JP 2002014084 A JP2002014084 A JP 2002014084A
Authority
JP
Japan
Prior art keywords
mobile phase
liquid
sample
composition
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000197500A
Other languages
Japanese (ja)
Other versions
JP4403638B2 (en
Inventor
Mitsuo Kitaoka
光夫 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000197500A priority Critical patent/JP4403638B2/en
Publication of JP2002014084A publication Critical patent/JP2002014084A/en
Application granted granted Critical
Publication of JP4403638B2 publication Critical patent/JP4403638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid chromatograph fro gradient elution analysis, that solves such a problem that difference in analysis results among devices are generated, even under identical analysis conditions, and can apply the same analysis conditions to another device universally. SOLUTION: In this liquid chromatograph having a gradient liquid-feeding mechanism for feeding liquid while changing the composition of mobile phase liquid according to a specific program, a sample-injecting mechanism for injecting a sample into the mobile phase liquid, and a controller 10 for controlling them, the value (or a value related to this) of the inner volume of a mobile phase liquid channel from a mixing point M, where a plurality of mobile phase liquids merge to a sample injection point S is stored in the controller 10, the time when the composition of the mobile phase liquid starts to change at the sample injection point S is calculated from the value, and the timing for injecting the liquid at the sample-injecting mechanism is determined, based on the result. Accordingly always simultaneously to starting of the change in the mobile phase composition in a column 6 as soon as the sample enters the column 6 and eliminating the difference in analysis results due to the difference in the inner volume among the devices.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、グラジエント溶離
を行う液体クロマトグラフに関する。
The present invention relates to a liquid chromatograph for performing gradient elution.

【0002】[0002]

【従来の技術】グラジエント溶離は、液体クロマトグラ
フにおける移動相液体を2種以上用い、その混合割合を
時間と共に変化させながら分析する手法である。図2
は、2液の混合割合を横軸を時間軸として表した図(グ
ラジエントプロファイル)の一例である。この例では、
移動相液体としてA、Bの2液を用い、分析開始時はA
液90%、B液10%の混合比であるが、開始後時間T
oが経過した後はB液の割合が次第に増加し、分析終期
にはB液100%となるものである。このように2液の
混合比を制御するには、各移動相液体の流路をそれぞれ
バルブを介して送液ポンプの吸入側で合流させ、これら
のバルブを小刻みに開閉する開と閉との時間比率(開
度)を制御することで所定の混合比を得る。以上は低圧
グラジエントと呼ばれる方法であるが、この他に送液ポ
ンプの吐出側で各移動相液体を混合する高圧グラジエン
トもあるが本質的な違いはない。
2. Description of the Related Art Gradient elution is a technique in which two or more mobile phase liquids in a liquid chromatograph are used, and analysis is performed while changing the mixing ratio with time. FIG.
FIG. 3 is an example of a diagram (gradient profile) in which the mixing ratio of two liquids is represented by using the horizontal axis as a time axis. In this example,
Two liquids, A and B, were used as mobile phase liquids.
The mixture ratio is 90% for solution B and 10% for solution B.
After o has elapsed, the ratio of the solution B gradually increases, and reaches 100% at the end of the analysis. In order to control the mixing ratio of the two liquids as described above, the flow paths of the mobile phase liquids are joined via the respective valves on the suction side of the liquid sending pump, and the opening and closing of these valves in small increments. A predetermined mixture ratio is obtained by controlling the time ratio (opening degree). The above is a method called a low pressure gradient. In addition, there is a high pressure gradient in which each mobile phase liquid is mixed on the discharge side of the liquid sending pump, but there is no essential difference.

