JP2002013697A - Hydrogen storage tank - Google Patents

Hydrogen storage tank

Info

Publication number
JP2002013697A
JP2002013697A JP2001112428A JP2001112428A JP2002013697A JP 2002013697 A JP2002013697 A JP 2002013697A JP 2001112428 A JP2001112428 A JP 2001112428A JP 2001112428 A JP2001112428 A JP 2001112428A JP 2002013697 A JP2002013697 A JP 2002013697A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
passage
heating
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001112428A
Other languages
Japanese (ja)
Inventor
Takanori Suzuki
貴紀 鈴木
Izuru Kanoya
出 鹿屋
Mitsuya Hosoe
光矢 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001112428A priority Critical patent/JP2002013697A/en
Publication of JP2002013697A publication Critical patent/JP2002013697A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase hydrogen storage amount per unit volume by increasing a hydrogen storage discharge area per a unit volume and to rapidly discharge hydrogen. SOLUTION: A hydrogen storage tank 1 comprises an outer cylinder body 2; and a cylindrical hydrogen storing module 4 is situated in the outer cylinder body 2 with a distance provided between the outer cylinder body 2 and the inner peripheral surface of the outer cylinder body 2. The hydrogen storage module 4 comprises a laminate 5, formed so that a plurality of hydrogen storage units 7 filled with a powder-form hydrogen storage material HSM and the whole of an outer peripheral surface forms a hydrogen storage discharge surface 6 are laminated with a heating-cooling body 8, located between the adjoining two units 7; first and second main passages 9 and 10, extending through the laminate 5 in a unit lamination direction and causing a flow of fluid for heating and fluid for cooling; and first and second auxiliary passages 11 and 12 branched from the main passages 9 and 10 and extending in the heating-cooling body 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,水素を吸蔵し,ま
たその水素を放出する水素貯蔵タンクに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage tank for storing and releasing hydrogen.

【0002】[0002]

【従来の技術】従来,この種の水素貯蔵タンクとして
は,例えば,二重円筒型タンクが知られている。このタ
ンクは,内筒内に水素貯蔵合金を収容すると共にその軸
線回りに吸蔵用水素および放出水素を流通させる水素通
路を設け,内,外筒間を加熱用流体および冷却用流体の
通路としたものである。
2. Description of the Related Art Conventionally, as this type of hydrogen storage tank, for example, a double cylindrical tank is known. This tank contains a hydrogen storage alloy in the inner cylinder, and has a hydrogen passage around the axis of the hydrogen storage alloy, through which hydrogen for storage and release is circulated, and a passage for heating fluid and cooling fluid between the inner and outer cylinders. Things.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来のタ
ンクは,水素通路が細いことに起因して単位容積当りの
水素吸蔵放出面積が小さいため,単位容積当りの水素吸
蔵量が少なく,また加熱効率が悪いため水素の放出速度
が遅い,という問題があった。
However, since the conventional tank has a small hydrogen storage / release area per unit volume due to the narrow hydrogen passage, the hydrogen storage amount per unit volume is small and the heating efficiency is low. There was a problem that the release rate of hydrogen was slow because of the badness.

【0004】[0004]

【課題を解決するための手段】本発明は,単位容積当り
の水素吸蔵放出面積を大にして単位容積当りの水素吸蔵
量を増加し,また水素の放出を迅速に行い得るようにし
た前記水素貯蔵タンクを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a hydrogen absorbing / desorbing area per unit volume which is increased to increase the hydrogen storage amount per unit volume and to release hydrogen rapidly. It is intended to provide a storage tank.

【0005】前記目的を達成するため本発明によれば,
外筒体と,その外筒体内周面との間に水素通路となる間
隔を存してその外筒体内に収容された少なくとも1つの
筒状水素貯蔵モジュールとを備え,前記筒状水素貯蔵モ
ジュールは,水素吸蔵材を充填されて外周面の少なくと
も一部を水素吸蔵放出面とした複数の水素貯蔵ユニット
を,相隣る両ユニット間に加熱−冷却体を介在させて積
層した積層体と,その積層体をユニット積層方向に貫通
して加熱用流体および冷却用流体を流通させる少なくと
も1つの主通路と,その主通路から分岐して,各加熱−
冷却体内に延びる副通路とを有する水素貯蔵タンクが提
供される。
[0005] To achieve the above object, according to the present invention,
An outer cylinder, and at least one cylindrical hydrogen storage module housed in the outer cylinder with a space between the outer cylinder and a peripheral surface of the outer cylinder; A stacked body in which a plurality of hydrogen storage units filled with a hydrogen storage material and having at least a part of an outer peripheral surface thereof as a hydrogen storage / release surface are stacked with a heating / cooling body interposed between both adjacent units; At least one main passage for passing the heating fluid and the cooling fluid through the laminate in the unit lamination direction, and branching from the main passage to form each heating element;
A hydrogen storage tank having a sub-passage extending into the cooling body is provided.

【0006】前記のように構成すると,水素吸蔵放出面
は各水素貯蔵ユニットの外周面に在り,またその回りを
水素通路が囲んでいるので,単位容積当りの水素吸蔵放
出面積を大にすることが可能であり,これにより単位容
積当りの水素吸蔵量を増加させることができる。さらに
各水素貯蔵ユニットを広い伝熱面積を有する各加熱−冷
却体により効率良く冷却し,これにより水素吸蔵材にお
ける蓄熱を回避して水素吸蔵効率を向上させると共に水
素吸蔵量を増加させることができる。
[0006] With the above construction, the hydrogen storage / release surface is located on the outer peripheral surface of each hydrogen storage unit, and the hydrogen passage is surrounded therearound, so that the hydrogen storage / release area per unit volume is increased. It is possible to increase the hydrogen storage capacity per unit volume. Furthermore, each hydrogen storage unit can be efficiently cooled by each heating / cooling body having a large heat transfer area, thereby avoiding heat storage in the hydrogen storage material, improving the hydrogen storage efficiency and increasing the hydrogen storage amount. .

【0007】一方,水素放出時には,各水素貯蔵ユニッ
トの水素吸蔵材を各加熱−冷却体により効率良く加熱し
て,水素の放出を広い水素吸蔵放出面より迅速に行うこ
とができる。
On the other hand, at the time of releasing hydrogen, the hydrogen storage material of each hydrogen storage unit can be efficiently heated by each heating / cooling body, and hydrogen can be released quickly from a wide hydrogen storage / release surface.

【0008】さらにまた水素貯蔵ユニットの増減によ
り,タンクの水素吸蔵量の増減を簡単に行うことができ
る。その上,タンクの製造性を良好にすると共にその構
造の簡素化を図ることが可能である。
Further, the increase and decrease of the hydrogen storage unit makes it possible to easily increase and decrease the hydrogen storage amount of the tank. In addition, it is possible to improve the productivity of the tank and to simplify the structure.

