JP2002012862A - Zinc sulfide phosphor and method for evaluating luminance of the phosphor. - Google Patents

Zinc sulfide phosphor and method for evaluating luminance of the phosphor.

Info

Publication number
JP2002012862A
JP2002012862A JP2000196499A JP2000196499A JP2002012862A JP 2002012862 A JP2002012862 A JP 2002012862A JP 2000196499 A JP2000196499 A JP 2000196499A JP 2000196499 A JP2000196499 A JP 2000196499A JP 2002012862 A JP2002012862 A JP 2002012862A
Authority
JP
Japan
Prior art keywords
raman
phosphor
zinc sulfide
infrared
shift value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000196499A
Other languages
Japanese (ja)
Inventor
Masato Kakihana
眞人 垣花
Minoru Osada
実 長田
Ryuji Adachi
隆二 安達
Takashi Ichihara
高史 市原
Naoto Kijima
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Original Assignee
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd, Mitsubishi Chemical Corp filed Critical Kasei Optonix Ltd
Priority to JP2000196499A priority Critical patent/JP2002012862A/en
Publication of JP2002012862A publication Critical patent/JP2002012862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zinc sulfide phosphor having high luminance and a method for evaluating the luminance of the zinc sulfide phosphor. SOLUTION: The objective zinc sulfide phosphor is characterized by the near infrared Raman spectrum obtained by irradiating a zinc sulfide fluorescent material with monochromatic near infrared ray and spectroscoping the scattered rays and having an intensity ratio (ILO/IS) of >=0.7 wherein ILO is the intensity of Raman line at a Raman shift value σLO of 330-354 cm-1 and IS is the intensity of Raman line on a silicon wafer surface of the face index 100 at a Raman shift value σS of 521 cm-1 and measured under the condition the same as the measuring condition of the Raman intensity ILO.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫化亜鉛を母体と
する硫化亜鉛系蛍光体及び該蛍光体の発光輝度の評価方
法に関し、特に電子線励起下において高輝度に発光する
硫化亜鉛系蛍光体及び該蛍光体の発光輝度の評価方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc sulfide-based phosphor having zinc sulfide as a matrix and a method for evaluating the luminance of the phosphor, and more particularly to a zinc sulfide-based phosphor which emits light with high luminance under electron beam excitation. And a method for evaluating the emission luminance of the phosphor.

【0002】[0002]

【従来の技術】硫化亜鉛系蛍光体は、主としてカラー陰
極線管(CRT)の青色又は緑色成分の蛍光体として広
く利用されている。この蛍光体は硫化亜鉛を母体結晶と
し、これに銅(Cu)、銀(Ag)、金(Au)等の付
活剤元素で付活し、更に必要に応じてこれにハロゲン、
アルミニウム(Al)等の元素で共付活して得る。この
蛍光体は、CRT等のディスプレイ性能を一層向上させ
るために、より高い輝度を有する蛍光体の開発が市場に
おいて強く要望されている。
2. Description of the Related Art Zinc sulfide-based phosphors are widely used mainly as blue or green component phosphors for color cathode ray tubes (CRTs). This phosphor has zinc sulfide as a host crystal, which is activated by an activator element such as copper (Cu), silver (Ag), and gold (Au).
It is obtained by co-activation with an element such as aluminum (Al). In order to further improve the performance of a display such as a CRT, there is a strong demand in the market for a phosphor having higher luminance.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来の問題
点を解消し、より高い輝度を有する硫化亜鉛系蛍光体を
提供することを目的とする。また、硫化亜鉛系蛍光体の
発光輝度の代替評価方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the conventional problems and to provide a zinc sulfide-based phosphor having higher luminance. It is another object of the present invention to provide an alternative method for evaluating the emission luminance of a zinc sulfide-based phosphor.

【0004】[0004]

【課題を解決するための手段】本発明者等は、特に硫化
亜鉛系蛍光体の結晶の微視的構造と、蛍光体の発光輝度
との関係について主として光学的手法により種々解析し
てゆく過程で、従来のものよりも高輝度のものが得られ
ることを見出した。即ち、硫化亜鉛系蛍光体に近赤外域
の単色光を照射し、その時の散乱光を分光して得た近赤
外ラマン分光スペクトルが特定のパターンを示すもの
は、特に高輝度な蛍光体であることを見出した。
Means for Solving the Problems The inventors of the present invention have conducted various analyzes mainly by an optical method on the relationship between the microscopic structure of a crystal of a zinc sulfide-based phosphor and the emission luminance of the phosphor. Thus, it was found that a product having a higher luminance than that of the conventional device could be obtained. In other words, the near-infrared Raman spectrum obtained by irradiating the zinc sulfide-based phosphor with monochromatic light in the near-infrared region and dispersing the scattered light at that time shows a specific pattern. I found something.

