JP2002013730A - Equipment for controlling gas pressure in furnace at emergency stop of boiler - Google Patents
Equipment for controlling gas pressure in furnace at emergency stop of boilerInfo
- Publication number
- JP2002013730A JP2002013730A JP2000193256A JP2000193256A JP2002013730A JP 2002013730 A JP2002013730 A JP 2002013730A JP 2000193256 A JP2000193256 A JP 2000193256A JP 2000193256 A JP2000193256 A JP 2000193256A JP 2002013730 A JP2002013730 A JP 2002013730A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- pressure
- boiler
- draft fan
- mft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Regulation And Control Of Combustion (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はボイラプラントに係
り、ボイラ煙道及び風道系統上に設置された通風機停止
を伴うボイラ緊急停止時における火炉内ガス圧力制御装
置に関し、特に単系列のボイラ煙道及び風道上に設置さ
れた場合に適する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler plant, and more particularly to a gas pressure control device in a furnace at the time of an emergency stop of a boiler accompanied by a stop of a ventilator installed on a boiler flue and a wind system, and more particularly to a single-line boiler. Suitable when installed on flue and air duct.
【0002】[0002]
【従来の技術】図1は平衡通風式ボイラプラントの通風
系統の概略構成を示す図であり、単系統のボイラ風道及
び煙道からなるものである。平衡通風式ボイラプラント
では、押込通風機(以下、FDFと称する)1によっ
て、燃焼用空気が火炉2へ送り込まれる。この間に燃焼
用空気は空気予熱器(以下、AHと称する)3で、火炉
2からの燃焼排ガスと熱交換により加熱される。加熱さ
れた燃焼用空気は火炉2で燃料とともに燃焼して燃焼ガ
スとなり、AH3において燃焼用空気と熱交換を行った
後、誘引通風機(以下、IDFと称する)4によって煙
突5へ導かれて大気へ放出される。FDFやIDFとし
ては、図6に示すような遠心ファンや軸流ファンが使用
される。それぞれのファンの構造は図6に図示したとお
りの構造を有する。2. Description of the Related Art FIG. 1 is a diagram showing a schematic configuration of a ventilation system of a balanced ventilation boiler plant, which comprises a single system boiler wind path and a flue. In the balanced ventilation type boiler plant, combustion air is sent into a furnace 2 by a forced draft fan (hereinafter, referred to as FDF) 1. During this time, the combustion air is heated by an air preheater (hereinafter, referred to as AH) 3 by heat exchange with the combustion exhaust gas from the furnace 2. The heated combustion air is burned together with the fuel in the furnace 2 to become a combustion gas, and after performing heat exchange with the combustion air in the AH 3, is guided to a chimney 5 by an induction ventilator (hereinafter referred to as IDF) 4. Released to the atmosphere. As the FDF or IDF, a centrifugal fan or an axial fan as shown in FIG. 6 is used. The structure of each fan has the structure as shown in FIG.
【0003】ここで、IDF4入口圧力は火炉内燃焼ガ
スの圧力を制御するために調節される。特に石炭焚きボ
イラでは、火炉外部への灰漏れ防止のためにIDF4入
口圧力調整によって、火炉内燃焼ガスが大気圧より低い
圧力(約−10mmAq)に維持されている。IDF4
の動翼又は入口ダンパ開度は、開度が大きいほどIDF
4入口圧力が減少することによって火炉圧力が低下し、
開度が小さいほどIDF4入口圧力が増加することによ
って火炉圧力が増加する。[0003] Here, the inlet pressure of the IDF 4 is adjusted to control the pressure of the combustion gas in the furnace. In particular, in a coal-fired boiler, the combustion gas in the furnace is maintained at a pressure lower than the atmospheric pressure (about -10 mmAq) by adjusting the pressure at the inlet of the IDF 4 in order to prevent ash leakage to the outside of the furnace. IDF4
The blade or inlet damper opening of the
4 The furnace pressure decreases due to the decrease in the inlet pressure,
As the opening is smaller, the furnace pressure increases due to an increase in the IDF4 inlet pressure.