【0003】[0003]

【発明が解決しようとする課題】従来の液体クロマトグ
ラフにおけるグラジエント溶離分析では、通常、グラジ
エントプログラムのスタートと同時に試料が注入され
る。一般に、液体クロマトグラフ装置は、2液の合流点
(ミキシング点)から試料を注入する点(注入点)まで
の移動相液体流路に内容積があり、しかも各部の配置や
内部構造が装置ごとに異なるために、内容積の値は個々
に異なる。このため、試料がカラムに入ってから移動相
液体の組成が変化し始めるまでに時間差があり、しかも
その時間差は装置によって異なる。この結果、ある装置
で設定した分析条件をそのまま他の装置に適用した場
合、同じ分析結果が得られるとは限らない。
In the gradient elution analysis in the conventional liquid chromatograph, a sample is usually injected at the same time as the start of the gradient program. Generally, a liquid chromatograph device has an internal volume in a mobile phase liquid flow path from a confluence point (mixing point) of two liquids to a point (injection point) at which a sample is injected, and furthermore, the arrangement and internal structure of each part are different for each device. Therefore, the value of the internal volume differs individually. For this reason, there is a time difference between the time when the sample enters the column and the time when the composition of the mobile phase liquid starts to change, and the time difference differs depending on the device. As a result, when the analysis conditions set in a certain apparatus are applied to other apparatuses as they are, the same analysis results are not always obtained.

【0004】本発明は、このような事情に鑑みてなされ
たものであり、上記のような装置間で分析結果に差を生
じる問題を解消し、同じ分析条件を普遍的に他の装置に
適用可能なグラジエント溶離分析用の液体クロマトグラ
フを提供することを目的とする。
[0004] The present invention has been made in view of such circumstances, and solves the above-described problem of causing a difference in analysis results between apparatuses, and universally applies the same analysis conditions to other apparatuses. It is an object to provide a liquid chromatograph for a possible gradient elution analysis.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の液体クロマトグラフでは、複数の移動相液
体が合流するミキシング点から試料注入点までの移動相
液体流路の内容積の値(またはこれに関係する値)を記
憶しておき、この値から移動相液体の組成が試料注入点
で変化し始めるまでの時間を計算し、その結果に基づい
て試料注入のタイミングを定めるようにした。これによ
り、ある装置に設定した分析条件を他の装置にそのまま
適用することが可能になる。
In order to solve the above problems, in the liquid chromatograph of the present invention, the internal volume of the mobile phase liquid flow path from the mixing point where a plurality of mobile phase liquids join to the sample injection point is determined. A value (or a value related thereto) is stored, a time until the composition of the mobile phase liquid starts to change at the sample injection point is calculated from this value, and the timing of sample injection is determined based on the result. I made it. As a result, it becomes possible to apply the analysis conditions set for a certain apparatus as they are to another apparatus.

【0006】[0006]

【発明の実施の形態】本発明の一実施形態を図1に示
す。図は、2液低圧グラジエント溶離分析システムの例
であって、1a、1bはそれぞれ移動相液体A、Bの容
器(リザーバ)、2は移動相液体に溶存するガスを除く
ための脱気装置で、ここでは2チャンネル形を用い、各
チャンネルをそれぞれA、B液の脱気に用いている。3
a、3bは開度をコントロールすることで両液の混合比
を制御するバルブであり、両液の流路はこのバルブの出
口側の点M(ミキシング点)で合流し、この点以降は
A、B両液は所定比率で混合された移動相液体として流
れる。4は、液体クロマトグラフ装置の心臓ともいうべ
き送液ポンプで、上記の移動相液体を所定の流量で、図
中に矢印で示す方向に相液するものである。5は試料注
入部であって、インジェクタバルブ等により自動的に試
料を移動相液体の流れの中に注入する。注入された試料
は、移動相液体の流れに乗ってカラム6を通過する間に
分離され、検出器7で分析結果を表す信号として取り出
される。検出器7を通過した液体は廃液溜め8に排出さ
れる。9は、カラム6を分析所定の温度に保つための恒
温槽であり、これらを統括的に制御するのがコンピュー
タを内蔵するコントローラ10である。図中の点線は、
このコントローラ10から各部を制御する信号を示す。
FIG. 1 shows an embodiment of the present invention. The figure shows an example of a two-liquid low-pressure gradient elution analysis system, where 1a and 1b are containers (reservoirs) of mobile phase liquids A and B, respectively, and 2 is a deaerator for removing gas dissolved in the mobile phase liquid. Here, a two-channel type is used, and each channel is used for deaeration of the liquids A and B, respectively. 3
Reference numerals a and 3b denote valves for controlling the mixture ratio of the two liquids by controlling the degree of opening. The flow paths of the two liquids merge at a point M (mixing point) on the outlet side of the valves. , B flow as mobile phase liquids mixed at a predetermined ratio. Numeral 4 is a liquid sending pump which can be called a heart of the liquid chromatograph apparatus, which makes the above-mentioned mobile phase liquid a predetermined flow at a predetermined flow rate in a direction indicated by an arrow in the figure. Reference numeral 5 denotes a sample injection section, which automatically injects a sample into the flow of the mobile phase liquid by an injector valve or the like. The injected sample is separated while passing through the column 6 while riding on the flow of the mobile phase liquid, and is taken out by the detector 7 as a signal representing the analysis result. The liquid that has passed through the detector 7 is discharged to a waste liquid reservoir 8. Reference numeral 9 denotes a thermostat for keeping the column 6 at a predetermined temperature for analysis, and a controller 10 having a built-in computer controls these components. The dotted line in the figure is
A signal for controlling each unit from the controller 10 is shown.