【0009】[0009]

【発明の実施の形態】図1〜図6は水素貯蔵タンク1の
第1実施例を示し,その水素貯蔵タンク1は,ステンレ
ス鋼より構成された横断面円形の耐圧性外筒体2と,そ
の外筒体2の外周壁2a内周面との間に水素通路3とな
る間隔を存してその外筒体2内に収容された少なくとも
1つ,実施例では1つの円筒状水素貯蔵モジュール4と
を備えている。円筒状水素貯蔵モジュール4は積層体5
を有し,その積層体5は,粉末状水素吸蔵材HSMを充
填されて外周面の少なくとも一部,実施例では外周面全
体を水素吸蔵放出面6とした複数の水素貯蔵ユニット7
を,相隣る両ユニット7間に加熱−冷却体8を介在させ
て積層したものである。水素吸蔵材HSMとしては水素
貯蔵合金(例えば,Mg2 Ni等のMg合金),ナノ構
造カーボン等が用いられる。加熱−冷却体8は,必要に
応じて最上位の水素貯蔵ユニット7の上面側および最下
位の水素貯蔵ユニット7の下面側にもそれぞれ設けられ
る。
1 to 6 show a first embodiment of a hydrogen storage tank 1. The hydrogen storage tank 1 includes a pressure-resistant outer cylinder 2 made of stainless steel and having a circular cross section. At least one, in the present embodiment, one cylindrical hydrogen storage module housed in the outer cylinder 2 with an interval that becomes a hydrogen passage 3 between the outer peripheral wall 2a and the inner peripheral surface of the outer cylinder 2 4 is provided. The cylindrical hydrogen storage module 4 includes a laminate 5
The stacked body 5 is filled with a powdered hydrogen storage material HSM, and has a plurality of hydrogen storage units 7 having a hydrogen storage / release surface 6 with at least a part of the outer peripheral surface, in the embodiment, the entire outer peripheral surface.
Are stacked with a heating / cooling body 8 interposed between adjacent units 7. As the hydrogen storage material HSM, a hydrogen storage alloy (for example, an Mg alloy such as Mg 2 Ni), nanostructured carbon, or the like is used. The heating / cooling body 8 is also provided on the upper surface side of the uppermost hydrogen storage unit 7 and the lower surface side of the lowermost hydrogen storage unit 7 as necessary.

【0010】また水素貯蔵モジュール4は,その積層体
5をユニット積層方向に貫通して加熱用流体および冷却
用流体を流通させる少なくとも1つ,実施例では第1お
よび第2主通路9,10と,それら主通路9,10から
分岐して,各加熱−冷却体8内に延びる第1および第2
副通路11,12とを有する。
The hydrogen storage module 4 has at least one through which the heating fluid and the cooling fluid flow through the laminated body 5 in the unit laminating direction. First and second branches from the main passages 9 and 10 and extending into the respective heating-cooling bodies 8.
It has sub passages 11 and 12.

【0011】水素貯蔵ユニット7は,軸線回りに大径貫
通孔13を有するステンレス鋼製円筒体14を備え,そ
の円筒体14内に粉末状水素吸蔵材HSMが充填されて
いる。円筒体14は,大径貫通孔13を有する中空軸1
5と,その中空軸15の両端にそれぞれ一体に形成され
た上,下端壁16,17と,それら上,下端壁16,1
7の対向外周部間に溶接等により接合されて外周壁を構
成する通気性フィルタ18とを有する。フィルタ18
は,その外周面全体を水素吸蔵放出面6とすべく,水素
が出入りし得る多数の微細孔,例えば,直径が0.1〜
10μmの孔を有する。
The hydrogen storage unit 7 is provided with a stainless steel cylinder 14 having a large diameter through hole 13 around the axis, and the cylinder 14 is filled with a powdered hydrogen storage material HSM. The cylindrical body 14 is a hollow shaft 1 having a large-diameter through hole 13.
5, upper and lower end walls 16 and 17 integrally formed at both ends of the hollow shaft 15, respectively, and upper and lower end walls 16, 1
And a gas permeable filter 18 which is joined by welding or the like between the opposed outer peripheral portions 7 to form an outer peripheral wall. Filter 18
Has a large number of micropores through which hydrogen can enter and exit, for example, having a diameter of 0.1 to
It has holes of 10 μm.

【0012】図3に明示するように,上端壁16は,そ
の外周縁に在って上方に向って延びる環状突出部19
と,その突出部19の近傍に在って大径貫通孔13と一
直線状に並ぶ一対の小径貫通孔20,21を有する。下
端壁17はその外周縁に在って下方に向って延びる環状
突出部22と,その突出部22の近傍に在って上端壁1
6の両小径貫通孔20,21とそれぞれ同軸上に位置す
る一対の小径貫通孔23,24とを有する。上,下端壁
16,17の同軸上に位置する一組の両小径貫通孔2
0,23にステンレス鋼よりなる第1主通路用第1管体
25が,またもう一組の両小径貫通孔21,24にステ
ンレス鋼よりなる第2主通路用第2管体26がそれぞれ
挿通されてそれら孔回りに溶接等によって接合される。
As clearly shown in FIG. 3, the upper end wall 16 has an annular projection 19 extending upward at the outer peripheral edge thereof.
And a pair of small-diameter through-holes 20, 21 near the projection 19 and aligned with the large-diameter through-hole 13. The lower end wall 17 has an annular projecting portion 22 extending downward at the outer peripheral edge thereof and the upper end wall 1 near the projecting portion 22.
6 and a pair of small-diameter through holes 23 and 24 located coaxially with each other. A pair of small-diameter through holes 2 coaxially located on the upper and lower end walls 16 and 17
The first tube 25 for the first main passage made of stainless steel is inserted into 0 and 23, and the second tube 26 for the second main passage made of stainless steel is inserted into the other pair of small-diameter through holes 21 and 24, respectively. Then, these holes are joined by welding or the like.

【0013】第1管体25の下端面は下端壁17下面に
合致しており,またその下部開口27は大径端を下側に
した円錐台形に形成されている。第1管体25の上部側
は上端壁16から突出し,その上端部28は環状突出部
19上端面よりも上方に位置すると共に下部開口27に
合致するように大径端を下側にした円錐台形に形成され
ている。また第1管体25の上部側には4つの流入孔2
9が形成されていて,上側の相対向する2つの流入孔2
9は円錐台形上端部28の大径端よりも僅か下方で,且
つ環状突出部19上端面よりも上方に位置し,一方,下
側の相対向する2つの流入孔29は上端壁16上面より
も僅か上方で,且つ環状突出部19上端面よりも下方に
位置する。
The lower end surface of the first tubular body 25 matches the lower surface of the lower end wall 17, and the lower opening 27 is formed in a truncated conical shape with the large diameter end on the lower side. The upper end of the first tubular body 25 projects from the upper end wall 16, and the upper end 28 is located above the upper end surface of the annular projecting portion 19 and has a large-diameter end facing downward so as to match the lower opening 27. It has a trapezoidal shape. Further, four inflow holes 2 are provided on the upper side of the first pipe 25.
9 are formed, and the upper two opposing inflow holes 2 are formed.
9 is located slightly below the large-diameter end of the frustoconical upper end 28 and above the upper end surface of the annular projection 19, while the two opposing lower inflow holes 29 are located above the upper end wall 16. Are located slightly above and below the upper end surface of the annular projection 19.

