JP2002014059A - Fluoroscope - Google Patents

Fluoroscope

Info

Publication number
JP2002014059A
JP2002014059A JP2000196201A JP2000196201A JP2002014059A JP 2002014059 A JP2002014059 A JP 2002014059A JP 2000196201 A JP2000196201 A JP 2000196201A JP 2000196201 A JP2000196201 A JP 2000196201A JP 2002014059 A JP2002014059 A JP 2002014059A
Authority
JP
Japan
Prior art keywords
ray
luminance
histogram
range
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000196201A
Other languages
Japanese (ja)
Other versions
JP3525865B2 (en
Inventor
Shuhei Onishi
修平 大西
Taketo Kishi
武人 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000196201A priority Critical patent/JP3525865B2/en
Publication of JP2002014059A publication Critical patent/JP2002014059A/en
Application granted granted Critical
Publication of JP3525865B2 publication Critical patent/JP3525865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluoroscope capable of automatically setting optimum X-ray conditions, even with respect to an unknown object to be transilluminated. SOLUTION: The fluoroscope forms a histogram of luminance data of each pixel for constituting an image, based on an output from an X-ray detector 3, regulates the tube voltage so that the mode of the histogram falls within a first luminance range, in a state in which the tube current and tube voltage of an X-ray source 1 are set to specified values, then regulates the tube current, so that the mode of the histogram falls within a second luminance range of the luminance larger than the first range, automatically sets the tube current a tube voltage as low as possible in the range for fully transmitting X-rays through the object W to be transilluminated and a tube current as large as possible in the range which does not exceeding a sensitivity limit of the detector 3, and automatically obtains an easy-to-view fluoroscopic image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料の内部状況等
を観察するためのX線透視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray fluoroscope for observing the internal state of a sample and the like.

【0002】[0002]

【従来の技術】試料の内部の状況を非破壊のもとに観察
するためのX線透視装置においては、一般に、X線源に
対向してイメージインテンシファイアとCCDカメラ等
からなるX線検出器を設け、これらの間に透視対象物を
配置または通過させることにより、X線検出器に透視対
象物の透過X線を入射させる。そして、そのX線検出器
の出力を画像処理手段に導き、その出力を画素の輝度デ
ータとして、モニタ画面上に透視対象物のX線透視像を
表示する。
2. Description of the Related Art In an X-ray fluoroscope for observing the inside of a sample under non-destructive conditions, an X-ray detector generally comprising an image intensifier, a CCD camera and the like facing an X-ray source is generally used. The X-ray detector is provided, and the X-rays of the fluoroscopic object are incident on the X-ray detector by arranging or passing the fluoroscopic object therebetween. Then, the output of the X-ray detector is guided to the image processing means, and the output is displayed as the luminance data of the pixel, and the X-ray fluoroscopic image of the fluoroscopic object is displayed on the monitor screen.

【0003】ここで、X線源の管電流および管電圧は、
当該X線管から出力されるX線量およびX線強度に相関
し、これらを変化させることによって透視対象物に照射
されるX線の量および強度が変化する。このことを利用
して、従来のX線透視装置においては、様々な材質並び
に大きさを有する透視対象物に対して最適な透視画像が
得られるように、X線条件、つまりX線源の管電流と管
電圧を人手によって調整できるように構成されている。
Here, the tube current and tube voltage of the X-ray source are
It is correlated with the X-ray dose and the X-ray intensity output from the X-ray tube, and by changing these, the amount and intensity of the X-ray irradiated to the fluoroscopic object change. Utilizing this, in the conventional X-ray fluoroscope, the X-ray conditions, that is, the tube of the X-ray source, are set so that an optimum fluoroscopic image can be obtained for a fluoroscopic object having various materials and sizes. It is configured such that the current and the tube voltage can be adjusted manually.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来のX線
透視装置においては、透視対象物の材質や大きさ等に応
じてX線条件を人手によって調整する必要があり、特に
未知の透視対象物を観察する場合等においては、その調
整が面倒であるばかりでなく、得られている透視画像が
最適なものであるか否かを評価することが困難であると
ともに、調整結果に人為的な差も生じるという問題があ
った。
However, in the conventional X-ray fluoroscope, it is necessary to manually adjust the X-ray conditions in accordance with the material and size of the fluoroscopic object. When observing images, it is not only troublesome to make adjustments, but also it is difficult to evaluate whether or not the obtained fluoroscopic image is optimal, and there is an artificial difference in the adjustment results. There was a problem that also occurs.