【0007】このような構成の液体クロマトグラフで、
例えば図2に示すグラジエントプロファイルに従って送
液する場合、コントローラ10によりバルブ3a、3b
の開度を制御して、プログラムをスタートしてから時間
To経過後からB液濃度が増加し始め(移動相組成変化
開始)、以後、一定の速度でB液濃度が増加するように
する。ミキシング点Mで移動相液体組成を観測したとす
ると、ほぼ同図実線で示すパターン、即ちグラジエント
プロファイルと同じになる。同図中の移動相組成変化点
cは移動相液体の流速と同じ早さで移動相液体流路内を
移動して行く。従って、下流の注入点Sで同じように移
動相液体組成を観測したとすると、少し遅れて点線で示
すようなパターンを描くことになるはずであり、注入点
Sでは、プログラムをスタートしてから時間Ts経過後
から移動相組成変化が始まる。このタイミングTsで試
料を注入すれば、丁度移動相組成変化点に試料が注入さ
れ、カラム6先端で移動相組成が変化し始めるのと同時
に試料の分離が始まる。このようなタイミングで試料を
注入するように制御することが本発明実施上の一つの条
件となる。
In a liquid chromatograph having such a structure,
For example, when the liquid is sent in accordance with the gradient profile shown in FIG.
The opening degree is controlled so that the solution B concentration starts to increase after a lapse of time To from the start of the program (start of change in the composition of the mobile phase), and thereafter, the solution B concentration is increased at a constant speed. Assuming that the mobile phase liquid composition is observed at the mixing point M, the pattern becomes almost the same as the pattern shown by the solid line in the figure, that is, the gradient profile. The mobile phase composition change point c in the figure moves in the mobile phase liquid flow path at the same speed as the flow rate of the mobile phase liquid. Therefore, if the mobile phase liquid composition is similarly observed at the downstream injection point S, a pattern as indicated by a dotted line should be drawn a little later. At the injection point S, after starting the program, The change in the mobile phase composition starts after the elapse of the time Ts. If the sample is injected at this timing Ts, the sample is injected just at the mobile phase composition change point, and the separation of the sample starts at the same time as the mobile phase composition starts changing at the tip of the column 6. Controlling such that the sample is injected at such a timing is one of the conditions for implementing the present invention.