【0005】即ち、本発明は以下のような構成を採用す
ることにより、前記課題の解決に成功した。 (1) 硫化亜鉛系蛍光体に近赤外域の単色光を照射し、そ
の時の散乱光を分光して得られる近赤外ラマン分光スペ
クトルのラマンシフト値(σLO)が波数330〜354
cm-1の範囲におけるラマン線のピーク強度(ILO
と、標準試料であるシリコンウエハーの面指数100面
について前記と同一条件で得られた近赤外ラマン分光ス
ペクトルのラマンシフト値(σS )が波数521cm-1
におけるラマン線の強度(IS )との比(ILO/IS
が0.7以上であることを特徴とする硫化亜鉛系蛍光
体。 (2) 前記ラマンシフト値(σLO)が波数348〜354
cm-1の範囲であることを特徴とする前記(1) に記載の
硫化亜鉛系蛍光体。
[0005] That is, the present invention has succeeded in solving the above-mentioned problems by employing the following configuration. (1) The Raman shift value (σ LO ) of the near-infrared Raman spectrum obtained by irradiating near-infrared monochromatic light to the zinc sulfide-based phosphor and dispersing the scattered light at that time has a wave number of 330 to 354.
Raman peak intensity in the range of cm -1 (I LO )
And the Raman shift value (σ s ) of the near-infrared Raman spectrum obtained under the same conditions as described above for a plane index of 100 of a silicon wafer as a standard sample has a wave number of 521 cm −1.
Ratio to the intensity of the Raman line (I S ) at (I LO / I S )
Is 0.7 or more. (2) The Raman shift value (σ LO ) has a wave number of 348 to 354.
The zinc sulfide-based phosphor according to the above (1), which is in the range of cm -1 .

【0006】(3) 硫化亜鉛系蛍光体に近赤外域の単色光
を照射し、その時の散乱光を分光して得られる近赤外ラ
マン分光スペクトルのラマンシフト値(σHEX )が波数
290〜310cm-1の範囲おけるラマン線のピーク強
度(IHEX )と、近赤外ラマン分光スペクトルのラマン
シフト値(σLO)が波数330〜354cm-1の範囲に
おけるラマン線のピーク強度(ILO)との比(IHEX
LO)が0.014以下であることを特徴とする硫化亜
鉛系蛍光体。
(3) The Raman shift value (σ HEX ) of the near-infrared Raman spectrum obtained by irradiating the zinc sulfide-based phosphor with near-infrared monochromatic light and dispersing the scattered light at that time has a wave number of 290 to 290. Raman peak intensity (I HEX ) in the range of 310 cm −1 and Raman peak intensity (I LO ) in the range of Raman shift value (σ LO ) of near-infrared Raman spectroscopy spectrum of 330 to 354 cm −1. And the ratio (I HEX /
(I LO ) 0.014 or less.

【0007】(4) 前記単色光がクリプトン(Kr)ガス
から発振される752.5nmのレーザー光であること
を特徴とする前記(1) 〜(3) のいづれか一つに記載の硫
化亜鉛系蛍光体。 (5) 前記硫化亜鉛系蛍光体が銅及びアルミニウム共付活
硫化亜鉛蛍光体(ZnS:Cu、Al)であることを特
徴とする前記(1) 〜(4) のいづれか一つに記載の硫化亜
鉛系蛍光体。
(4) The zinc sulfide-based material according to any one of (1) to (3), wherein the monochromatic light is a laser beam of 752.5 nm oscillated from krypton (Kr) gas. Phosphor. (5) The sulfide according to any one of (1) to (4), wherein the zinc sulfide-based phosphor is a copper and aluminum co-activated zinc sulfide phosphor (ZnS: Cu, Al). Zinc-based phosphor.

【0008】(6) 硫化亜鉛系蛍光体に近赤外域の単色光
を照射し、その時の散乱光を分光して得られる近赤外ラ
マン分光スペクトルのラマンシフト値(σLO)が波数3
30〜354cm-1の範囲のラマン線のピーク強度(I
LO)を測定し、その強度により前記蛍光体の発光輝度を
評価することを特徴とする硫化亜鉛系蛍光体の発光輝度
評価方法。
(6) The monochromatic light in the near infrared region is irradiated to the zinc sulfide based phosphor, and the Raman shift value (σ LO ) of the near infrared Raman spectrum obtained by dispersing the scattered light at that time has a wave number of 3
The peak intensity of the Raman line in the range of 30 to 354 cm -1 (I
LO ), and the emission luminance of the zinc sulfide-based phosphor is evaluated based on the measured intensity.

【0009】[0009]

【発明の実施の形態】物質に特定の振動数(ν)の光を
あてると、その物質に固有な振動数(ν1 、ν2 、ν3
・・・)と結合した散乱光(ν±ν1 、ν±ν2 、ν±
ν3 ・・・)が現れる。これはラマン散乱によるもので
ある。図1は硫化亜鉛系蛍光体の一つである、ZnS:
Cu、Al蛍光体に、波長(λ)がそれぞれ488n
m、514.5nm、647.1nm及び752.5n
mの単色光を照射した時のラマン散乱光を分光して得た
ラマンス分光ペクトルを示したものである。また、図2
は図1の蛍光体とは別のZnS:Cu、Al蛍光体につ
いて、波長752.5nmのKrのレーザー光を照射し
た時のラマン分光スペクトルを示したものである。図2
の右上部分にはラマンシフト値が波数330〜370c
-1近辺のところだけを、測定の分解能をより高めて得
たスペクトルを併せて示した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When light having a specific frequency (ν) is applied to a substance, the frequencies (ν 1 , ν 2 , ν 3 ) specific to the substance are applied.
...) and scattered light (ν ± ν 1 , ν ± ν 2 , ν ±
ν 3 ...) appears. This is due to Raman scattering. FIG. 1 shows one of the zinc sulfide-based phosphors, ZnS:
Each of the Cu and Al phosphors has a wavelength (λ) of 488n.
m, 514.5 nm, 647.1 nm and 752.5 n
FIG. 4 shows a Raman spectral spectrum obtained by spectrally separating Raman scattered light when monochromatic light of m is irradiated. FIG.
FIG. 3 shows a Raman spectrum of a ZnS: Cu, Al phosphor different from the phosphor of FIG. 1 when irradiated with a Kr laser beam having a wavelength of 752.5 nm. FIG.
Raman shift value is wave number 330-370c in the upper right part of
Only at a point near m −1, a spectrum obtained by further increasing the measurement resolution is also shown.