【0005】本発明はこのような実情に鑑みてなされた
もので、未知の透視対象物に対しても最適なX線条件を
自動的に設定することのできるX線透視装置の提供を目
的としている。
The present invention has been made in view of such circumstances, and has as its object to provide an X-ray fluoroscopic apparatus capable of automatically setting an optimum X-ray condition even for an unknown fluoroscopic object. I have.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のX線透視装置は、X線源に対向してX線検
出器を配置するとともに、そのX線検出器の出力を画素
の輝度データとして、上記X線源とX線検出器の間に置
かれた透視対象物のX線透視像をモニタ画面上に表示す
る画像処理手段を備えたX線透視装置において、上記X
線検出器の出力に基づく各画素の輝度データのヒストグ
ラムを作成するヒストグラム作成手段と、上記X線源の
管電圧および管電流を規定値に設定した状態で、上記輝
度データのヒストグラムにおける最頻値があらかじめ設
定されている第1の輝度範囲に収まるように上記管電圧
を設定する管電圧設定手段と、その管電圧の設定後、上
記輝度データのヒストグラムにおける最頻値が上記第1
の輝度範囲よりも輝度の大きな第2の輝度範囲に収まる
ように上記管電流を設定する管電流設定手段を備えてい
ることによって特徴づけられる(請求項1)。
In order to achieve the above object, an X-ray fluoroscope according to the present invention has an X-ray detector arranged opposite to an X-ray source and an output of the X-ray detector. An X-ray fluoroscopic apparatus having image processing means for displaying, on a monitor screen, an X-ray fluoroscopic image of a fluoroscopic object placed between the X-ray source and the X-ray detector as luminance data of a pixel,
A histogram creating means for creating a histogram of the luminance data of each pixel based on the output of the line detector; and a mode value in the histogram of the luminance data with the tube voltage and the tube current of the X-ray source set to specified values Means for setting the tube voltage so as to fall within a first brightness range set in advance, and after setting the tube voltage, the mode value in the histogram of the brightness data is equal to the first mode.
It is characterized by having a tube current setting means for setting the tube current so as to fall within a second luminance range where the luminance is larger than the luminance range (claim 1).

【0007】ここで、本発明においては、上記画素の輝
度データのヒストグラムを作成すべきモニタ画面上の領
域を設定する注目領域設定手段を備えた構成とすること
(請求項2)が望ましい。
Here, in the present invention, it is preferable that the apparatus is provided with an attention area setting means for setting an area on the monitor screen where a histogram of the luminance data of the pixel is to be created.

【0008】本発明は、X線源の管電圧がX線透視画像
の画面の輝度に、また、管電流がX線透視画像のコント
ラストと画面の輝度の双方に、それぞれ主として影響を
及ぼすことから、見やすいX線透視画像を得るために
は、X線が透視対象物を十分に透過する範囲でなるべく
小さな管電圧で、かつ、X線検出機の感度限界を越えな
い範囲でなるべく大きな管電流に設定すればよいことを
勘案するとともに、モニタ画面の輝度に係る情報は画像
を構成する各画素の輝度のヒストグラムの最頻値を代表
させることで、最適なX線透視画像を得るためのX線条
件を自動的に設定しようとするものである。
According to the present invention, the tube voltage of the X-ray source mainly affects the screen brightness of the X-ray fluoroscopic image, and the tube current mainly affects both the contrast of the X-ray fluoroscopic image and the screen brightness. In order to obtain an easy-to-view X-ray fluoroscopic image, the tube voltage must be as small as possible in a range where X-rays can sufficiently penetrate the fluoroscopic object and as large as possible in a range not exceeding the sensitivity limit of the X-ray detector. In addition to taking into account that the setting may be made, the information on the brightness of the monitor screen is represented by the mode of the histogram of the brightness of each pixel constituting the image, so that the X-ray for obtaining the optimal X-ray fluoroscopic image can be obtained. The condition is to be set automatically.