【0008】ここで、ミキシング点Mから注入点Sまで
の移動相液体流路の内容積をV、移動相液体の流量(流
速)をFとすると、 V=F×(Ts−To) …………………(1) が成り立つ。さらにこの式を変形すると、 Ts=V/F+To …………………(2) が得られる。式(1)から内容積を算出する場合、移動
相液体流量Fとプログラム上で移動相組成が変化し始め
るタイミングToは分析条件の設定値から容易に得られ
るが、注入点Sにおける移動相組成変化開始タイミング
Ts(これは前述のように、試料注入のタイミングとも
なる)は実測する必要がある。Tsを実測するには様々
な方法が考えられるが、最も簡単な方法は、図1におい
て、検出器7を一時的に試料注入部5の位置に接続し注
入点Sでの移動相組成を観測できるようにして、移動相
組成変化点が現れる時間を測定することである。この場
合、検出器7の内容積による若干の誤差が生じる恐れが
あるが、これは適宜補正することも可能である。この測
定は、装置を改造したり構成を変えない限り、最初に1
度行うだけでよい。こうして実測したTsの値を用いて
式(1)から内容積Vを求めて、これをこの装置に固有
の値としてコントローラ10のメモリーに記憶してお
く。
Here, assuming that the internal volume of the mobile phase liquid flow path from the mixing point M to the injection point S is V, and the flow rate (flow velocity) of the mobile phase liquid is F, V = F × (Ts−To) ... (1) holds. By further transforming this equation, the following is obtained: Ts = V / F + To (2) When calculating the internal volume from equation (1), the mobile phase liquid flow rate F and the timing To at which the mobile phase composition starts to change on a program can be easily obtained from the set value of the analysis conditions. It is necessary to actually measure the change start timing Ts (this is also the sample injection timing as described above). Various methods are conceivable for actually measuring Ts, but the simplest method is to connect the detector 7 temporarily to the position of the sample injection unit 5 and observe the mobile phase composition at the injection point S in FIG. The goal is to measure the time at which the mobile phase composition change point appears. In this case, a slight error may occur due to the inner volume of the detector 7, but this may be corrected as appropriate. This measurement should initially be 1 unless the equipment is modified or reconfigured.
Just do it once. Using the value of Ts thus measured, the internal volume V is obtained from the equation (1), and this is stored in the memory of the controller 10 as a value unique to the apparatus.

【0009】分析条件を変えるときは、新たなF、To
の値を式(2)に適用して、コントローラ10に内蔵す
るコンピュータ(図示せず)により適正な試料注入のタ
イミングTsの値を算出し、コントローラ10はこの新
たに算出したTsのタイミングで試料を注入するように
試料注入部5を制御する。こうすることにより、分析条
件が変わっても、試料は常に移動相組成変化点と共にカ
ラムに入ることになり、カラム6内では移動相組成変化
と試料の分離が同時に開始されるという条件が維持され
る。
When changing the analysis conditions, a new F, To
Is applied to the equation (2), and a proper value of the sample injection timing Ts is calculated by a computer (not shown) built in the controller 10, and the controller 10 calculates the sample at the newly calculated Ts timing. The sample injection unit 5 is controlled to inject the sample. Thus, even if the analysis conditions change, the sample always enters the column together with the mobile phase composition change point, and the condition that the mobile phase composition change and the separation of the sample start simultaneously in the column 6 is maintained. You.

【0010】別の液体クロマトグラフについても、上記
と同様に、それぞれの装置のミキシング点から注入点ま
での移動相液体流路の内容積Vの値を各装置固有の値と
してそれぞれのコントローラ内に記憶しておき、この値
を用いて試料注入のタイミングTsを定めるようにすれ
ば、常に移動相組成変化点と同時に試料がカラムに入る
ことになり、同じ分析条件を別の装置(本発明を適用し
た装置)に適用した場合でも装置間で分析結果に差を生
じることが無くなる。
In another liquid chromatograph, similarly to the above, the value of the internal volume V of the mobile phase liquid flow path from the mixing point to the injection point of each device is set in each controller as a value unique to each device. If this value is used to determine the sample injection timing Ts, the sample will always enter the column at the same time as the mobile phase composition change point. Even when the method is applied to an applied device, there is no difference in the analysis result between the devices.

【0011】式(1)または(2)からわかるように、
分析条件を変えた場合の変数は、移動相液体流量Fとプ
ログラム上で移動相組成が変化し始めるタイミングTo
のみであるから、To以降のプロファイルがどのような
形であろうと、例えば階段状に変化する複雑なパターン
を持つ場合であっても、本発明を適用するに際して何等
影響はない。
As can be seen from equation (1) or (2),
When the analysis conditions are changed, the variables are the mobile phase liquid flow rate F and the timing To where the mobile phase composition starts to change on the program.
Therefore, no matter what shape the profile after To has, for example, when it has a complicated pattern that changes stepwise, there is no effect when applying the present invention.