【0010】図1及び図2のZnS:Cu、Al蛍光体
のラマンス分光ペクトルを観察すると、488nm以外
の前記3種の長波長の単色光を照射すると、ラマンシフ
ト値が波数350cm-1近辺に顕著なピークが現れる
が、この波数350cm-1近辺に現れるラマン光のピー
クは立方晶硫化亜鉛の縦波光学モード(LOモード)に
起因するピークであると考えられる。そして、このピー
クは分光器から直接描かせたラマン分光スペクトル曲線
のピーク付近の曲線の形がローレンツ関数に近似すると
仮定して、これにフィッテイングさせて書き直すと、そ
のラマン分光スペクトルの曲線における、立方晶硫化亜
鉛の縦波光学モード(LOモード)に起因するラマンシ
フト値(以下、この波数をσLOと称する)が波数350
cm-1を中心とし、330〜354cm-1の範囲におい
て現れるラマン光のピーク強度(以下、この強度をILO
と称する)は、意外にもそのZnS:Cu、Al蛍光体
の電子線励起下における発光強度と比例関係にあること
がわかった。
When observing the Raman spectrum spectrum of the ZnS: Cu, Al phosphor shown in FIGS. 1 and 2, when the three types of long-wavelength monochromatic light other than 488 nm are irradiated, the Raman shift value becomes near the wave number of 350 cm -1 . Although a remarkable peak appears, it is considered that the peak of the Raman light appearing in the vicinity of the wave number of 350 cm -1 is a peak caused by the longitudinal wave optical mode (LO mode) of cubic zinc sulfide. Then, assuming that the shape of the curve near the peak of the Raman spectrum spectrum curve drawn directly from the spectroscope approximates the Lorentz function, and fitting and rewriting this, the curve of the Raman spectrum spectrum, The Raman shift value (hereinafter, this wave number is referred to as σ LO ) due to the longitudinal wave optical mode (LO mode) of cubic zinc sulfide has a wave number of 350.
The cm -1 centered, the peak intensity of the Raman light appears in the range of 330~354cm -1 (hereinafter, the intensity I LO
Surprisingly found to be proportional to the emission intensity of the ZnS: Cu, Al phosphor under electron beam excitation.

【0011】なお、この縦波光学モード(LOモード)
に起因するラマンシフト値(σLO)は、硫化亜鉛系蛍光
体の結晶性や粒子径の違いなど、試料によって波数35
0cm-1を中心とし、330〜354cm-1の範囲にお
いて変動し、特に、近赤外ラマン分光スペクトルにおい
て、この縦波光学モード(LOモード)に起因するラマ
ン光のピークが波数348〜354cm-1付近に現れる
蛍光体は結晶性がより良好で発光輝度が高いことを見い
だした。
The longitudinal wave optical mode (LO mode)
The Raman shift value (σ LO ) due to the difference in wave number of 35 depending on the sample, such as the difference in crystallinity and particle diameter of the zinc sulfide-based phosphor.
Centered at 0 cm -1, vary in the range of 330~354Cm -1, in particular, near the infrared Raman spectrum, the longitudinal wave optical mode (LO mode) wave number peak in the resulting Raman light 348~354Cm - It was found that the phosphor appearing near 1 had better crystallinity and higher emission luminance.

【0012】また、ラマン分光スペクトルの測定に際し
て、蛍光体に照射する照射光として紫外光もしくは可視
光を用いると、この照射光により蛍光体が励起されて発
光し、その発光光がラマン散乱光に重畳して、ラマンシ
フトの測定を妨げる可能性があるので、蛍光体への照射
光としては近赤外光を用いることがより好ましい。
In the measurement of Raman spectroscopy, if ultraviolet light or visible light is used as irradiation light for irradiating the phosphor, the irradiation light excites the phosphor to emit light, and the emitted light is converted into Raman scattered light. It is more preferable to use near-infrared light as the irradiation light to the phosphor, since it may overlap and hinder the measurement of the Raman shift.