【0004】火炉内ガス圧力測定装置6によって測定さ
れた火炉内ガス圧力の実測値は、信号として減算器7へ
送られ、ここで火炉圧力設定値8との偏差が算出され
る。その偏差より動翼又は入口ダンパ開度調節器9でI
DF4の動翼開度調節信号が作成され、IDF4に送ら
れて動翼開度が調節される。The measured value of the furnace gas pressure measured by the furnace gas pressure measuring device 6 is sent to a subtractor 7 as a signal, where a deviation from the furnace pressure set value 8 is calculated. From the deviation, the rotor or inlet damper opening adjuster 9 adjusts the I
A blade opening adjustment signal for DF4 is created and sent to IDF4 to adjust the blade opening.
【0005】従来技術におけるボイラ緊急停止(以下、
MFT(Main Fuel Trip)と称する)時
のFDF1及びIDF4の動翼開度状態に対する燃料流
量、排ガス流量、火炉圧力等の変動状況を図2に示す。[0005] Boiler emergency stop in the prior art (hereinafter, referred to as
FIG. 2 shows the variation of the fuel flow rate, the exhaust gas flow rate, the furnace pressure, and the like with respect to the blade opening degree of the FDF 1 and the IDF 4 at the time of MFT (Main Fuel Trip).
【0006】MFTは、燃料供給を遮断することによつ
てプラント停止動作が行われるが、FDF1及びIDF
4は、炉内及び通風系統内に残った未燃分を除去するた
めに運転を持続する必要がある。In the MFT, a plant stop operation is performed by shutting off fuel supply.
4 needs to continue operation in order to remove unburned components remaining in the furnace and the ventilation system.
【0007】一方、FDF1及びIDF4が両方とも停
止するようなMFTは、FDF1又はIDF4のいずれ
かがトリップした場合に起きる。通常、FDF1とID
F4は、互いにインターロック機構で結合されているた
め、どちらか一方がトリップした場合は他方の通風機も
停止することになる。On the other hand, an MFT in which both the FDF 1 and the IDF 4 are stopped occurs when either the FDF 1 or the IDF 4 trips. Normally, FDF1 and ID
Since F4 is connected to each other by an interlock mechanism, if either one trips, the other ventilator also stops.
【0008】MFTが起きたときは(FDF又はIDF
のトリップに依らない場合)、燃料供給が遮断される
(図2(a))ため火炉内の燃焼ガス温度は急速に低下
し、それに伴い火炉内の燃焼ガス圧力も急激に低下する
ことになる(図2(f))。このとき、FDF1及びI
DF4が運転を持続しているならば、IDF4の動翼開
度を制御することによって、火炉内燃焼ガスの圧力を調
節することができるため、MFT直後の燃焼ガス圧力の
低下幅をある程度小さくすることができる。When an MFT occurs (FDF or IDF
2), the fuel supply is cut off (FIG. 2 (a)), so that the temperature of the combustion gas in the furnace rapidly decreases, and accordingly, the pressure of the combustion gas in the furnace rapidly decreases. (FIG. 2 (f)). At this time, FDF1 and IDF
If the operation of the DF4 is continued, the pressure of the combustion gas in the furnace can be adjusted by controlling the blade opening degree of the IDF4, so that the decrease in the combustion gas pressure immediately after the MFT is reduced to some extent. be able to.