【0014】第2管体26の下端面は下端壁17下面に
合致しており,またその下部開口30は大径端を下側に
した円錐台形に形成されている。第2管体26の上部側
は上端壁16から突出し,その上端部31は環状突出部
19上端面よりも上方に位置すると共に下部開口30に
合致するように大径端を下側にした円錐台形に形成され
ている。また第2管体26の上部側には4つの流入孔3
2が形成されていて,上側の相対向する2つの流入孔3
2は円錐台形上端部31の大径端よりも僅か下方で,且
つ環状突出部19上端面よりも上方に位置し,一方,下
側の相対向する2つの流入孔32は上端壁16上面より
も僅か上方で,且つ環状突出部19上端面よりも下方に
位置する。
The lower end surface of the second tubular body 26 coincides with the lower surface of the lower end wall 17, and the lower opening 30 is formed in a truncated conical shape with the large diameter end on the lower side. The upper end of the second tubular body 26 protrudes from the upper end wall 16, and the upper end 31 is located above the upper end surface of the annular projecting portion 19 and has a large-diameter end facing downward so as to match the lower opening 30. It has a trapezoidal shape. Further, four inflow holes 3 are formed in the upper side of the second pipe body 26.
2 are formed, and two inflow holes 3 facing each other on the upper side are formed.
2 is located slightly below the large diameter end of the frustoconical upper end 31 and above the upper end surface of the annular projection 19, while the two opposing inflow holes 32 on the lower side are located above the upper surface of the upper end wall 16. Are located slightly above and below the upper end surface of the annular projection 19.

【0015】積層体5においては,相隣る両水素貯蔵ユ
ニット7,したがって下側のユニット7の上端壁16に
存する環状突出部19と上側のユニット7の下端壁17
に存する環状突出部22の上,下端面が突き合せられ
て,溶接等により接合される。また下側のユニット7に
存する第1管体25の円錐台形上端部28が上側のユニ
ット7に存する第1管体25の円錐台形下部開口27に
嵌着され,この繰返しによる複数の第1管体25の継ぎ
合せによって,それらの内部に一連の第1主通路9が構
成される。さらに下側のユニット7に存する第2管体2
6の円錐台形上端部31が上側のユニット7に存する第
2管体26の円錐台形下部開口30に嵌着され,この繰
返しによる複数の第2管体26の継ぎ合せによって,そ
れらの内部に一連の第2主通路10が形成される。各水
素貯蔵ユニット7の一連の大径貫通孔13にステンレス
鋼製の大径管33が嵌着される。
In the laminate 5, two adjacent hydrogen storage units 7, that is, an annular protrusion 19 on the upper end wall 16 of the lower unit 7 and a lower end wall 17 of the upper unit 7 are formed.
The upper and lower end surfaces of the annular projecting portion 22 are joined to each other by welding or the like. Further, the frusto-conical upper end 28 of the first tube 25 in the lower unit 7 is fitted into the frusto-conical lower opening 27 of the first tube 25 in the upper unit 7, and a plurality of first tubes are repeatedly formed. The joining of the bodies 25 constitutes a series of first main passages 9 therein. The second tube 2 existing in the lower unit 7
6 is fitted into the frusto-conical lower opening 30 of the second tube 26 in the upper unit 7, and a plurality of the second tubes 26 are joined by repeating this process to form a series inside the two tubes. The second main passage 10 is formed. A large diameter pipe 33 made of stainless steel is fitted in a series of large diameter through holes 13 of each hydrogen storage unit 7.

【0016】相隣る両水素貯蔵ユニット7間には,それ
らの上,下端壁16,17を上,下端壁として共用し,
また突き合せられた両環状突出部19,22を外周壁3
4とし,さらに大径管33の一部を内周壁35とする,
加熱−冷却体8のハウジング36が形成される。そのハ
ウジング36内の環状空間において,その上,下方向中
間部に,円板形をなし,且つ触媒を保持する通気性担体
37が配置される。通気性担体37は,連続気孔を有す
る金属多孔質体(例えば,Ni多孔質体),セラミック
多孔質体等よりなり,また第1,第2管体25,26お
よび大径管33と嵌合する2つの小径貫通孔38,39
および大径貫通孔40を有し,さらに外周面は外周壁3
4内周面に密着するもので,この通気性担体37によっ
てハウジング36内は上,下に二分割される。下側の空
間には第1,第2管体25,26の下側の各流入孔2
9,32が連通しており,その下側の空間は第1,第2
主通路9,10から分岐する第1副通路11として機能
する。一方,上側の空間には第1,第2管体25,26
の上側の各流入孔29,32が連通しており,その上側
の空間は第1,第2主通路9,10から分岐する第2副
通路12として機能する。第1,第2副通路11,12
はそれぞれ大径管33の一部である内周壁35の上,下
部に2つ宛形成された流出孔41を介して大径管33内
の流出路42に連通する。
Between the two adjacent hydrogen storage units 7, the upper and lower walls 16, 17 are shared as upper and lower walls, respectively.
Further, the butted annular projections 19 and 22 are attached to the outer peripheral wall 3.
4, and a part of the large-diameter pipe 33 is used as an inner peripheral wall 35.
A housing 36 for the heating-cooling body 8 is formed. In the annular space in the housing 36, a gas-permeable carrier 37 which has a disk shape and holds a catalyst is disposed at an intermediate portion in the upward and downward directions. The permeable carrier 37 is made of a porous metal body (for example, Ni porous body) having continuous pores, a porous ceramic body, or the like, and is fitted with the first and second pipes 25 and 26 and the large-diameter pipe 33. Two small diameter through holes 38 and 39
And a large-diameter through hole 40.
The inner surface of the housing 36 is divided into upper and lower parts by the gas permeable carrier 37. In the lower space, each inflow hole 2 on the lower side of the first and second pipes 25 and 26 is provided.
9, 32 communicate with each other, and the space below it is the first and second
It functions as a first sub-passage 11 that branches off from the main passages 9 and 10. On the other hand, the first and second pipes 25 and 26 are located in the upper space.
The upper inflow holes 29 and 32 communicate with each other, and the upper space functions as a second sub-passage 12 branched from the first and second main passages 9 and 10. First and second sub-passages 11, 12
Communicates with an outflow passage 42 in the large-diameter pipe 33 through two outflow holes 41 formed above and below the inner peripheral wall 35 which is a part of the large-diameter pipe 33.