【0009】すなわち、管電流および管電圧を規定値に
設定した状態で、モニタ画面の各画素の輝度のヒストグ
ラムを作成し、その最頻値の輝度に注目して、まず、管
電圧を変化させて、その最頻値の輝度をあらかじめ設定
されている比較的輝度の小さな第1の輝度範囲に収め
る。その状態で、管電流を変化させて、最頻値の輝度を
上記の第1の輝度範囲よりも輝度の大きな第2の輝度範
囲内に収める。これにより、透視対象物を十分に透過す
る強度でしかもできるだけ弱いX線で、しかもX線検出
器の感度限界を越えない範囲でできるだけ線量の多いX
線を透視対象物に照射することができ、自動的に最適な
X線条件の設定が可能となる。
That is, with the tube current and the tube voltage set to specified values, a histogram of the brightness of each pixel on the monitor screen is created, and the mode voltage is first changed by focusing on the mode brightness. Then, the luminance of the mode is set in a first luminance range having a relatively small luminance set in advance. In this state, the tube current is changed so that the mode luminance falls within the second luminance range where the luminance is higher than the first luminance range. Accordingly, X-rays having an intensity enough to transmit through the fluoroscopic object and having the lowest possible X-ray intensity, and having a dose as large as possible within a range not exceeding the sensitivity limit of the X-ray detector.
X-rays can be irradiated to the fluoroscopic object, and optimal X-ray conditions can be automatically set.

【0010】[0010]

【発明の実施の形態】以下、図面を参照しつつ本発明の
好適な実施の形態について説明する。図1は本発明の実
施の形態の構成を示すブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the embodiment of the present invention.

【0011】X線源1はX線を上方に向けて照射するよ
うに配置され、そのX線源1の上方に透視対象物Wを載
せるためのテーブル2が設けられているとともに、更に
その上方にX線検出器3が有感面を下方に向けた状態で
配置されている。このX線検出器3は、例えばイメージ
インテンシファイアとCCDカメラを組み合わせた公知
の検出器である。
An X-ray source 1 is arranged so as to emit X-rays upward, and a table 2 for mounting a fluoroscopic object W is provided above the X-ray source 1 and further above the X-ray source. The X-ray detector 3 is arranged with the sensitive surface facing downward. The X-ray detector 3 is a known detector combining, for example, an image intensifier and a CCD camera.

【0012】X線源1は電源部11から供給される管電
流および管電圧によって動作するが、この電源部11か
らの管電流および管電圧の大きさは、後述する制御装置
4の指令に基づいて動作するX線制御回路12により制
御される。
The X-ray source 1 is operated by a tube current and a tube voltage supplied from a power supply unit 11. The magnitudes of the tube current and the tube voltage from the power supply unit 11 are determined based on a command from a control unit 4 described later. Is controlled by the X-ray control circuit 12 which operates.

【0013】X線検出器3のCCDカメラの各画素出力
は、刻々と制御装置4に取り込まれる。制御装置4は、
実際にはコンピュータとその周辺機器によって構成され
ているが、この図1においては、コンピュータにインス
トールされているプログラムに含まれる主要な機能ごと
にブロック図で示しており、X線検出器3からの各画素
出力は画像処理部41に取り込まれる。
Each pixel output of the CCD camera of the X-ray detector 3 is taken into the control device 4 every moment. The control device 4
Although it is actually composed of a computer and its peripheral devices, FIG. 1 shows a block diagram for each of the main functions included in the program installed in the computer. Each pixel output is taken into the image processing unit 41.

【0014】画像処理部41では、X線検出器3からの
出力を用いて透視対象物WのX線透視像を作り、表示器
5に表示する。このとき、画像処理部41においては、
X線検出器3のCCDカメラの各画素出力値に応じて各
画素の輝度を決定して画像を形成する。この各画素の輝
度データはヒストグラム演算部42にも送られる。ヒス
トグラム演算部43においては、表示器5の画像を形成
する各画素の輝度データのヒストグラムを作成し、X線
条件設定部43に供給する。
The image processing section 41 creates an X-ray fluoroscopic image of the fluoroscopic object W using the output from the X-ray detector 3 and displays it on the display 5. At this time, in the image processing unit 41,
The luminance of each pixel is determined according to the output value of each pixel of the CCD camera of the X-ray detector 3 to form an image. The luminance data of each pixel is also sent to the histogram calculator 42. The histogram calculation unit 43 creates a histogram of the luminance data of each pixel forming the image on the display 5 and supplies the histogram to the X-ray condition setting unit 43.