【0009】しかし、FDF1及びIDF4双方の停止
を伴うMFTが起きたときは、FDF1及びIDF4が
運転を持続している場合と同等な火炉内燃焼ガス圧力の
制御を行うことはできない。ファントリップによるMF
TによりFDF1及びIDF4は停止態様となるが、実
際にはこれらのファンはその後も軸の慣性による惰性回
転を持続しており、火炉への空気流入量(図2(c))
及び火炉内圧力(図2(f))に影響を与える。停止動
作から惰走状態に入った直後から、FDF1及びIDF
4の動翼開度は自動/手動切替器10によって自動操作
から手動操作に切り替えられ、さらに手動操作器11に
記憶されていた切替操作直前の動翼開度で一定時間(3
0秒前後)保持されたのち、パージ(未燃分の除去)に
必要な空気量を確保するために、規定開度まで動翼を徐
々に開く動作が行われる(図2の(b)(d))。[0009] However, when an MFT accompanied by the stoppage of both the FDF1 and the IDF4 occurs, it is not possible to control the combustion gas pressure in the furnace as in the case where the FDF1 and the IDF4 continue to operate. MF by fan trip
The TDF causes the FDF1 and the IDF4 to stop, but in fact, these fans continue to coast by inertia of the shaft thereafter, and the amount of air flowing into the furnace (FIG. 2 (c))
And the furnace pressure (FIG. 2 (f)). Immediately after entering the coasting state from the stop operation, FDF1 and IDF
The blade opening of No. 4 is switched from automatic operation to manual operation by the automatic / manual switch 10, and furthermore, the blade opening just before the switching operation stored in the manual operation device 11 is maintained for a certain time (3
After the pressure is held (about 0 seconds), an operation of gradually opening the rotor blades to a specified opening degree is performed in order to secure an air amount necessary for purging (removal of unburned components) ((b) of FIG. d)).
【0010】MFT直後にファンの動翼開度を一定時間
保持する理由は、FDFに関しては、FDFがMFT後
も運転を持続する場合においては、火炉への空気流入量
増加による未燃分の発火防止のために動翼開度はMFT
直前の状態を保持しており、このことは米国消防基準
(NFPA)においても規定されている。これらのこと
からFDFが停止するMFT時においても、同等と考え
てFDFの動翼開度はMFT直前の状態を保持すること
としている。IDFに関しては、IDFの動翼開度は火
炉の空気流量に直接関係していないため、FDFのよう
な問題はないものの、通常運転状態におけるIDFの動
翼開度は、FDFの動翼開度と連携しているため、ファ
ントリップ時のMFTにおいては、IDFの動翼開度も
MFT直前の状態を保持することとしている。以上のこ
とより、ファントリップによるMFT時の火炉内燃焼ガ
ス圧力の制御は、従来行われていなかった。[0010] The reason why the blade opening of the fan is maintained for a certain period of time immediately after the MFT is that the unburned portion is ignited due to an increase in the amount of air flowing into the furnace when the FDF continues to operate after the MFT. The blade opening is MFT to prevent
It retains its previous state, which is also defined in the National Fire Service Standard (NFPA). From these facts, even at the time of the MFT when the FDF stops, the blade opening of the FDF is maintained at the state immediately before the MFT, assuming the same. Regarding the IDF, since the blade opening of the IDF is not directly related to the air flow rate of the furnace, there is no problem like the FDF, but the blade opening of the IDF in the normal operation state is the blade opening of the FDF. In the MFT at the time of a fan trip, the rotor blade opening of the IDF is also maintained at the state immediately before the MFT. As described above, the control of the combustion gas pressure in the furnace at the time of the MFT by the fan trip has not been conventionally performed.
【0011】MFT後の火炉圧力低下と火炉設計圧力と
の関係を図4に示す。通常、ファントリップによるMF
T時の火炉内燃焼ガス圧力の低下幅は、火炉内圧力の瞬
間的な変動幅に関する設計条件の範囲内にあるように計
画されるため、通風機トリップによるMFTの直前の火
炉内圧力が設定値(計画値)付近であれば、特に問題と
されなかった(図4の実線のグラフ参照)。しかし、火
炉内圧力が何らかの原因によって、設定値よりも低い状
態でファントリップによるMFTが起きた場合、その後
に生じる火炉内圧力の低下によって火炉内圧力が設計圧
力を超過する可能性があり(図4の一点鎖線のグラフ参
照)、最悪の場合は火炉を破損するおそれがある。従来
技術は火炉内圧力が設定値よりも低い状態におけるファ
ントリップによるMFT時の火炉内圧力低下の影響が考
慮されていなかった。FIG. 4 shows the relationship between the furnace pressure drop after MFT and the furnace design pressure. Usually MF by fan trip
Since the range of the decrease in the combustion gas pressure in the furnace at T is planned to be within the range of the design conditions related to the instantaneous fluctuation range of the furnace pressure, the furnace pressure immediately before the MFT due to the ventilator trip is set. There was no particular problem near the value (planned value) (see the solid line graph in FIG. 4). However, if the MFT due to a fan trip occurs in a state where the furnace pressure is lower than the set value for some reason, the furnace pressure may exceed the design pressure due to a subsequent decrease in the furnace pressure (see FIG. 4). In the worst case, the furnace may be damaged. The prior art does not take into account the effect of furnace pressure drop during MFT due to a fan trip when the furnace pressure is lower than a set value.