【0013】図3は、複数のZnS:Cu、Al蛍光体
に対して波長752.5nmのKrレーザー光を照射し
て近赤外ラマン分光スペクトルを同一条件で測定し、ラ
マンシフト値(σLO)におけるラマン線のピーク強度
(ILO)と、その蛍光体の発光効率との関係をプロット
したグラフである。縦軸のラマン線強度(ILO)は、近
赤外ラマン分光スペクトルにおける、およそ波数330
〜354cm-1の付近に現れるラマン光ピーク付近のス
ペクトルをローレンツ関数でフィッティングさせる処理
を施した後のピーク強度を表す。なお、本明細書におい
てラマン分光スペクトルにおけるラマン光のピーク強度
とは、全てこのように分光器から得られたスペクトルの
ピーク付近をローレンツ関数でフィッティングさせる処
理を施した後のピーク強度をいう。
FIG. 3 shows that a plurality of ZnS: Cu, Al phosphors are irradiated with a Kr laser beam having a wavelength of 752.5 nm to measure near-infrared Raman spectroscopy under the same conditions, and the Raman shift value (σ LO 4 is a graph in which the relationship between the peak intensity (I LO ) of the Raman line in (1) and the luminous efficiency of the phosphor is plotted. The vertical axis Raman line intensity (I LO ) is approximately 330 wavenumbers in the near-infrared Raman spectrum.
The peak intensity after performing a process of fitting a spectrum near a Raman light peak appearing around 付 近 354 cm −1 with a Lorentz function is shown. In the present specification, the peak intensity of Raman light in the Raman spectrum refers to the peak intensity after performing a process of fitting the vicinity of the peak of the spectrum obtained from the spectroscope with the Lorentz function.

【0014】また、横軸の発光効率は、その蛍光体を加
速電圧12kVの電子線で励起した時の発光輝度で示し
た。なお、図3の点Rは、市販されている従来のZn
S:Cu、Al蛍光体の測定点であり、点A、点B及び
点Cはそれぞれ本発明のZnS:Cu、Al蛍光体の測
定点である。図中、各試料の測定値は、それぞれ1つの
試料につき5点づつレーザー光の照射位置を変えて測定
し、同一試料の測定値の最大値と最小値を含めて表示し
た。
The luminous efficiency on the horizontal axis is represented by the luminous brightness when the phosphor is excited by an electron beam at an accelerating voltage of 12 kV. In addition, the point R in FIG.
S: The measurement points of the Cu and Al phosphors, and points A, B and C are the measurement points of the ZnS: Cu and Al phosphors of the present invention, respectively. In the figure, the measured values of each sample were measured by changing the irradiation position of the laser beam by 5 points for each sample, and displayed including the maximum value and the minimum value of the measured values of the same sample.

【0015】図3からわかるように、本発明のZnS:
Cu、Al蛍光体は、従来の蛍光体に比べて、ラマン分
光スペクトルにおける縦波光学モード(LOモード)に
起因するラマンシフト値(σLO)が前記の波数330〜
354cm-1におけるラマン光強度のピーク値(ILO
が、従来のZnS:Cu、Al蛍光体のそれよりも強
く、同時に陰極線励起下における発光効率も高い。
As can be seen from FIG. 3, the ZnS of the present invention:
The Cu and Al phosphors have a Raman shift value (σ LO ) due to the longitudinal wave optical mode (LO mode) in the Raman spectroscopy spectrum which is higher than that of the conventional phosphors.
Raman light intensity peak value at 354 cm -1 (I LO )
However, it is stronger than that of the conventional ZnS: Cu, Al phosphor, and at the same time, has a high luminous efficiency under cathode ray excitation.

【0016】そこで、硫化亜鉛系蛍光体に近赤外域の単
色光を照射するときの散乱光を分光して得られる近赤外
ラマン分光スペクトルのラマンシフト値(σLO)が波数
330〜354cm-1の範囲、好ましくは波数348〜
354cm-1の範囲におけるラマン線のピーク強度(I
LO)を測定し、シリコンウエハーの面指数100面につ
いて前記と同一条件で得られた近赤外ラマン分光スペク
トルのラマンシフト値(σS )が波数521cm-1にお
けるラマン線の強度(IS )を標準値とし、両者の比
(ILO/IS )が0.7以上である蛍光体を選択するこ
とにより、発光輝度が高い硫化亜鉛系蛍光体を得ること
ができる。なお、前記比(ILO/IS )の好ましい範囲
は0.85以上である。
Therefore, the Raman shift value (σ LO ) of the near-infrared Raman spectrum obtained by irradiating the zinc sulfide-based phosphor with monochromatic light in the near-infrared region, which is obtained by dispersing the scattered light, has a wave number of 330 to 354 cm −. 1 range, preferably wavenumber 348-
Raman peak intensity in the range of 354 cm -1 (I
LO ) was measured, and the Raman shift value (σ s ) of the near-infrared Raman spectroscopy spectrum obtained under the same conditions as above for 100 plane indices of the silicon wafer was Raman line intensity (I s ) at a wave number of 521 cm −1 . Is used as a standard value, and a zinc sulfide-based phosphor having high emission luminance can be obtained by selecting a phosphor having a ratio (I LO / I S ) of 0.7 or more. Note that a preferable range of the ratio (I LO / I S ) is 0.85 or more.