【0015】制御装置4は、また、各種指令や設定等を
入力するための入力部44を備えている。
The control device 4 also has an input section 44 for inputting various commands and settings.

【0016】X線条件設定部43においては、以下に示
す手順によってX線源1の管電流および管電圧の最適値
を決定し、前記したX線制御回路12に動作指令を与え
る。図2はそのX線条件設定部43による管電流および
管電圧の設定手順を示すフローチャートであり、以下、
この図2を参照しつつその詳細を説明する。
The X-ray condition setting section 43 determines the optimum values of the tube current and the tube voltage of the X-ray source 1 according to the following procedure, and gives an operation command to the X-ray control circuit 12 described above. FIG. 2 is a flowchart showing a procedure for setting the tube current and the tube voltage by the X-ray condition setting unit 43.
The details will be described with reference to FIG.

【0017】このX線条件の設定のためのプログラム
は、テーブル2上に透視対象物Wを載せた状態で入力部
44から指令を与えることによってスタートし、まず、
X線源1の管電流および管電圧をそれぞれあらかじめ設
定されている比較的低い値に設定してX線を照射し、X
線検出器3からの出力を取り込む。その状態においてヒ
ストグラム演算部41で作られた各画素の輝度データの
ヒストグラムの最頻値Hmを読み出し、その値Hmとあ
らかじめ設定されている第1の輝度範囲B1 とを比較
し、図3(A)に例示するように、最頻値Hmの方が小
さい場合、つまり位場合には管電圧を規定量だけ増大さ
せ、大きい場合、つまり明るい場合には管電圧を規定量
だけ減少させることを繰り返し、図3(B)に例示する
ように最頻値Hmを第1の輝度範囲B1 内に入れる。
The program for setting the X-ray conditions is started by giving a command from the input unit 44 with the fluoroscopic object W placed on the table 2.
X-rays are emitted by setting the tube current and the tube voltage of the X-ray source 1 to relatively low values set in advance, respectively.
The output from the line detector 3 is taken. In this state, the mode value Hm of the histogram of the luminance data of each pixel generated by the histogram calculation unit 41 is read, and the value Hm is compared with a first luminance range B1 set in advance, and FIG. As exemplified in A), when the mode value Hm is smaller, that is, when the mode is larger, the tube voltage is increased by a specified amount, and when it is larger, that is, when it is bright, the tube voltage is reduced by a specified amount. repeatedly, the mode Hm as illustrated in FIG. 3 (B) placed in the first luminance range B 1.

【0018】ここで、X線源1の管電圧を増加させる
と、X線検出器3からの各画素の輝度のヒストグラム
は、広がりは一定のまま輝度が増大する方向に移動し、
管電圧を減少させた場合には、ヒストグラムは広がりが
一定のまま輝度が減少する方向に移動する。一方、後述
するように管電流を増加させると、ヒストグラムはその
広がりが大きくなると同時に、輝度が増大する方向に移
動し、管電流を減少させると、広がりが小さくなると同
時に輝度が減少する方向に移動する。第1の輝度範囲B
1 は、一般的に見やすい画面における平均的な輝度より
も低い輝度領域に設定され、前記したように、当初の管
電流が比較的低い値に設定されているために、管電圧の
みの変更によってヒストグラムの最頻値Hmを第1の輝
度範囲B1 内に収めた状態においては、X線が透視対象
物を十分に透過し、かつ、できるだけ小さい管電圧に設
定された状態となる。
Here, when the tube voltage of the X-ray source 1 is increased, the histogram of the luminance of each pixel from the X-ray detector 3 moves in a direction in which the luminance increases while the spread is constant.
When the tube voltage is decreased, the histogram moves in a direction in which the luminance decreases while the spread is constant. On the other hand, as will be described later, when the tube current is increased, the histogram increases in size and at the same time moves in a direction in which the luminance increases, and when the tube current is reduced, the histogram moves in a direction in which the spread decreases and the luminance decreases. I do. First luminance range B
1 is generally set to a luminance region lower than the average luminance on an easily viewable screen, and as described above, since the initial tube current is set to a relatively low value, only the tube voltage is changed. the histogram of the mode value Hm in the state of matches in the first luminance range B in 1, X-rays are sufficiently transparent perspective object, and in a state of being set to as small as possible tube voltage.