【0012】[0012]
【発明が解決しようとする課題】以上説明したように、
ボイラプラントにおいて通風系統上に設置されたFDF
及びIDFが停止するようなMFTが起きた際、燃料供
給が遮断されることで火炉内ガス温度が急速に低下する
ことによる火炉内ガス圧力の急激な低下が発生する。As described above,
FDF installed on ventilation system in boiler plant
Further, when an MFT in which the IDF is stopped occurs, the fuel supply is cut off, and the gas temperature in the furnace rapidly decreases due to the rapid decrease in the gas temperature in the furnace, causing a sharp decrease in the furnace gas pressure.
【0013】この圧力低下は、火炉内圧力が設定値以下
の状態でMFTが起きた場合、火炉の設計圧力を超過す
る可能性があり、火炉の破損を発生させるおそれがある
(図4の一点鎖線のグラフ参照)。If the MFT occurs when the pressure in the furnace is equal to or less than the set value, the pressure drop may exceed the design pressure of the furnace and may cause damage to the furnace (one point in FIG. 4). See the dashed line graph).
【0014】本発明の目的は、通風機の停止に伴うMF
T発生直後において惰走状態にあるIDFの動翼開度を
調節し、火炉ガス圧力の急激な低下を抑制することによ
り、火炉の破損を防止する装置を提供することにある。An object of the present invention is to provide an MF for stopping a ventilation fan.
It is an object of the present invention to provide a device for preventing damage to a furnace by adjusting a blade opening degree of an IDF in a coasting state immediately after the occurrence of T and suppressing a sharp decrease in furnace gas pressure.
【0015】[0015]
【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。In order to solve the above problems, the present invention mainly employs the following configuration.
【0016】燃焼用空気を火炉内に送り込む押込通風機
及び火炉内ガス圧力の制御を行う誘引通風機が設置され
た通風系統を備えた平衡通風式ボイラにおいて、押込通
風機又は誘引通風機の停止に起因するボイラ緊急停止時
に、火炉内圧力計測装置によって計測された火炉内圧力
の低下に対応して、ボイラ緊急停止直後の軸慣性による
惰走状態にある誘引送風機の動翼又は出入口ダンパの開
度を制御し、火炉内圧力の低下を抑制する火炉内ガス圧
力制御装置。[0016] In a balanced ventilation type boiler provided with a ventilation system for feeding a combustion air into a furnace and a ventilation system for controlling a gas pressure in the furnace, the forced ventilation or induction ventilation is stopped. In response to the decrease in the furnace pressure measured by the furnace pressure measurement device at the time of the emergency stop of the boiler caused by the boiler, the moving blades or entrance / exit damper of the induction blower that is coasting due to the shaft inertia immediately after the emergency stop of the boiler is opened. A furnace gas pressure control device that controls the temperature and suppresses a decrease in furnace pressure.
【0017】[0017]
【発明の実施の形態】本発明の実施形態に係るボイラ緊
急停止時の火炉内ガス圧力制御装置について、図1、図
3及び図5を用いて以下説明する。図1は平衡通風式ボ
イラプラントの通風系統の一般的構成を示す図であり、
図3は本実施形態におけるMFT後のFDF及びIDF
の動翼開度状態に対する空気及びガス流量、並びに火炉
圧力の変動状況を示す図であり、図5は本実施形態にお
けるIDF動翼開度調節の状況を示した図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus for controlling gas pressure in a furnace during an emergency stop of a boiler according to an embodiment of the present invention will be described below with reference to FIGS. 1, 3, and 5. FIG. FIG. 1 is a diagram showing a general configuration of a ventilation system of a balanced ventilation boiler plant,
FIG. 3 shows the FDF and IDF after MFT in the present embodiment.