【0012】上記説明では移動相組成変化点に試料を注
入することを条件としたが、原理的には必ずしも丁度移
動相組成変化点に試料を注入することは必要でなく、そ
の前後に少しずれても実際上の問題はない。要は、移動
相組成変化点に対して一定の時間関係を保って試料を注
入すればよいのであるが、多数の装置間で条件を揃える
ためには、丁度移動相組成変化点に試料を注入するよう
に定めておくのが最も簡単であり、妥当であると言え
る。
In the above description, it is assumed that the sample is injected at the mobile phase composition change point. However, in principle, it is not always necessary to inject the sample exactly at the mobile phase composition change point, and the sample is slightly shifted before and after the injection. There is no practical problem. In short, it is only necessary to inject the sample while maintaining a certain time relationship with the mobile phase composition change point.However, in order to match the conditions among many devices, just inject the sample at the mobile phase composition change point. It is easiest and reasonable to set it to

【0013】上記は内容積の値をそのまま各装置に記憶
するものとしたが、各装置の内容積の値を標準的な装置
の内容積の値で除した係数を記憶するようにしてもよ
く、また、その他の内容積に関係する数値を記憶してお
いてもよい。以上、2液低圧グラジエントの場合を例示
して説明したが、本発明は高圧グラジエントの場合や3
液以上のグラジエント送液にも適用可能である。
In the above description, the value of the internal volume is stored in each device as it is. However, a coefficient obtained by dividing the value of the internal volume of each device by the value of the internal volume of a standard device may be stored. Alternatively, other numerical values related to the internal volume may be stored. The case of the two-liquid low-pressure gradient has been described above as an example.
The present invention is also applicable to a gradient liquid sending or more.

【0014】[0014]

【発明の効果】以上詳述したように、本発明によれば、
液体クロマトグラフ装置の機種等の差によらず、同じ分
析条件下であれば同じ分離パターンが得られるようにな
り、分析条件に普遍性を持たせることが可能になる。
As described in detail above, according to the present invention,
The same separation pattern can be obtained under the same analysis conditions irrespective of the type of liquid chromatograph, etc., and the analysis conditions can be made universal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】グラジエントプロファイルの一例を示す図であ
る。
FIG. 2 is a diagram illustrating an example of a gradient profile.

【符号の説明】[Explanation of symbols]

1a、1b…移動相液体容器 2…脱気装置 3a、3b…バルブ 4…送液ポンプ 5…試料注入部 6…カラム 7…検出器 8…廃液溜め 9…恒温槽 10…コントローラ 1a, 1b: Mobile phase liquid container 2: Degassing device 3a, 3b: Valve 4: Liquid feed pump 5: Sample injection unit 6: Column 7: Detector 8: Waste liquid reservoir 9: Constant temperature bath 10: Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2液以上の移動相液体の組成を所定のプロ
グラムに従って変化させながら送液するグラジエント送
液機構と、この移動相液体流中に試料を注入する試料注
入機構と、これらを制御するコントローラを備えた液体
クロマトグラフにおいて、前記コントローラに、前記2
液以上の移動相液体の合流点から前記試料注入機構に至
る移動相液体流路の内容積に係わる数値を記憶させ、こ
の数値に基づいて前記コントローラが前記試料注入機構
における試料注入のタイミングを制御するようにしたこ
とを特徴とする液体クロマトグラフ。
1. A gradient liquid sending mechanism for sending a liquid while changing the composition of two or more mobile phase liquids according to a predetermined program; a sample injection mechanism for injecting a sample into the mobile phase liquid flow; In a liquid chromatograph provided with a controller that performs
A numerical value related to the internal volume of the mobile phase liquid flow path from the junction of the mobile phase liquid or more to the sample injection mechanism is stored, and the controller controls the timing of sample injection in the sample injection mechanism based on this numerical value. A liquid chromatograph characterized in that:
JP2000197500A 2000-06-30 2000-06-30 Liquid chromatograph Expired - Lifetime JP4403638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197500A JP4403638B2 (en) 2000-06-30 2000-06-30 Liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197500A JP4403638B2 (en) 2000-06-30 2000-06-30 Liquid chromatograph