【0017】図2,図3に明示するように,第1副通路
11を維持すべく,通気性担体37および上端壁16間
には,ステンレス鋼,Ni等の金属,セラミックス等か
らなる複数のスペーサが配設される。即ち,上端壁16
の外周部には環状スペーサ43が,また第1管体25回
りには両流入孔29の開口を閉じないように一対の円弧
状スペーサ44が,さらに第2管体26回りには両流入
孔32の開口を閉じないように一対の円弧状スペーサ4
5が,さらにまた大径管33回りには両流出孔41の開
口を閉じないように一対の円弧状スペーサ46が,また
大径管33および第1,第2管体25,26間には大径
管33を挟むように,凹弧面を大径管33に向けると共
に凸弧面の周方向中央部を第1,第2管体25,26近
傍にそれぞれ位置させた一対の円弧状スペーサ47がそ
れぞれ配設されている。
As shown in FIGS. 2 and 3, in order to maintain the first sub-passage 11, between the permeable carrier 37 and the upper end wall 16, a plurality of metals, such as stainless steel, Ni, ceramics or the like are provided. A spacer is provided. That is, the upper end wall 16
An annular spacer 43 is provided around the outer periphery of the first tubular member 25, a pair of arc-shaped spacers 44 is provided around the first tubular body 25 so as not to close the openings of the two inflow holes 29, and a pair of arc-shaped spacers 44 are provided around the second tubular body 26. 32 so as not to close the opening 32.
5 and a pair of arc-shaped spacers 46 around the large-diameter pipe 33 so as not to close the openings of both outflow holes 41, and between the large-diameter pipe 33 and the first and second pipe bodies 25 and 26. A pair of arc-shaped spacers having a concave arc surface facing the large-diameter tube 33 so as to sandwich the large-diameter tube 33, and a central portion in the circumferential direction of the convex arc surface positioned near the first and second tubes 25 and 26, respectively. 47 are provided respectively.

【0018】これらスペーサ43〜47は,各流入孔2
9,32から第1副通路11に流入した加熱用流体およ
び冷却用流体を第1副通路11全体に行き渡らせるガイ
ド部材としての機能も有する。即ち,図3に矢印で示す
ように,各流入孔29,32からの加熱用流体等は,環
状スペーサ43および円弧状スペーサ47間に導かれ,
次いで,一方の流入孔29からの加熱用流体等と他方の
流入孔32からの加熱用流体等とが衝突し,その後,衝
突した加熱用流体等は両円弧状スペーサ47の対向端部
間より両円弧状スペーサ46,47間に導かれる,とい
ったようにガイドされる。
These spacers 43 to 47 are provided in each of the inflow holes 2.
It also has a function as a guide member that allows the heating fluid and the cooling fluid that have flowed into the first sub-passage 11 from 9 and 32 to spread throughout the first sub-passage 11. That is, as shown by arrows in FIG. 3, the heating fluid and the like from the respective inlet holes 29 and 32 are guided between the annular spacer 43 and the arc-shaped spacer 47,
Next, the heating fluid or the like from one inflow hole 29 collides with the heating fluid or the like from the other inflow hole 32, and thereafter, the colliding heating fluid or the like flows from between the opposed ends of the two arc-shaped spacers 47. It is guided such that it is guided between the two arc-shaped spacers 46 and 47.

【0019】図2,図5に明示するように,第2副通路
12を維持すべく,通気性担体37および下端壁17間
には,前記と同材種の複数のスペーサが配設される。即
ち,通気性担体37の外周部には環状スペーサ48が,
また第1管体25回りには両流入孔29の開口を閉じな
いように一対の円弧状スペーサ50が,さらに第2管体
26回りには両流入孔32の開口を閉じないように一対
の円弧状スペーサ49が,さらにまた大径管33回りに
は両流出孔41の開口を閉じないように一対の円弧状ス
ペーサ51が,また大径管33および第1,第2管体2
5,26間には大径管33を挟むように,凹弧面を大径
管33に向けると共に凸弧面の周方向中央部を第1,第
2管体25,26近傍にそれぞれ位置させた一対の円弧
状スペーサ52がそれぞれ配設されている。
As shown in FIGS. 2 and 5, a plurality of spacers of the same type as described above are disposed between the permeable carrier 37 and the lower end wall 17 in order to maintain the second sub-passage 12. . That is, the annular spacer 48 is provided on the outer periphery of the permeable carrier 37,
A pair of arc-shaped spacers 50 are provided around the first tube 25 so as not to close the openings of both inflow holes 29, and a pair of arc-shaped spacers are provided around the second tube 26 so as not to close the openings of both the inflow holes 32. A pair of arc-shaped spacers 51 is provided around the large-diameter pipe 33 so as not to close the openings of the two outflow holes 41, and the large-diameter pipe 33 and the first and second pipes 2 are arranged around the large-diameter pipe 33.
The concave arc surface is directed toward the large-diameter tube 33 so as to sandwich the large-diameter tube 33 between the first and second tubes 25 and 26, and the circumferential central portions of the convex arc surfaces are positioned near the first and second tubes 25 and 26, respectively. The pair of arc-shaped spacers 52 are respectively provided.

【0020】これらスペーサ48〜52は,各流入孔2
9,32から第2副通路12に流入した加熱用流体およ
び冷却用流体を第2副通路12全体に行き渡らせるガイ
ド部材としての機能も有する。即ち,図5に矢印で示す
ように,各流入孔29,32からの加熱用流体等は,環
状スペーサ48および円弧状スペーサ52間に導かれ,
次いで,一方の流入孔29からの加熱用流体等と他方の
流入孔32からの加熱用流体等とが衝突し,その後,衝
突した加熱用流体等は両円弧状スペーサ52の対向端部
間より両円弧状スペーサ51,52間に導かれる,とい
ったようにガイドされる。
Each of the spacers 48 to 52 is provided in each of the inflow holes 2.
It also has a function as a guide member for distributing the heating fluid and the cooling fluid that have flowed into the second sub-passage 12 from 9 and 32 to the entire second sub-passage 12. That is, as shown by the arrows in FIG. 5, the heating fluid and the like from each of the inflow holes 29 and 32 are guided between the annular spacer 48 and the arc-shaped spacer 52.
Next, the heating fluid or the like from one inflow hole 29 collides with the heating fluid or the like from the other inflow hole 32, and then the colliding heating fluid or the like flows from between the opposed ends of the two arc-shaped spacers 52. It is guided such that it is guided between the two arc-shaped spacers 51 and 52.

【0021】加熱用流体は水素と酸素との混合ガスであ
り,その混合ガスは第1,第2主通路9,10を流通す
る。また加熱−冷却体8の通気性担体37は,その表面
および内部に燃焼用水素と酸素との燃焼反応を促進する
触媒として白金,パラジウム等を担持する。
The heating fluid is a mixed gas of hydrogen and oxygen, and the mixed gas flows through the first and second main passages 9 and 10. The air-permeable carrier 37 of the heating / cooling body 8 carries platinum, palladium, or the like as a catalyst for promoting the combustion reaction between combustion hydrogen and oxygen on its surface and inside.

【0022】冷却用流体としては冷却用ガス,例えば空
気が用いられる。この冷却用流体は第1,第2主通路
9,10,第1,第2副通路11,12および排出路4
2を流通する。
A cooling gas such as air is used as the cooling fluid. The cooling fluid is supplied to the first and second main passages 9 and 10, the first and second sub passages 11 and 12, and the discharge passage 4.
Distribute 2.