【0017】また、本発明の硫化物系蛍光体は、Zn
S:Cu,Al蛍光体の近赤外ラマン分光スペクトルに
おいて、立方晶硫化亜鉛のLOモードに起因するラマン
シフト値(σLO)が波数330〜354cm-1の範囲の
ラマン線のピーク強度(ILO)が強いほどその蛍光体の
発光輝度が高い。これに加えて、近赤外線を照射した時
のラマン分光スペクトルのラマンシフト値(σHEX )が
290〜310cm-1の範囲の六方晶系硫化亜鉛結晶に
起因するラマン線のピーク強度(IHEX )が相対的に小
さく、ラマンシフト値(σLO)が波数330〜354c
-1の範囲のラマン線のピーク強度(ILO)に対する、
ラマンシフト値(σHEX )が290〜310cm-1の範
囲のラマン線のピーク強度(IHEX )との比(IHEX
LO)が0.014以下にすることにより発光輝度の高
い蛍光体を得ることができる。
Further, the sulfide-based phosphor of the present invention comprises Zn
S: In the near-infrared Raman spectrum of the Cu, Al phosphor, the peak intensity of the Raman line (I LO ) in which the Raman shift value (σ LO ) due to the LO mode of cubic zinc sulfide is in the wave number range of 330 to 354 cm −1. The higher the LO ), the higher the emission luminance of the phosphor. In addition, the peak intensity (I HEX ) of the Raman line attributable to the hexagonal zinc sulfide crystal having a Raman shift value (σ HEX ) of the Raman spectrum of 290 to 310 cm -1 upon irradiation with near infrared rays. Is relatively small, and the Raman shift value (σ LO ) has a wave number of 330 to 354c.
For Raman peak intensity (I LO ) in the range of m −1 ,
Raman shift value (σ HEX ) ratio to peak intensity (I HEX ) of Raman line in the range of 290 to 310 cm −1 (I HEX /
By setting I LO ) to 0.014 or less, a phosphor having high emission luminance can be obtained.

【0018】また、ZnS:Cu,Al蛍光体の近赤外
ラマン分光スペクトルにおけるLOモードに起因するピ
ークの半値幅を観察すると、この幅の小さい蛍光体ほど
その発光輝度が高いことも確認した。立方晶硫化亜鉛結
晶のLOモードのラマン線シフトはその結晶構造の乱れ
に対して敏感であり、結晶構造に乱れが少ないほどラマ
ン線のピーク強度が強くなるところから、本発明の硫化
亜鉛系蛍光体は従来のものより結晶構造の乱れが少な
く、その結果、蛍光体の発光輝度が従来のものよりも高
いものと思われる。
Further, by observing the half-value width of the peak caused by the LO mode in the near-infrared Raman spectrum of the ZnS: Cu, Al phosphor, it was also confirmed that a phosphor having a smaller width had higher emission luminance. The LO mode shift of the LO mode of the cubic zinc sulfide crystal is sensitive to the disorder of the crystal structure, and the peak intensity of the Raman ray increases as the disorder of the crystal structure decreases. It is believed that the body has less disorder in the crystal structure than the conventional one, and as a result, the emission luminance of the phosphor is higher than the conventional one.

【0019】本発明は、以上の知見に基づいて、前記の
近赤外ラマン分光スペクトルのラマンシフト値(σLO
が波数330〜354cm-1の範囲のラマン線のピーク
強度(ILO)を測定することにより、硫化亜鉛系蛍光体
の発光輝度を簡便に評価することが可能になった。
Based on the above findings, the present invention provides a Raman shift value (σ LO ) of the near-infrared Raman spectrum.
By measuring the peak intensity (I LO ) of the Raman line in the wave number range of 330 to 354 cm −1 , the emission luminance of the zinc sulfide-based phosphor can be easily evaluated.

【0020】本発明で使用する近赤外域の単色光は、例
えばクリプトン(Kr)ガスから発振される752.5
nmのレーザー光が効率等の点で特に好ましいが、その
他波長が799.3nmのKrレーザー、Arで励起さ
れるTi−サファイアレーザー(700〜1000nm
で波長可変)、近赤外半導体レーザー(780nm)な
どを使用することができる。本発明の硫化亜鉛系蛍光体
は、例えば、銅及びアルミニウムで共付活されたZn
S:Cu,Al蛍光体、ZnS:Cu,Al,Au蛍光
体、ZnS:Ag,Cl蛍光体、ZnS:Mn蛍光体な
どの硫化亜鉛を母体結晶とする蛍光体が適している。な
お、近赤外ラマン分光スペクトルのラマン線の標準試料
としてシリコンウエハーの面指数100面を用いた理由
は、Loモードが強く、安定しているからである。
The near-infrared monochromatic light used in the present invention is, for example, 752.5 oscillated from krypton (Kr) gas.
nm laser light is particularly preferable in terms of efficiency and the like, but other than that, a Kr laser having a wavelength of 799.3 nm, a Ti-sapphire laser excited by Ar (700 to 1000 nm).
And a near-infrared semiconductor laser (780 nm). The zinc sulfide-based phosphor of the present invention is, for example, Zn co-activated with copper and aluminum.
Phosphors using zinc sulfide as a base crystal, such as S: Cu, Al phosphor, ZnS: Cu, Al, Au phosphor, ZnS: Ag, Cl phosphor, and ZnS: Mn phosphor, are suitable. The reason why the plane index of the silicon wafer was 100 was used as the standard sample of the Raman line of the near-infrared Raman spectrum, because the Lo mode was strong and stable.