Publications (2)

Publication Number Publication Date
JP2002014084A true JP2002014084A (en) 2002-01-18
JP4403638B2 JP4403638B2 (en) 2010-01-27

Family

ID=18695824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197500A Expired - Lifetime JP4403638B2 (en) 2000-06-30 2000-06-30 Liquid chromatograph

Country Status (1)

Country Link
JP (1) JP4403638B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139147A (en) * 2006-12-01 2008-06-19 Hitachi High-Technologies Corp Liquid chromatograph system
JP2013127420A (en) * 2011-12-19 2013-06-27 Shimadzu Corp Liquid chromatograph and control program therefor
CN103308610A (en) * 2012-03-08 2013-09-18 株式会社岛津制作所 Solvent delivery device and liquid chromatograph
WO2015104976A1 (en) * 2014-01-09 2015-07-16 株式会社日立ハイテクノロジーズ Liquid-mixing device and liquid chromatography device
CN113167772A (en) * 2018-11-20 2021-07-23 株式会社日立高新技术 Analytical apparatus having a plurality of chromatographs and control method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139147A (en) * 2006-12-01 2008-06-19 Hitachi High-Technologies Corp Liquid chromatograph system
JP2013127420A (en) * 2011-12-19 2013-06-27 Shimadzu Corp Liquid chromatograph and control program therefor
CN103308610A (en) * 2012-03-08 2013-09-18 株式会社岛津制作所 Solvent delivery device and liquid chromatograph
US10302604B2 (en) 2012-03-08 2019-05-28 Shimadzu Corporation Solvent delivery device and liquid chromatograph
WO2015104976A1 (en) * 2014-01-09 2015-07-16 株式会社日立ハイテクノロジーズ Liquid-mixing device and liquid chromatography device
JPWO2015104976A1 (en) * 2014-01-09 2017-03-23 株式会社日立ハイテクノロジーズ Liquid mixing apparatus and liquid chromatograph apparatus
US10088459B2 (en) 2014-01-09 2018-10-02 Hitachi High-Technologies Corporation Liquid mixing device, and liquid chromatography apparatus
CN113167772A (en) * 2018-11-20 2021-07-23 株式会社日立高新技术 Analytical apparatus having a plurality of chromatographs and control method thereof

Also Published As

Publication number Publication date
JP4403638B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US8794052B2 (en) Liquid chromatograph
US7921696B2 (en) Liquid chromatograph device
US7992429B2 (en) Chromatography system with fluid intake management
JP4645437B2 (en) Gradient liquid feeder
JP4453589B2 (en) Mobile phase supply device and liquid chromatograph using the mobile phase supply device
US10005006B2 (en) Method for adjusting a gradient delay volume
JP2008139147A (en) Liquid chromatograph system
JP6409971B2 (en) Autosampler and liquid chromatograph
WO2018146826A1 (en) Supercritical fluid device
JP2000157858A (en) Method and apparatus for manufacture of liquid mixture
JP3898688B2 (en) Gradient liquid feeder
JP2009085897A (en) Liquid chromatograph apparatus and liquid chromatograph analysis method
US11619615B2 (en) Field flow fractionation device
US10183238B2 (en) Flow splitting in supercritical fluid chromatography systems
CN107407663B (en) Artifact compensation due to different characteristics of fluid containment volumes in a sample separation device
JP2002014084A (en) Liquid chromatograph
JP3180391B2 (en) Liquid chromatograph
WO2004010134A1 (en) Equipment and method for feeding liquid gradient in nano/micro liquid chromatography
WO2013134483A1 (en) Device capable of pressurization and associated systems and methods
JPH05256834A (en) Liquid chromatograph
JP2007127562A (en) Liquid feed pump
KR101821686B1 (en) Apparatus to inject sample gas of fixed quantity into gas chromatograph
US20050230297A1 (en) Chromatographic separator
US8640730B2 (en) Variable resistance fluid controller
JP2636699B2 (en) Liquid chromatograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4403638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

EXPY Cancellation because of completion of term