【0023】図1に明示するように,外筒体2の上端壁
53には第1,第2管体25,26および大径管33の
上端部ならびに水素通路3の上部に連通する第1〜第4
接続管54〜57が保持される。一方,外筒体2の下端
壁58には第1,第2管体25,26および大径管33
の下端部に連通する第5〜第7接続管59〜61が保持
される。
As clearly shown in FIG. 1, the upper end wall 53 of the outer cylinder 2 has first and second pipes 25 and 26 and a first pipe communicating with the upper ends of the large diameter pipe 33 and the upper part of the hydrogen passage 3. ~ 4th
The connection pipes 54 to 57 are held. On the other hand, the first and second pipes 25 and 26 and the large-diameter pipe 33 are provided on the lower end wall 58 of the outer cylinder 2.
The fifth to seventh connection pipes 59 to 61 communicating with the lower end of the first and second pipes are held.

【0024】次に,水素貯蔵タンク1における水素の吸
蔵および水素の放出について説明する。
Next, the storage and release of hydrogen in the hydrogen storage tank 1 will be described.

【0025】水素吸蔵時には,図2に示すように水素を
第4接続管57から水素通路3に導入する。水素は各水
素貯蔵ユニット7のフィルタ18全周においてそのフィ
ルタ18を通過して粉末状水素吸蔵材HSMに吸蔵され
る。
At the time of hydrogen storage, hydrogen is introduced from the fourth connection pipe 57 into the hydrogen passage 3 as shown in FIG. Hydrogen passes through the filter 18 in the entire circumference of the filter 18 of each hydrogen storage unit 7 and is stored in the powdery hydrogen storage material HSM.

【0026】冷却用空気は,第5,第6接続管59,6
0を介し第1,第2主通路9,10の下端側から供給さ
れてそれら主通路9,10を流通する。その際,冷却用
空気は第1,第2管体25,26の円錐台形上端部2
8,31により絞り作用を受けるため,それら円錐台形
上端部28,31近傍に空気溜りが生じ,その空気溜り
からの冷却用空気が各流入孔29,32を経て第1,第
2副通路11,12および通気性担体37内を流通し,
次いで各流出孔41から流出路42に流込んでそこを流
通する。
The cooling air is supplied to the fifth and sixth connection pipes 59 and 6.
The air is supplied from the lower ends of the first and second main passages 9 and 10 through the main passages 9 and 10 and flows through the main passages 9 and 10. At this time, the cooling air is supplied to the frustoconical upper ends 2 of the first and second pipes 25 and 26.
As a result of the throttle action by the upper and lower portions 8 and 31, air traps are formed in the vicinity of the upper end portions 28 and 31 of the truncated cones. , 12 and the permeable carrier 37,
Next, it flows into the outflow channel 42 from each outflow hole 41 and circulates there.

【0027】この場合,円筒状フィルタ18の外周面全
体が水素吸蔵放出面6であるから,単位容積当りの水素
吸蔵放出面積が大となり,これにより単位容積当りの水
素吸蔵量を増加させると共に水素吸蔵速度を向上させる
ことができる。
In this case, since the entire outer peripheral surface of the cylindrical filter 18 is the hydrogen storage / release surface 6, the hydrogen storage / release area per unit volume is increased, thereby increasing the hydrogen storage amount per unit volume and hydrogen. The storage speed can be improved.

【0028】また各水素貯蔵ユニット7の粉末状水素吸
蔵材HSMは,冷却用空気が流通する第1,第2主通路
9,10,流出路42および広い伝熱面積を備えた加熱
−冷却体8によって効率良く冷却され,これにより粉末
状水素吸蔵材HSMにおける蓄熱が回避される。
The powdery hydrogen storage material HSM of each hydrogen storage unit 7 is composed of a heating / cooling body having first and second main passages 9, 10 and an outflow passage 42 through which cooling air flows and a large heat transfer area. 8 efficiently cools, thereby avoiding heat storage in the powdered hydrogen storage material HSM.

【0029】水素放出時には,図6に示すように第1主
通路9に,その下端側から第5接続管59を介し混合ガ
スを供給してその通路9を流通させ,また第2主通路1
0に,その下端側から第6接続管60を介し混合ガスを
供給してその通路10を流通させる。その際,混合ガス
は第1管体25の円錐台形上端部28により絞り作用を
受けるためその円錐台形上端部28近傍に混合ガス溜り
が生じ,その混合ガス溜りからの混合ガスが各流入孔2
9を経て第1,第2副通路11,12および通気性担体
37内を流通する。一方,混合ガスは第2管体26の円
錐台形上端部31により絞り作用を受けるためその円錐
台形上端部31近傍に混合ガス溜りが生じ,その混合ガ
ス溜りからの混合ガスが各流入孔32を経て第1,第2
副通路11,12および通気性担体37内を流通する。
At the time of releasing hydrogen, as shown in FIG. 6, a mixed gas is supplied to the first main passage 9 from the lower end thereof through a fifth connection pipe 59 so as to flow through the passage 9.
0, the mixed gas is supplied from the lower end side through the sixth connection pipe 60 to flow through the passage 10. At this time, the mixed gas is throttled by the frusto-conical upper end portion 28 of the first tube 25, so that a mixed gas pool is formed in the vicinity of the frusto-conical upper end portion 28, and the mixed gas from the mixed gas pool is supplied to each of the inlet holes 2.
9 and flows through the first and second sub-passages 11 and 12 and the permeable carrier 37. On the other hand, since the mixed gas is throttled by the frusto-conical upper end 31 of the second pipe 26, a mixed gas pool is formed near the frusto-conical upper end 31, and the mixed gas from the mixed gas pool flows through each inlet 32. First and second
It circulates through the sub passages 11 and 12 and the permeable carrier 37.

【0030】これにより,第1,第2副通路11,12
内および通気性担体37内において白金触媒等の存在
下,混合ガスが燃焼して燃焼熱と加熱水蒸気が発生し,
その加熱水蒸気はハウジング36内から各流出孔41を
経て流出路42を流通する。
As a result, the first and second sub-passages 11, 12
The mixed gas burns in the presence of a platinum catalyst or the like in the inside and the permeable carrier 37 to generate combustion heat and heated steam,
The heated steam flows from the inside of the housing 36 to the outflow path 42 through the outflow holes 41.

【0031】燃焼熱は広い伝熱面積を備えた加熱−冷却
体8を介し粉末状水素吸蔵材HSMに,また加熱水蒸気
の熱は大径管33を介し粉末状水素吸蔵材HSMにそれ
ぞれ伝達されて,その水素吸蔵材HSMが効率良く加熱
され,これにより水素の放出が広い水素吸蔵放出面6よ
り迅速に行われる。
The heat of combustion is transmitted to the powdered hydrogen storage material HSM via the heating / cooling body 8 having a large heat transfer area, and the heat of the heated steam is transmitted to the powdered hydrogen storage material HSM via the large diameter pipe 33. As a result, the hydrogen storage material HSM is efficiently heated, whereby hydrogen is released more quickly from the wider hydrogen storage / release surface 6.