FIG. 5 is a diagram showing a change in air and gas flow rates and a furnace pressure with respect to a moving blade opening state, and FIG. 5 is a diagram showing a state of IDF moving blade opening adjustment in the present embodiment.
【0018】FDF又はIDFトリップによるMFTが
起きたとき、FDF又はIDFはインターロックによっ
て結果的に双方とも停止態様となるが、これらのファン
はMFT後も軸慣性による惰走状態にあり、火炉におけ
る空気流れ及び排ガス流れが持続される(図3(c)、
(e))。一方、燃料供給は遮断され(図3(a))、
これによって火炉内の燃焼ガス温度は急速に低下し、そ
れに伴い火炉内燃焼ガス圧力も低下し始める(図3
(f))。When an MFT due to an FDF or IDF trip occurs, both FDFs or IDFs are consequently stopped by an interlock, but these fans are still coasting due to axial inertia after the MFT, and The air flow and exhaust gas flow are maintained (FIG. 3 (c),
(E)). On the other hand, the fuel supply is cut off (FIG. 3A),
As a result, the temperature of the combustion gas in the furnace rapidly decreases, and accordingly, the pressure of the combustion gas in the furnace also starts to decrease (see FIG. 3).
(F)).
【0019】このとき、FDFの動翼開度は火炉への空
気流入量の不安定化を避けるために自動操作から手動操
作に切り替え、開度をMFT直前の状態で保持するが
(図3(b))、IDFの動翼開度はMFT後も自動操
作の状態を維持する。すなわち火炉に設置された火炉圧
力測定装置6によって計測された火炉内圧力を火炉圧力
設定値8と減算器7で減算して、火炉圧力の低下の勾配
に応じてIDFの動翼開度を絞ることによって、火炉圧
力の低下幅を小さくする(図3(f))。At this time, the blade opening of the FDF is switched from automatic operation to manual operation in order to avoid instability of the air flow into the furnace, and the opening is maintained in the state immediately before the MFT (FIG. b)), the blade opening of the IDF maintains the state of automatic operation even after the MFT. That is, the furnace pressure measured by the furnace pressure measuring device 6 installed in the furnace is subtracted by the furnace pressure set value 8 and the subtractor 7 to narrow the blade opening of the IDF according to the gradient of the furnace pressure decrease. Thus, the range of decrease in the furnace pressure is reduced (FIG. 3 (f)).
【0020】火炉圧力の変動が緩和したところで、即
ち、この圧力変動量の小となったことを検知してIDF
の動翼開度は自動操作から手動操作に切り替えて、パー
ジに必要な空気量を確保することができる規定開度まで
IDFの動翼が開かれる。When the fluctuation of the furnace pressure is reduced, that is, when the pressure fluctuation is detected to be small, the IDF is detected.
The blade opening of the IDF is switched from automatic operation to manual operation, and the blade of the IDF is opened to a specified opening at which the amount of air required for purging can be secured.
【0021】以上説明したようように、本発明の実施形
態は、ボイラ通風系統上にあるファンのトリップによっ
て発生したMFT時の火炉内圧力低下に対して、MFT
直後の軸慣性による惰走状態にあるIDFの動翼開度を
火炉に設置された火炉内圧力計測装置によって計測され
た火炉内圧力の実測値を用い、火炉内圧力の低下に応じ
たIDFの動翼開度の絞り量を決定し、火炉内圧力の低
下を抑制するものである。[0021] As described above, the embodiment of the present invention is designed to reduce the pressure in the furnace at the time of MFT caused by the trip of the fan on the boiler ventilation system.
The blade opening of the IDF in the coasting state due to the shaft inertia immediately after was measured using the actual furnace pressure measured by the furnace pressure measuring device installed in the furnace, and the IDF of the IDF corresponding to the decrease in the furnace pressure was measured. The throttle amount of the blade opening is determined to suppress a decrease in furnace pressure.