【0021】本発明で使用するZnS:Cu,Al蛍光
体は、母体原料である硫化亜鉛粉末に付活剤原料とし
て、硫化亜鉛1gに対して銅及びアルミニウムの化合物
をそれぞれ3×10-5〜1×10-3g(30〜1000
ppm)の範囲で添加し、さらに塩化ナトリウム、塩化
カリウム、塩化亜鉛、沃化亜鉛、沃化ビスマス、硝酸ビ
スマス等の低融点化合物からなる複数の融剤を組み合わ
せ、その総量で3〜5重量%添加して充分に混合し、こ
れを電気炉内に入れる。炉内はH2 S、CS2 、SO2
等の硫黄含有ガスと、窒素ガスやアルゴンガス等の中性
ガスとの混合ガスを通気して硫化性雰囲気下で800〜
1100℃、より好ましくは900〜1000℃で1〜
5時間焼成することによって製造することができる。得
られた蛍光体は水洗後、必要に応じてさらにシリカ、ア
ルミナ、チタニア、水酸化亜鉛等の無機化合物を従来法
によって蛍光体表面に被覆してから篩にかけるなどの分
散処理を施すことによって得ることができる。
The ZnS: Cu, Al phosphor used in the present invention is obtained by adding a compound of copper and aluminum to 1 g of zinc sulfide and a compound of 3 × 10 −5 to 1 g of zinc sulfide, respectively, as an activator material for zinc sulfide powder as a base material. 1 × 10 −3 g (30 to 1000
ppm), and combined with a plurality of fluxes comprising low-melting compounds such as sodium chloride, potassium chloride, zinc chloride, zinc iodide, bismuth iodide, bismuth nitrate, and a total amount of 3 to 5% by weight. Add and mix well and place in electric furnace. H 2 S, CS 2 , SO 2
And a sulfur-containing gas such as nitrogen gas and a neutral gas such as an argon gas are passed through under a sulfide atmosphere for 800 to
1100 ° C., more preferably 1 to 900 to 1000 ° C.
It can be manufactured by firing for 5 hours. The obtained phosphor is washed with water and, if necessary, further subjected to a dispersion treatment such as coating the phosphor surface with an inorganic compound such as silica, alumina, titania and zinc hydroxide by a conventional method and then sieving. Obtainable.

【0022】以上、ZnS:Cu,Al蛍光体に関して
詳述したが、Cu及びAlで共付活する場合に限らず、
本発明の硫化亜鉛系蛍光体は、硫化亜鉛を母体結晶とす
る蛍光体であればよく、これにAg、Au等で付活した
蛍光体やCl、Br、Iなどのハロゲン元素で共付活し
た蛍光体であってもよい。蛍光体の発光強度とこの蛍光
体に近赤外線を照射したときのラマン分光スペクトルに
おける立方晶硫化亜鉛のLOモードに起因するラマンシ
フト値σLOでのラマン線のピーク強度ILOとの相関につ
いては、ZnS:Cu,Al蛍光体の場合とほぼ同様の
相関があることを確認している。
Although the ZnS: Cu, Al phosphor has been described in detail above, the present invention is not limited to the case of co-activating with Cu and Al.
The zinc sulfide-based phosphor of the present invention may be any phosphor having zinc sulfide as a host crystal, and the phosphor activated with Ag, Au, or the like, or a phosphor activated with a halogen element such as Cl, Br, or I. Phosphor may be used. Regarding the correlation between the emission intensity of the phosphor and the peak intensity I LO of the Raman line at the Raman shift value σ LO due to the LO mode of cubic zinc sulfide in the Raman spectrum when this phosphor is irradiated with near infrared rays , ZnS: Cu, Al phosphors have substantially the same correlation.

【0023】[0023]

〔実施例1〕[Example 1]

硫化亜鉛(ZnS) 1000g 硝酸銅〔Cu(N03 2 ・6H2 0〕 0.70g 硝酸アルミニウム〔Al(N03 3 ・9H2 0〕 2.09g 硝酸ビスマス〔Bi(N03 3 ・5H2 0〕 1.0 g 塩化亜鉛(ZnCl2 ) 2.0 g 沃化カリウム(KI) 2.0 g 上記蛍光体原料を水と共に充分に混練し、100℃で乾
燥した後、これを石英坩堝に充填して電気炉に投入し、
電気炉内に約20容積%の二硫化炭素ガスを含有する窒
素ガスを通気しながら980℃で1時間焼成した後、炉
外に取り出して焼成物を水洗し脱水してから、110℃
で16時間加熱して充分に乾燥させて、硫化亜鉛母体1
g当たりCu及びAlの濃度がそれぞれ1.5×10-4
gである実施例1のZnS:Cu,Al蛍光体を得た。
Zinc sulfide (ZnS) 1000 g of copper nitrate [Cu (N0 3) 2 · 6H 2 0 ] 0.70g of aluminum nitrate [Al (N0 3) 3 · 9H 2 0 ] 2.09g of bismuth nitrate [Bi (N0 3) 3 · 5H 2 0] 1.0 g Zinc chloride (ZnCl 2 ) 2.0 g Potassium iodide (KI) 2.0 g The above phosphor material is sufficiently kneaded with water, dried at 100 ° C., and then quartz. Fill the crucible and put it in the electric furnace,
After baking at 980 ° C. for 1 hour while passing a nitrogen gas containing about 20% by volume of carbon disulfide gas into the electric furnace, the baking material is taken out of the furnace, washed with water and dehydrated, and then heated at 110 ° C.
And dried sufficiently for 16 hours.
The concentration of Cu and Al is 1.5 × 10 −4 per g.
g of ZnS: Cu, Al phosphor of Example 1 was obtained.