【0032】前記のように,外筒体2と水素貯蔵モジュ
ール4との間を水素通路3として,それら2,4を非接
触状態に保持すると,水素吸蔵時および水素放出時にお
ける外筒体2および水素貯蔵モジュール4間の断熱性を
高めることができる。また第1,第2主通路9,10
を,相隣る両水素貯蔵ユニット7の積層と同時に,両第
1管体25を相互に,また両第2管体26を相互にそれ
ぞれ継ぎ合せることによって形成するので,それら主通
路9,10の形成を容易に行うことができる。さらに各
水素貯蔵ユニット7における水素吸蔵に伴う膨脹量は略
均一であり,且つ外筒体2は水素貯蔵ユニット7から離
間しているので,そのユニット7の膨脹に伴い外筒体2
が変形する,といった不具合は生じない。なお,担体3
7は通気性を持たなくてもよい。
As described above, when the space between the outer cylinder 2 and the hydrogen storage module 4 is defined as a hydrogen passage 3 and these two and 4 are kept in a non-contact state, the outer cylinder 2 during hydrogen occlusion and hydrogen release can be obtained. And the heat insulation between the hydrogen storage modules 4 can be enhanced. Also, the first and second main passages 9 and 10
Are formed by joining the two first hydrogen pipes 25 and the second pipes 26 to each other at the same time as the two adjacent hydrogen storage units 7 are stacked. Can be easily formed. Furthermore, the amount of expansion of each hydrogen storage unit 7 due to occlusion of hydrogen is substantially uniform, and since the outer cylinder 2 is separated from the hydrogen storage unit 7, the outer cylinder 2 expands as the units 7 expand.
There is no problem such as deformation. The carrier 3
7 does not have to have air permeability.

【0033】図7は第1実施例の変形例を示す。この場
合,加熱用流体としては燃焼用水素と酸素を用い,第1
主通路9には燃焼用水素を,また第2主通路10には酸
素,実施例では空気をそれぞれ流通させる。第1管体2
5の上部側には相対向する2つの流入孔29が,上端壁
16上面よりも僅か上方で,且つ環状突出部19上端面
よりも下方に位置するように形成されている。また第2
管体26の上部側には相対向する2つの流入孔32が,
円錐台形上端部31の大径端よりも僅か下方で,且つ環
状突出部19上端面よりも上方に位置するように形成さ
れている。第2副通路12は大径管33の一部である内
周壁35に形成された流出孔41を介して大径管33内
の流出管42に連通する。
FIG. 7 shows a modification of the first embodiment. In this case, hydrogen and oxygen for combustion are used as the heating fluid,
Combustion hydrogen flows through the main passage 9, oxygen through the second main passage 10, and air in the embodiment. First tube 2
On the upper side of 5, two opposing inflow holes 29 are formed so as to be located slightly above the upper surface of the upper end wall 16 and below the upper end surface of the annular projection 19. Also the second
Two inflow holes 32 facing each other are formed on the upper side of the pipe body 26.
It is formed so as to be located slightly below the large-diameter end of the frustoconical upper end 31 and above the upper end surface of the annular projecting portion 19. The second auxiliary passage 12 communicates with an outflow pipe 42 in the large diameter pipe 33 through an outflow hole 41 formed in an inner peripheral wall 35 that is a part of the large diameter pipe 33.

【0034】水素放出時には,第1主通路9に,その下
端側から第5接続管59を介し燃焼用水素を供給してそ
の通路9を流通させ,また第2主通路10に,その下端
側から第6接続管60を介し酸素としての空気を供給し
てその通路10を流通させる。その際,燃焼用水素は第
1管体25の円錐台形上端部28により絞り作用を受け
るためその円錐台形上端部28近傍に水素溜りが生じ,
その水素溜りからの燃焼用水素が各流入孔29を経て第
1副通路11を流通する。一方,空気は第2管体26の
円錐台形上端部31により絞り作用を受けるためその円
錐台形上端部31近傍に空気溜りが生じ,その空気溜り
からの空気が各流入孔32を経て第2副通路12を流通
する。
At the time of hydrogen release, hydrogen for combustion is supplied to the first main passage 9 from the lower end thereof through the fifth connection pipe 59 to flow through the passage 9 and to the second main passage 10 at the lower end thereof. Is supplied as oxygen through the sixth connection pipe 60 to flow through the passage 10. At this time, the hydrogen for combustion is throttled by the frusto-conical upper end 28 of the first tube body 25, so that a hydrogen pool is generated in the vicinity of the frusto-conical upper end 28,
Combustion hydrogen from the hydrogen reservoir flows through the first sub-passage 11 through each inlet hole 29. On the other hand, the air is throttled by the frusto-conical upper end 31 of the second tube body 26, so that an air pocket is formed near the frusto-conical upper end 31 and air from the air pool passes through each inflow hole 32 to the second sub-portion. It flows through the passage 12.

【0035】これにより,第1,第2副通路11,12
内および通気性担体37内において白金触媒等の存在
下,燃焼用水素と酸素が燃焼して燃焼熱と加熱水蒸気が
発生し,その加熱水蒸気は流出孔41を経て流出路42
を流通する。
As a result, the first and second sub-passages 11, 12
The combustion hydrogen and oxygen burn in the presence of a platinum catalyst or the like in the inside and the permeable carrier 37 to generate combustion heat and heated steam.
Distribute.

【0036】図8,図9は水素貯蔵タンク1の第2実施
例を示す。この例では各水素貯蔵ユニット7において,
その円筒体14内に,銅,Ni等の良好な熱伝導性を持
つ材料より構成された複数のフィン62が,中空軸15
から放射状に延びるように配置され,各フィン62は中
空軸15および上,下端壁16,17にそれぞれ溶接等
により接合されている。つまり,各フィン62は加熱−
冷却体8に接触する。
FIGS. 8 and 9 show a second embodiment of the hydrogen storage tank 1. FIG. In this example, in each hydrogen storage unit 7,
A plurality of fins 62 made of a material having good thermal conductivity such as copper and Ni are provided in the cylindrical body 14.
The fins 62 are joined to the hollow shaft 15 and the upper and lower end walls 16 and 17 by welding or the like. That is, each fin 62 is heated-
It contacts the cooling body 8.

【0037】これらのフィン62は粉末状水素吸蔵材H
SM内に埋込まれて,その水素吸蔵材HSMの冷却およ
び加熱に寄与するだけでなく,円筒体14を補強し,ま
た粉末状水素吸蔵材HSMの偏在を防止する。この場
合,図7の例と同様に,両流入流通孔29,32および
流出孔41を配置し,また加熱用流体として燃焼用水素
と酸素(空気)を用いてもよい。
The fins 62 are made of a powdery hydrogen storage material H.
It is embedded in the SM and not only contributes to cooling and heating of the hydrogen storage material HSM, but also reinforces the cylindrical body 14 and prevents uneven distribution of the powdered hydrogen storage material HSM. In this case, as in the example of FIG. 7, both the inflow and outflow holes 29 and 32 and the outflow hole 41 may be arranged, and hydrogen and oxygen (air) for combustion may be used as the heating fluid.

【0038】図10は水素貯蔵タンク1の第3実施例を
示す。この例では,水素吸蔵量の増加を図るべく,複数
の水素貯蔵モジュール4が,耐圧性外筒体2内に最密充
填構造をとるように配置されている。
FIG. 10 shows a third embodiment of the hydrogen storage tank 1. In this example, a plurality of hydrogen storage modules 4 are arranged in the pressure-resistant outer cylinder 2 in a close-packed structure in order to increase the hydrogen storage capacity.