【0019】次に、その管電圧を維持した状態で、管電
流を上げていき、図3(C)に例示するように、ヒスト
グラムの最頻値Hmが第2の輝度範囲B2 に収まった時
点で管電流の設定を終了する。なお、管電流を上げすぎ
て最頻値Hmが第2の輝度範囲B2 を越えた場合には、
管電流を下げる。この第2の輝度範囲B2 は、前記した
第1の輝度範囲B1 よりも輝度の高い領域に設定されて
おり、一般的に見やすい画面における平均的な輝度に設
定されている。
Next, while keeping the tube voltage, gradually increasing the tube current, as illustrated in FIG. 3 (C), a histogram of the mode Hm is accommodated in the second luminance range B 2 At this point, the setting of the tube current is completed. In the case where the mode value Hm exceeds a second brightness range B 2 to too high a tube current,
Reduce tube current. The second luminance range B 2, rather than the first luminance range B 1 described above is set to a high luminance region, it is set to the average luminance in general easy to see the screen.

【0020】以上のX線条件の設定動作によると、透視
対象物Wを十分に透過し、しかもできるだけ低い管電圧
のもとに、表示器5の画面が見やすい輝度、換言すれば
X線検出器3の感度限界を越えない範囲でできるだけ大
きな管電流に設定されることになり、適度の輝度で高い
コントラストのX線透視像が自動的に得られる。
According to the above setting operation of the X-ray conditions, the luminance of the screen of the display 5 can be easily seen under the lowest possible tube voltage while sufficiently transmitting the fluoroscopic object W, in other words, the X-ray detector. The tube current is set to be as large as possible within a range not exceeding the sensitivity limit of 3, and an X-ray fluoroscopic image having appropriate luminance and high contrast is automatically obtained.