【0022】いままで、通風機停止を伴うボイラ緊急停
止時における火炉内ガス圧力制御の対象として誘引送風
機の動翼の開度を挙げて説明したが、この動翼に限ら
ず、誘引送風機の入口ダンパの開度でも同様の効果を達
成することができる。Up to now, the opening degree of the moving blades of the induction blower has been described as an object of the gas pressure control in the furnace at the time of emergency stop of the boiler accompanied by the stoppage of the ventilation fan. The same effect can be achieved with the opening degree of the damper.
【0023】なお、上述の説明では単系統のボイラプラ
ントを対象としたが、2系統を有するプラントにおいて
2系統共にトリップした場合にも本発明が適用できる。
具体的な実施内容は図3で説明したと同様であるが、2
系統の内1系統について行えば良く、残りの1系統は従
来の通りとする。In the above description, a single boiler plant is used. However, the present invention can be applied to a plant having two systems in which both systems trip.
The specific implementation is the same as that described with reference to FIG.
Only one of the systems may be performed, and the remaining one is the same as the conventional one.
【0024】[0024]
【発明の効果】火炉内圧力が何らかの原因により設定値
より低い状態において、FDF又はIDFのトリップに
よりFDF及びIDF停止を伴ったMFTが発生した場
合、MFT直後に起こる火炉の設計圧力を超過するよう
な火炉内燃焼ガス圧力の急激な低下を抑制することによ
って、火炉の破損を防止することができる。According to the present invention, when the furnace pressure is lower than the set value for some reason and the FDF or IDF trips and the MFT with the FDF and IDF stop occurs, the design pressure of the furnace immediately after the MFT is exceeded. By suppressing a sharp drop in the combustion gas pressure in the furnace, it is possible to prevent the furnace from being damaged.
【図1】平衡通風式ボイラの通風系統の概略構成を示す
図である。FIG. 1 is a diagram showing a schematic configuration of a ventilation system of a balanced ventilation boiler.
【図2】従来技術におけるMFT後のFDF及びIDF
の動翼開度状態に対する空気及びガス流量、火炉圧力等
の変動状況を示す図である。FIG. 2 shows FDF and IDF after MFT in the prior art.
It is a figure which shows the fluctuation state of air and gas flow rate, furnace pressure, etc. with respect to the moving blade opening degree state.
【図3】本発明におけるMFT後のIDFの動翼開度状
態に対するガス流量、火炉圧力等の変動状況を示す図で
ある。FIG. 3 is a diagram showing a variation state of a gas flow rate, a furnace pressure, and the like with respect to a blade opening state of an IDF after an MFT according to the present invention.
【図4】MFT後の火炉圧力低下と火炉設計圧力との関
係を示した図である。FIG. 4 is a diagram showing a relationship between a furnace pressure drop after MFT and a furnace design pressure.
【図5】本発明におけるIDF動翼開度調節の状況を示
した図である。FIG. 5 is a diagram showing a state of adjustment of an IDF blade opening degree in the present invention.
【図6】FDF又はIDFに使用される遠心ファンと軸
流ファンの概略的な構造を示す図である。FIG. 6 is a diagram showing a schematic structure of a centrifugal fan and an axial fan used for an FDF or an IDF.