【0039】図11は水素貯蔵タンク1の第4実施例を
示す。この例では外筒体2および水素貯蔵モジュール4
が横断面六角形に形成されている。このように外筒体2
および水素貯蔵モジュール4の横断面形状には大きな自
由度があるもので,特別な制限はない。
FIG. 11 shows a fourth embodiment of the hydrogen storage tank 1. In this example, the outer cylinder 2 and the hydrogen storage module 4
Are formed in a hexagonal cross section. Thus, the outer cylinder 2
In addition, the cross section of the hydrogen storage module 4 has a large degree of freedom, and there is no particular limitation.

【0040】なお,第3,第4実施例において,図7の
例と同様に,流入孔29,32および流出孔4を配置
し,また第1,第2主通路9,10に,それぞれ加熱用
流体として水素および酸素(空気)を流通させることも
可能である。また主通路を1つにして,そこに前記同様
の混合ガスを流通させることも可能である。
In the third and fourth embodiments, the inflow holes 29 and 32 and the outflow hole 4 are arranged in the same manner as in the example of FIG. 7, and the first and second main passages 9 and 10 are heated respectively. It is also possible to distribute hydrogen and oxygen (air) as a working fluid. It is also possible to use a single main passage and allow the same mixed gas to flow therethrough.

【0041】[0041]

【発明の効果】本発明によれば前記のように構成するこ
とによって,単位容積当りの水素吸蔵量を増加し,また
水素吸蔵効率を向上させ,さらに装置全体の水素吸蔵量
の増減が簡単で,その上,水素の放出を迅速に行うこと
が可能であると共に構造の簡素化を図られた水素貯蔵タ
ンクを提供することができる。
According to the present invention, with the above-described structure, the hydrogen storage amount per unit volume can be increased, the hydrogen storage efficiency can be improved, and the hydrogen storage amount of the entire apparatus can be easily increased and decreased. In addition, it is possible to provide a hydrogen storage tank capable of rapidly releasing hydrogen and having a simplified structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】要部を破断した水素貯蔵タンクの第1実施例の
斜視図である。
FIG. 1 is a perspective view of a first embodiment of a hydrogen storage tank in which essential parts are broken.

【図2】水素貯蔵タンクの第1実施例の要部縦断面図で
ある。
FIG. 2 is a longitudinal sectional view of a main part of the first embodiment of the hydrogen storage tank.

【図3】図2の3−3線断面図である。FIG. 3 is a sectional view taken along line 3-3 of FIG. 2;

【図4】図2の4−4線断面図である。FIG. 4 is a sectional view taken along line 4-4 of FIG. 2;

【図5】図2の5−5線断面図である。FIG. 5 is a sectional view taken along line 5-5 in FIG. 2;

【図6】水素と酸素との混合ガス,水蒸気および放出水
素の流れを示す,図2と同様の要部縦断面図である。
FIG. 6 is a longitudinal sectional view similar to FIG. 2, showing the flow of a mixed gas of hydrogen and oxygen, water vapor, and released hydrogen.

【図7】燃焼用水素,酸素,水蒸気および放出水素の流
れを示す,第1実施例の変形例の要部縦断面図である。
FIG. 7 is a longitudinal sectional view of a main part of a modification of the first embodiment, showing flows of hydrogen for combustion, oxygen, water vapor, and released hydrogen.

【図8】水素貯蔵タンクの第2実施例の要部縦断面図で
あって,図2に対応する。
FIG. 8 is a longitudinal sectional view of a main part of a second embodiment of the hydrogen storage tank, and corresponds to FIG. 2;

【図9】図8の9−9線断面図である。FIG. 9 is a sectional view taken along line 9-9 of FIG. 8;

【図10】水素貯蔵タンクの第3実施例の説明図であ
る。
FIG. 10 is an explanatory view of a third embodiment of the hydrogen storage tank.

【図11】水素貯蔵タンクの第4実施例の横断面図であ
って,図4に対応する。
FIG. 11 is a cross-sectional view of a fourth embodiment of the hydrogen storage tank, corresponding to FIG.

【符号の説明】[Explanation of symbols]

1………………水素貯蔵タンク 2………………外筒体 3………………水素通路 4………………水素貯蔵モジュール 5………………積層体 6………………水素吸蔵放出面 7………………水素貯蔵ユニット 8………………加熱−冷却体 9………………第1主通路 10……………第2主通路 11……………第1副通路 12……………第2副通路 37……………通気性担体 42……………流出路 43〜52……ガイド部材(スペーサ) 62……………フィン HSM…………水素貯蔵材 1 ... hydrogen storage tank 2 ... outer cylinder 3 ... hydrogen passage 4 ... hydrogen storage module 5 ... laminate 6 ... … Hydrogen storage / release surface 7… hydrogen storage unit 8… heating-cooling body 9… first main passage 10… second main Passage 11 First sub-passage 12 Second sub-passage 37 Air-permeable carrier 42 Outflow passage 43-52 Guide member (spacer) 62 ……… fin HSM ………… Hydrogen storage material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細江 光矢 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3E072 AA03 CA05 EA10 4G040 AA16 AA24 AA32  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Koya Hosoe 1-4-1 Chuo, Wako-shi, Saitama F-term in Honda R & D Co., Ltd. (Reference) 3E072 AA03 CA05 EA10 4G040 AA16 AA24 AA32