【0021】ここで、以上の設定動作においては、表示
器5の画面の全画素の輝度のヒストグラムを作り、それ
をもとに画面の全領域(全視野)に見やすいX線透視像
を得ることのできるX線条件を設定した例を示したが、
図4に例示するように、表示器5の画面上の任意の注目
領域Aを対象として、その注目領域A内の各画素の輝度
データのヒストグラムを作り、その最頻値を用いて上記
と同様にして管電圧および管電流の設定を行うことによ
って、注目領域A内が見やすい状態の画面を得ることが
できる。この注目領域Aの設定は、入力部44によって
行うことができる。この注目領域Aの設定は、特に、透
視対象物Wの材質が均一でない場合、例えば回路基板等
の透視に際して有効であり、例えば半田による接続部分
の検査を行う場合等において、その領域は全体のX線透
視像を見やすくしても見にくくなるが、その半田による
接続部分を注目領域として設定してX線条件を自動的に
設定することにより、画面全体としては明る過ぎる状態
となるもののその領域の内部状態を見やすくすることが
できる。
Here, in the above setting operation, a histogram of the luminance of all the pixels of the screen of the display unit 5 is created, and an X-ray fluoroscopic image which is easy to see in the entire area of the screen (entire field of view) is obtained based on the histogram. An example of setting X-ray conditions that can
As illustrated in FIG. 4, a histogram of the luminance data of each pixel in the attention area A is created for an arbitrary attention area A on the screen of the display device 5, and the mode is used as described above using the mode value. By setting the tube voltage and the tube current in this way, it is possible to obtain a screen in which the area of interest A is easy to see. The setting of the attention area A can be performed by the input unit 44. This setting of the attention area A is particularly effective when the material of the see-through target object W is not uniform, for example, when seeing through a circuit board or the like. Although it is difficult to see the X-ray fluoroscopic image even if it is easy to see, the X-ray condition is automatically set by setting the connection part by the solder, and the whole screen becomes too bright. The internal state can be easily seen.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、X線透
視像を構成する画素の輝度のヒストグラムを作成すると
ともに、まず、X線源の管電圧を変化させながら、ヒス
トグラムの最頻値が第1の輝度範囲に収まるように管電
圧に自動的に設定した後、管電流を変化させながら、第
1の輝度範囲よりも輝度の大きな第2の輝度範囲内にヒ
ストグラムの最頻値が収まるように自動的に管電流を設
定することにより、透視対象物をX線が十分に透過する
範囲でなるべく小さな管電圧で、しかも、X線検出器の
感度限界を越えない範囲でなるべく小さな管電流が自動
的に設定されて、見やすいX線透視像が得られ、従来の
ように人手で設定する場合に比して労力を軽減するとと
もに、常に客観的に見やすいX線透視像を得ることがで
きる。
As described above, according to the present invention, a histogram of the brightness of the pixels constituting the X-ray fluoroscopic image is created, and the most frequent histogram of the histogram is obtained while changing the tube voltage of the X-ray source. After automatically setting the tube voltage so that the value falls within the first luminance range, while changing the tube current, the mode value of the histogram within the second luminance range where the luminance is higher than the first luminance range is changed. The tube current is automatically set so as to be within the range, so that the tube voltage is as small as possible in a range where X-rays can sufficiently penetrate the fluoroscopic object, and as small as possible within a range not exceeding the sensitivity limit of the X-ray detector. The tube current is automatically set, and an easy-to-view X-ray fluoroscopic image is obtained. This reduces labor compared to the conventional manual setting, and always provides an objectively easy-to-view fluoroscopic image. Can be.

【0023】また、請求項2に係る発明のように、注目
領域を設定して、その領域内において上記と同様の設定
動作を行うように構成すると、回路基板内の半田接続部
等における内部欠陥等の検査を容易に行うことができ
る。
Further, when a region of interest is set and the same setting operation is performed in that region as in the invention according to claim 2, an internal defect in a solder connection portion or the like in the circuit board is obtained. Can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】本発明の実施の形態における制御部4にインス
トールされているX線条件の設定のためのプログラムの
内容を示すフローチャートである。
FIG. 2 is a flowchart showing the contents of a program for setting X-ray conditions installed in a control unit 4 according to the embodiment of the present invention.

【図3】画素の輝度データのヒストグラムの例を示す図
であり、(A)は初期設定状態におけるヒストグラムの
例を示し、(B)は管電圧の自動設定後のヒストグラム
の例であり、(C)は管電流の自動設定後のヒストグラ
ムの例を示している。
3A and 3B are diagrams illustrating an example of a histogram of luminance data of a pixel. FIG. 3A illustrates an example of a histogram in an initial setting state, and FIG. 3B illustrates an example of a histogram after automatic setting of a tube voltage. C) shows an example of the histogram after the automatic setting of the tube current.

【図4】表示器5の画面上に設定される注目領域Aの説
明図である。
FIG. 4 is an explanatory diagram of an attention area A set on a screen of a display device 5;

【符号の説明】[Explanation of symbols]

1 X線源 11 電源部 12 X線制御回路 2 テーブル 3 X線検出器 4 制御装置 41 画像処理部 42 ヒストグラム演算部 43 X線条件設定部 44 入力部 5 表示器 W 透視対象物 DESCRIPTION OF SYMBOLS 1 X-ray source 11 Power supply unit 12 X-ray control circuit 2 Table 3 X-ray detector 4 Control device 41 Image processing unit 42 Histogram calculation unit 43 X-ray condition setting unit 44 Input unit 5 Display W Display target W