【0024】〔実施例2〕実施例1の焼成物を炉外に取
り出して水洗した後、脱水する前に水を加えて湿式ボー
ルミル処理を施して焼成物を解砕してから、別の容器に
移しこれに水を加えて蛍光体スラリーを調製し、スラリ
ー中にコロイダルシリカを加えてスラリーを撹拌し、蛍
光体の表面にシリカの被膜を形成した後、脱水し、11
0℃で16時間加熱して乾燥させ、硫化亜鉛母体1g当
たりCu及びAlの濃度が共にそれぞれ1.5×10-4
gである、表面をシリカで被覆した実施例2のZnS:
Cu,Al蛍光体を製造した。
Example 2 The fired product of Example 1 was taken out of the furnace, washed with water, and before the dehydration, water was added thereto and subjected to a wet ball mill treatment to disintegrate the fired product. And phosphor was prepared by adding water to the mixture. Colloidal silica was added to the slurry, the slurry was stirred, and a silica film was formed on the surface of the phosphor.
After heating at 0 ° C. for 16 hours and drying, the concentration of Cu and Al were both 1.5 × 10 −4 / g of zinc sulfide matrix.
g of ZnS of Example 2 coated on the surface with silica:
Cu and Al phosphors were manufactured.

【0025】 〔実施例3〕 硫化亜鉛(ZnS) 1000g 硝酸銅〔Cu(N03 2 ・6H2 0〕 0.70g 硝酸アルミニウム〔Al(N03 3 ・9H2 0〕 2.09g 沃化ビスマス(BiI3 ) 2.0 g 塩化亜鉛(ZnCl2 ) 2.0 g 上記蛍光体原料を水と共に充分に混練し、100℃で乾
燥させた後、これを石英坩堝に充填して電気炉に投入
し、電気炉内に約10容積%の二硫化炭素ガスを含有す
る窒素ガスを通気しながら980℃で1時間焼成した。
その後、炉外に取り出し焼成物を水洗し脱水してから、
110℃で16時間加熱して充分に乾燥させて、硫化亜
鉛母体1g当たりCu及びAlの濃度がそれぞれ1.5
×10-4gである実施例3のZnS:Cu,Al蛍光体
を製造した。
[0025] Example 3 Zinc sulfide (ZnS) 1000 g of copper nitrate [Cu (N0 3) 2 · 6H 2 0 ] 0.70g of aluminum nitrate [Al (N0 3) 3 · 9H 2 0 ] 2.09g iodide Bismuth (BiI 3 ) 2.0 g Zinc chloride (ZnCl 2 ) 2.0 g The above phosphor material was sufficiently kneaded with water, dried at 100 ° C., filled in a quartz crucible, and placed in an electric furnace. It was charged and fired at 980 ° C. for 1 hour while passing a nitrogen gas containing about 10% by volume of carbon disulfide gas into the electric furnace.
After that, take it out of the furnace and wash and dehydrate the fired material,
After heating at 110 ° C. for 16 hours and drying sufficiently, the concentration of Cu and Al was 1.5
A ZnS: Cu, Al phosphor of Example 3 weighing × 10 −4 g was produced.

【0026】 〔比較例1〕 硫化亜鉛(ZnS) 1000g 硝酸銅〔Cu(N03 2 ・6H2 0〕 0.70g 硝酸アルミニウム〔Al(N03 3 ・9H20〕 2.09g 硝酸ビスマス〔Bi(N03 3 ・5H20〕 2.0 g 沃化カリウム(KI) 2.0 g 上記蛍光体原料を水と共に充分に混練し、100℃で乾
燥させた後、これを石英坩堝に充填して電気炉に投入
し、電気炉内に硫化水素ガスを通気しながら980℃で
1時間焼成した後、炉外に取り出し焼成物を水洗し脱水
してから、110℃で16時間加熱して充分に乾燥させ
て、硫化亜鉛母体1g当たりCu及びAlの濃度がそれ
ぞれ1.5×10-4gである比較例1のZnS:Cu,
Al蛍光体を製造した。
[0026] Comparative Example 1 Zinc sulfide (ZnS) 1000 g of copper nitrate [Cu (N0 3) 2 · 6H 2 0 ] 0.70g of aluminum nitrate [Al (N0 3) 3 · 9H 2 0 ] 2.09g of bismuth nitrate [Bi (N0 3) 3 · 5H 2 0 ] 2.0 g potassium iodide (KI) 2.0 g the above phosphor raw materials were sufficiently kneaded together with water, dried at 100 ° C., which quartz crucible And fired at 980 ° C. for 1 hour while passing hydrogen sulfide gas through the furnace, then taken out of the furnace, washed and dehydrated, and heated at 110 ° C. for 16 hours. And fully dried, and ZnS: Cu, of Comparative Example 1 in which the concentrations of Cu and Al were 1.5 × 10 −4 g / g of zinc sulfide matrix, respectively.
An Al phosphor was manufactured.