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 外筒体(2)と,その外筒体(2)内周
面との間に水素通路(3)となる間隔を存してその外筒
体(2)内に収容された少なくとも1つの筒状水素貯蔵
モジュール(4)とを備え,前記筒状水素貯蔵モジュー
ル(4)は,水素吸蔵材(HSM)を充填されて外周面
の少なくとも一部を水素吸蔵放出面(6)とした複数の
水素貯蔵ユニット(7)を,相隣る両ユニット(7)間
に加熱−冷却体(8)を介在させて積層した積層体
(5)と,その積層体(5)をユニット積層方向に貫通
して加熱用流体および冷却用流体を流通させる少なくと
も1つの主通路(9,10)と,その主通路(9,1
0)から分岐して,各加熱−冷却体(8)内に延びる副
通路(11,12)とを有することを特徴とする水素貯
蔵タンク。
An outer cylinder (2) is accommodated in the outer cylinder (2) with an interval serving as a hydrogen passage (3) between the outer cylinder (2) and an inner peripheral surface of the outer cylinder (2). At least one cylindrical hydrogen storage module (4), wherein the cylindrical hydrogen storage module (4) is filled with a hydrogen storage material (HSM) and has at least a part of an outer peripheral surface thereof as a hydrogen storage / release surface (6). ), A stacked body (5) in which a plurality of hydrogen storage units (7) are stacked with a heating-cooling body (8) interposed between both adjacent units (7), and the stacked body (5). At least one main passage (9, 10) that penetrates the heating fluid and the cooling fluid through the unit stacking direction, and the main passage (9, 1);
A hydrogen storage tank characterized by having sub-passages (11, 12) branching from 0) and extending into each heating / cooling body (8).
【請求項2】 前記副通路(11,12)に,前記加熱
用流体および冷却用流体をその副通路(11,12)全
体に行き渡らせるガイド部材(43〜47;48〜5
2)を配設した,請求項1記載の水素貯蔵タンク。
2. A guide member (43 to 47; 48 to 5) for allowing the heating fluid and the cooling fluid to pass through the sub passages (11, 12) throughout the sub passages (11, 12).
2. The hydrogen storage tank according to claim 1, further comprising (2).
【請求項3】 前記加熱用流体は燃焼用水素と酸素であ
り,前記加熱−冷却体(8)は燃焼用水素と酸素との燃
焼反応を促進する触媒を有する,請求項2記載のの水素
貯蔵タンク。
3. The hydrogen according to claim 2, wherein the heating fluid is hydrogen and oxygen for combustion, and the heating / cooling body (8) has a catalyst for promoting a combustion reaction between the hydrogen and oxygen for combustion. Storage tank.
【請求項4】 前記主通路は,燃焼用水素を流通させる
第1主通路(9)と酸素を流通させる第2主通路(1
0)とを有し,前記副通路は,前記触媒を保持する通気
性担体(37)を挟む一側に在って前記第1主通路
(9)に連通する第1副通路(11)と,他側に在って
前記第2主通路(10)に連通する第2副通路(12)
とを有し,前記筒状水素貯蔵モジュール(4)は前記第
2副通路(12)に連通する流出路(42)を有する,
請求項3記載の水素貯蔵タンク。
4. The main passage has a first main passage through which hydrogen for combustion flows and a second main passage through which oxygen flows.
0), wherein the sub-passage is located on one side of the gas permeable carrier (37) holding the catalyst and communicates with the first main passage (9). A second sub-passage (12) on the other side communicating with the second main passage (10).
And the tubular hydrogen storage module (4) has an outflow passage (42) communicating with the second sub-passage (12).
The hydrogen storage tank according to claim 3.
【請求項5】 各水素貯蔵ユニット(7)は,粉末状水
素吸蔵材(HSM)内に埋込まれて前記加熱−冷却体
(8)に接触する複数のフィン(62)を有する,請求
項4記載の水素貯蔵タンク。
5. Each hydrogen storage unit (7) has a plurality of fins (62) embedded in a powdered hydrogen storage material (HSM) and in contact with said heating / cooling body (8). 4. The hydrogen storage tank according to 4.
【請求項6】 前記加熱用流体は水素と酸素との混合ガ
スであり,前記加熱−冷却体(8)はその混合ガスの燃
焼反応を促進する触媒を有する,請求項2記載の水素貯
蔵タンク。
6. The hydrogen storage tank according to claim 2, wherein the heating fluid is a mixed gas of hydrogen and oxygen, and the heating / cooling body (8) has a catalyst for promoting a combustion reaction of the mixed gas. .
【請求項7】 前記主通路は,前記混合ガスを流通させ
る第1主通路(9)と第2主通路(10)とを有し,前
記副通路は,前記触媒を保持する担体(37)を挟む一
側に在って前記第1および第2主通路(9,10)に連
通する第1副通路(11)と,他側に在って前記第1お
よび第2主通路(9,10)に連通する第2副通路(1
2)とを有し,前記筒状水素貯蔵モジュール(4)は前
記第1および第2副通路(12)に連通する流出路(4
2)を有する,請求項6記載の水素貯蔵タンク。
7. The main passage has a first main passage (9) through which the mixed gas flows and a second main passage (10), and the sub passage is a carrier (37) holding the catalyst. And a first sub-passage (11) communicating with the first and second main passages (9, 10) on one side of the first and second main passages (9, 10) on the other side. 10) communicating with the second sub-passage (1)
2), and the tubular hydrogen storage module (4) is connected to the outflow passage (4) communicating with the first and second sub-passages (12).
7. The hydrogen storage tank according to claim 6, comprising: (2).
【請求項8】 各水素貯蔵ユニット(7)は,粉末状水
素吸蔵材(HSM)内に埋込まれて前記加熱−冷却体
(8)に接触する複数のフィン(62)を有する,請求
項7記載の水素貯蔵タンク。
8. Each hydrogen storage unit (7) has a plurality of fins (62) embedded in a powdered hydrogen storage material (HSM) and in contact with the heating / cooling body (8). 7. The hydrogen storage tank according to 7.
JP2001112428A 2000-04-11 2001-04-11 Hydrogen storage tank Withdrawn JP2002013697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112428A JP2002013697A (en) 2000-04-11 2001-04-11 Hydrogen storage tank

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-115822 2000-04-11
JP2000115822 2000-04-11
JP2001112428A JP2002013697A (en) 2000-04-11 2001-04-11 Hydrogen storage tank

Publications (1)

Publication Number Publication Date
JP2002013697A true JP2002013697A (en) 2002-01-18

Family

ID=26590271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112428A Withdrawn JP2002013697A (en) 2000-04-11 2001-04-11 Hydrogen storage tank

Country Status (1)

Country Link
JP (1) JP2002013697A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500496A (en) * 2007-10-16 2011-01-06 キネテイツク・リミテツド Hydrogen generator
JP2012132561A (en) * 2010-12-23 2012-07-12 Asia Pacific Fuel Cell Technology Ltd Storage cartridge
KR101736361B1 (en) * 2015-09-11 2017-05-17 주식회사 코렌스 Metal hydride hydrogen storage tank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500496A (en) * 2007-10-16 2011-01-06 キネテイツク・リミテツド Hydrogen generator
JP2012132561A (en) * 2010-12-23 2012-07-12 Asia Pacific Fuel Cell Technology Ltd Storage cartridge
KR101736361B1 (en) * 2015-09-11 2017-05-17 주식회사 코렌스 Metal hydride hydrogen storage tank

Similar Documents

Publication Publication Date Title
US6991770B2 (en) Hydrogen storage tank
JP4705251B2 (en) MH tank
US4457136A (en) Metal hydride reactor
US7063131B2 (en) Perforated fin heat exchangers and catalytic support
CN110542015B (en) Enhanced heat exchange alloy hydrogen storage tank
JP2006214628A (en) Plate-type heat exchanger and hot water device and heating device provided with it
KR102430095B1 (en) Apparatus for storing solid-state hydrogen
JP2010249412A (en) Heat storage device
JP4434677B2 (en) Loop heat pipe evaporator
JP2002013697A (en) Hydrogen storage tank
US7211228B2 (en) Heater for hydrogen storage system
JP2001295995A (en) Hydrogen storage tank
JP2019059668A (en) Reformer, cell stack device, fuel cell module, and fuel cell apparatus
EP0061191A1 (en) Metal hydride reactor
JPS5925956B2 (en) metal hydride container
JP2001355796A (en) Hydrogen storage tank
JP3899261B2 (en) Evaporator for reformer
JP2001295997A (en) Hydrogen storage device
JP4121219B2 (en) Heat storage support mechanism in regenerative burner
JP2000249425A (en) Reaction vessel of alloy for hydrogen storage
JP2002277093A (en) Heater for hydrogen storage apparatus
JPS5899104A (en) Reactor for metallic hydride
JP2001241600A (en) Hydrogen storage device
JPH05302699A (en) Storage container for metal hydride
JP4090178B2 (en) High temperature regenerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090210