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 BA11 CA01 DA01 DA02 DA09 GA09 GA11 HA13 JA02 JA20 KA03 LA11 MA05 2G088 EE29 FF02 GG19 LL26 4C092 AA01 AB04 AC08 AC16 CC03 CC12 CD02 CD03 CE01 CF24 CF42 CJ07 CJ25 DD06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G001 AA01 BA11 CA01 DA01 DA02 DA09 GA09 GA11 HA13 JA02 JA20 KA03 LA11 MA05 2G088 EE29 FF02 GG19 LL26 4C092 AA01 AB04 AC08 AC16 CC03 CC12 CD02 CD03 CE01 CF24 CF42 CJ07 CJ25 DD06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 X線源に対向してX線検出器を配置する
とともに、そのX線検出器の出力を画素の輝度データと
して、上記X線源とX線検出器の間に置かれた透視対象
物のX線透視像をモニタ画面上に表示する画像処理手段
を備えたX線透視装置において、 上記X線検出器の出力に基づく各画素の輝度データのヒ
ストグラムを作成するヒストグラム作成手段と、上記上
記X線源の管電圧および管電流を規定値に設定した状態
で、上記輝度データのヒストグラムにおける最頻値をあ
らかじめ設定されている第1の輝度範囲に収まるように
上記管電圧を設定する管電圧設定手段と、その管電圧の
設定後、上記輝度データのヒストグラムにおける最頻値
が上記第1の輝度範囲よりも輝度の大きな第2の輝度範
囲に収まるように上記管電流を設定する管電流設定手段
を備えていることを特徴とするX線透視装置。
An X-ray detector is disposed opposite to an X-ray source, and an output of the X-ray detector is placed between the X-ray source and the X-ray detector as luminance data of a pixel. In an X-ray fluoroscopic apparatus having an image processing means for displaying an X-ray fluoroscopic image of a fluoroscopic object on a monitor screen, a histogram creating means for creating a histogram of luminance data of each pixel based on an output of the X-ray detector; In a state where the tube voltage and the tube current of the X-ray source are set to specified values, the tube voltage is set so that the mode in the histogram of the brightness data falls within a first brightness range set in advance. And setting the tube current so that, after setting the tube voltage, the mode in the histogram of the luminance data falls within a second luminance range where the luminance is larger than the first luminance range. X-ray fluoroscopy apparatus characterized in that it comprises current setting means.
【請求項2】 上記画素の輝度データのヒストグラムを
作成すべきモニタ画面上の領域を設定する注目領域設定
手段を備えていることを特徴とする請求項1に記載のX
線透視装置。
2. The apparatus according to claim 1, further comprising an attention area setting unit that sets an area on a monitor screen where a histogram of the luminance data of the pixel is to be created.
A fluoroscope.
JP2000196201A 2000-06-29 2000-06-29 X-ray fluoroscope Expired - Lifetime JP3525865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000196201A JP3525865B2 (en) 2000-06-29 2000-06-29 X-ray fluoroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000196201A JP3525865B2 (en) 2000-06-29 2000-06-29 X-ray fluoroscope

Publications (2)

Publication Number Publication Date
JP2002014059A true JP2002014059A (en) 2002-01-18
JP3525865B2 JP3525865B2 (en) 2004-05-10

Family

ID=18694746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000196201A Expired - Lifetime JP3525865B2 (en) 2000-06-29 2000-06-29 X-ray fluoroscope

Country Status (1)

Country Link
JP (1) JP3525865B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340973A (en) * 2003-05-15 2004-12-02 Samsung Electronics Co Ltd Real-time monitoring system in jointing process, and method therefor
JP2008224483A (en) * 2007-03-14 2008-09-25 Shimadzu Corp X-ray inspection device
JP2012510043A (en) * 2008-08-11 2012-04-26 ラピスカン ラボラトリーズ、インコーポレイテッド System and method using intensity modulated X-ray source
US8194824B2 (en) 2008-05-09 2012-06-05 Canon Kabushiki Kaisha Radiation imaging apparatus and method for driving the same
DE102012018856A1 (en) * 2012-09-25 2014-03-27 Carl Zeiss Industrielle Messtechnik Gmbh Method of operating computed tomography device, involves irradiating investigation radiation on object based on thickness limit value of evaluation material of object, through test voltage of voltage source controlled by control device
US9435752B2 (en) 2010-02-03 2016-09-06 Rapiscan Systems, Inc. Systems and methods for scanning objects
JP2018011860A (en) * 2016-07-22 2018-01-25 ゼネラル・エレクトリック・カンパニイ X-ray CT apparatus and program
US10698128B2 (en) 2012-02-08 2020-06-30 Rapiscan Systems, Inc. High-speed security inspection system
US10754057B2 (en) 2016-07-14 2020-08-25 Rapiscan Systems, Inc. Systems and methods for improving penetration of radiographic scanners