1 押込通風機 2 ボイラ火炉 3 空気加熱器 4 誘引通風機 5 煙突 6 火炉圧力測定装置 7 減算器 8 火炉圧力設定値 9 動翼開度調節器 10 自動/手動切替器 11 手動操作器 DESCRIPTION OF SYMBOLS 1 Push-in ventilator 2 Boiler furnace 3 Air heater 4 Induction ventilator 5 Chimney 6 Furnace pressure measuring device 7 Subtractor 8 Furnace pressure set value 9 Blade opening degree adjuster 10 Automatic / manual switching device 11 Manual operation device
Claims (1)
機及び火炉内ガス圧力の制御を行う誘引通風機が設置さ
れた通風系統を備えた平衡通風式ボイラにおいて、 押込通風機又は誘引通風機の停止に起因するボイラ緊急
停止時に、火炉内圧力計測装置によって計測された火炉
内圧力の低下に対応して、ボイラ緊急停止直後の軸慣性
による惰走状態にある誘引送風機の動翼又はダンパの開
度を制御し、火炉内圧力の低下を抑制することを特徴と
する火炉内ガス圧力制御装置。An equilibrium ventilation type boiler having a ventilation system provided with a forced draft fan for feeding combustion air into a furnace and an induction draft fan for controlling gas pressure in the furnace, wherein the forced draft fan or the draft draft fan is provided. In response to the decrease in the furnace pressure measured by the furnace pressure measurement device at the time of the emergency stop of the boiler due to the stoppage of the boiler, the blade or damper of the induction blower in the coasting state due to the shaft inertia immediately after the emergency stop of the boiler is stopped. An in-furnace gas pressure control device characterized by controlling an opening degree and suppressing a decrease in a furnace pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193256A JP2002013730A (en) | 2000-06-27 | 2000-06-27 | Equipment for controlling gas pressure in furnace at emergency stop of boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193256A JP2002013730A (en) | 2000-06-27 | 2000-06-27 | Equipment for controlling gas pressure in furnace at emergency stop of boiler |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002013730A true JP2002013730A (en) | 2002-01-18 |
Family
ID=18692281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000193256A Pending JP2002013730A (en) | 2000-06-27 | 2000-06-27 | Equipment for controlling gas pressure in furnace at emergency stop of boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002013730A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106969376A (en) * | 2017-04-10 | 2017-07-21 | 广东电网有限责任公司电力科学研究院 | A kind of boiler main fuel trip key reason analysis and Reconstruction in field measure method and system |
CN109973408A (en) * | 2019-03-26 | 2019-07-05 | 大唐桂冠合山发电有限公司 | The abnormal restoration methods of the movable vane adjustment of adjusting rotor blade section formula pressure fan |
-
2000
- 2000-06-27 JP JP2000193256A patent/JP2002013730A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106969376A (en) * | 2017-04-10 | 2017-07-21 | 广东电网有限责任公司电力科学研究院 | A kind of boiler main fuel trip key reason analysis and Reconstruction in field measure method and system |
CN109973408A (en) * | 2019-03-26 | 2019-07-05 | 大唐桂冠合山发电有限公司 | The abnormal restoration methods of the movable vane adjustment of adjusting rotor blade section formula pressure fan |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3795951B2 (en) | Low NOx burner and exhaust gas recirculation control method | |
JP2002013730A (en) | Equipment for controlling gas pressure in furnace at emergency stop of boiler | |
JP4059100B2 (en) | Boiler monitoring method and apparatus | |
JPH11257648A (en) | Method of controlling boiler induced fan for coal combustion boiler | |
JP2000297930A (en) | Device and method for controlling primary draft fan for pulverized coal combustion boiler | |
JP2807483B2 (en) | Boiler furnace and flue pressure control device | |
JP2962541B2 (en) | Ventilation pressure control device for ventilation line for multi-can boiler | |
JP3941405B2 (en) | Boiler automatic control apparatus and method | |
JP2001289405A (en) | Pulvirized coal fired boiler | |
JP3477885B2 (en) | Primary air draft controller for coal-fired boiler | |
JPH10169904A (en) | Control system for boiler | |
JP3604352B2 (en) | Gas turbine exhaust reburn system | |
JP3288763B2 (en) | Operation method and operation control device for flue duct system of combustion device | |
JPS6337290B2 (en) | ||
JPH0139012B2 (en) | ||
JPS6129602A (en) | Method of controlling inner pressure of boiler on emergency | |
JPH0512614B2 (en) | ||
JP2024142827A (en) | Boiler | |
JPH07145928A (en) | Method and apparatus for controlling fuel gas | |
JP3020737B2 (en) | Combustion treatment device for combustible emission gas | |
JPH11264536A (en) | Flow rate controller of induced draft fan | |
JP2520082B2 (en) | Automatic operation method of gas turbine exhaust reburning boiler for power generation | |
JP2724941B2 (en) | Exhaust gas reburning combined plant and operation control method of the plant | |
JPS6243082B2 (en) | ||
JP2024044230A (en) | Combustion apparatus and operating method for combustion apparatus |