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340973A (en) * 2003-05-15 2004-12-02 Samsung Electronics Co Ltd Real-time monitoring system in jointing process, and method therefor
JP2008224483A (en) * 2007-03-14 2008-09-25 Shimadzu Corp X-ray inspection device
US8194824B2 (en) 2008-05-09 2012-06-05 Canon Kabushiki Kaisha Radiation imaging apparatus and method for driving the same
JP2012510043A (en) * 2008-08-11 2012-04-26 ラピスカン ラボラトリーズ、インコーポレイテッド System and method using intensity modulated X-ray source
CN107782751A (en) * 2008-08-11 2018-03-09 拉派斯坎实验室股份有限公司 The system and method for the x-ray source of use intensity modulation
US9435752B2 (en) 2010-02-03 2016-09-06 Rapiscan Systems, Inc. Systems and methods for scanning objects
US11561321B2 (en) 2012-02-08 2023-01-24 Rapiscan Systems, Inc. High-speed security inspection system
US11852775B2 (en) 2012-02-08 2023-12-26 Rapiscan Systems, Inc. High-speed security inspection system
US10698128B2 (en) 2012-02-08 2020-06-30 Rapiscan Systems, Inc. High-speed security inspection system
US11119245B2 (en) 2012-02-08 2021-09-14 Rapiscan Systems, Inc. High-speed security inspection system
DE102012018856A1 (en) * 2012-09-25 2014-03-27 Carl Zeiss Industrielle Messtechnik Gmbh Method of operating computed tomography device, involves irradiating investigation radiation on object based on thickness limit value of evaluation material of object, through test voltage of voltage source controlled by control device
US10754057B2 (en) 2016-07-14 2020-08-25 Rapiscan Systems, Inc. Systems and methods for improving penetration of radiographic scanners
US11397276B2 (en) 2016-07-14 2022-07-26 Rapiscan Systems, Inc. Systems and methods for improving penetration of radiographic scanners
JP2018011860A (en) * 2016-07-22 2018-01-25 ゼネラル・エレクトリック・カンパニイ X-ray CT apparatus and program

Also Published As

Publication number Publication date
JP3525865B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
JP2005522237A (en) X-ray image enhancement
US7029437B2 (en) Electronic endoscope apparatus
JP2005354690A (en) System and method for utilizing effectively live preview mode of electronic image instrument
KR20150019985A (en) Method and apparatus for dynamic range enhancement of an image
TWI246015B (en) Radiographic apparatus and radiographic method
JP2002014059A (en) Fluoroscope
US6322497B1 (en) Electronic endoscope
JP7315560B2 (en) Medical control device and medical observation device
JP2003230555A (en) X-ray fluoroscopic imaging diagnostic equipment
EP1525849B1 (en) Fluoroscopic apparatus and method
JP2007236810A (en) Monitor brightness controlling system and medical diagnosis system using the same
JP2005000369A (en) X-ray irradiating condition controller
EP2037688A2 (en) Display apparatus and control method thereof
JP4355875B2 (en) X-ray equipment
JP3465424B2 (en) X-ray equipment
US6229875B1 (en) Apparatus and method for providing an optimum brightness control signal for lung tissue X-ray images
JP2005221708A (en) Microscope photographing apparatus, method and program for adjusting brightness
JP2005143672A (en) X-ray image diagnostic apparatus
JP2004147229A (en) Image display controller, image display control method, color imaging apparatus and view finder
WO2009135358A1 (en) Method and apparatus for enhancing the dynamic range of an image
WO2018230575A1 (en) Microscope system
US20120127101A1 (en) Display control apparatus
JPH08139996A (en) X-ray diagnostic device
JPH0266898A (en) X-ray cinema photographing device
JPH11290306A (en) X-ray apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3525865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

EXPY Cancellation because of completion of term