【0027】(評価)次に、顕微ラマン分光システム
(愛宕物産社製、R64000)を用いて上述の実施例
1〜3及び比較例1の各ZnS:Cu,Al蛍光体にス
ポット径2μmのAr/Krレーザー(出力は試料上で
3mW)の752.5nmの単色光を照射して近赤外ラ
マン分光スペクトルを測定し、ラマンシフト値(σLO
が330〜354cm-1の範囲のラマン線のピーク強度
(ILO)の相対値を表1に示した。これらの相対値は同
一条件で測定したシリコンエハーの面指数(100)に
対するラマン分光スペクトルにおけるF2g対称性の振動
モードのラマンシフト値(σS =521cm-1)におけ
る1次ラマン線強度(IS )に対する比(ILO/IS
で表した。また、各蛍光体に電子線を照射したときの発
光輝度は、従来の蛍光体である、比較例1の蛍光体の発
光輝度に対する相対値で示した。
(Evaluation) Next, using a micro Raman spectroscopy system (R64000, manufactured by Atago Bussan Co., Ltd.), the ZnS: Cu, Al phosphors of Examples 1 to 3 and Comparative Example 1 described above were subjected to an Ar spot having a spot diameter of 2 μm. A near-infrared Raman spectrum was measured by irradiating a monochromatic light of 752.5 nm with a / Kr laser (output: 3 mW on the sample), and the Raman shift value (σ LO )
Table 1 shows the relative values of the peak intensity (I LO ) of the Raman line in the range of 330 to 354 cm -1 . These relative values are the primary Raman line intensity (I S ) at the Raman shift value (σ S = 521 cm −1 ) of the vibration mode of the F 2g symmetry in the Raman spectroscopy spectrum with respect to the plane index (100) of the silicon wafer measured under the same conditions. ) To (I LO / I S )
It was expressed by. The emission luminance when each phosphor was irradiated with an electron beam was shown as a relative value to the emission luminance of the phosphor of Comparative Example 1, which is a conventional phosphor.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、実施例1〜3の
ZnS:Cu,Al蛍光体のラマン線のピーク強度(I
LO)は、標準試料であるシリコンウエハーのF2g対称性
の振動モードに起因する、ラマンシフト値(σS )が波
数521cm-1における1次ラマン線強度(IS )の少
なくとも0.7倍よりも大、即ち比(ILO/IS )が
0.7以上であり、相対発光輝度は従来のZnS:C
u,Al蛍光体である比較例1の蛍光体に比べていづれ
も高い発光輝度を示した。
As is clear from Table 1, the peak intensity (I) of the Raman lines of the ZnS: Cu, Al phosphors of Examples 1 to 3 is shown.
LO ) is a Raman shift value (σ s ) at least 0.7 times the primary Raman line intensity (I s ) at a wave number of 521 cm −1 due to the vibration mode of F 2g symmetry of a silicon wafer as a standard sample. , Ie, the ratio (I LO / I S ) is 0.7 or more, and the relative luminous intensity is the same as that of the conventional ZnS: C
The luminous brightness was higher than that of the phosphor of Comparative Example 1 which was a u, Al phosphor.

【0030】また、実施例1〜3及び比較例1の各Zn
S:Cu,Al蛍光体について、上記と同様に752.
5nmの単色光を照射して近赤外ラマン分光スペクトル
を測定し、ラマンシフト値(σLO)が330〜354c
-1の範囲のラマン線のピーク強度(ILO)と、ラマン
シフト値(σHEX )が290〜310cm-1の範囲のラ
マン線のピーク強度(IHEX )の相対値(IHEX
LO)を表2に示した。また、各蛍光体に電子線を照射
したときの発光輝度は、従来の蛍光体である、比較例1
の蛍光体の発光輝度に対する相対値を併記した。
Further, each of Zn in Examples 1 to 3 and Comparative Example 1
As for the S: Cu, Al phosphor, 752.
The near-infrared Raman spectrum was measured by irradiating monochromatic light of 5 nm, and the Raman shift value (σ LO ) was 330 to 354c.
The relative value (I HEX / I) of the peak intensity (I LO ) of the Raman line in the range of m −1 and the peak intensity (I HEX ) of the Raman line in the range of the Raman shift value (σ HEX ) of 290 to 310 cm −1.
I LO ) is shown in Table 2. The emission luminance when each phosphor was irradiated with an electron beam was the same as that of the conventional phosphor.
And the relative value to the light emission luminance of the phosphor.

【0031】[0031]

【表2】 [Table 2]

【0032】表2から明らかなように、実施例1〜3の
ZnS:Cu,Al蛍光体のラマン線のピーク強度の相
対値(IHEX /ILO)はいずれも0.014以下であ
り、相対発光輝度は従来のZnS:Cu,Al蛍光体で
ある比較例1の蛍光体に比べていづれも高い発光輝度を
示した。
As is clear from Table 2, the relative values (I HEX / I LO ) of the peak intensity of the Raman line of the ZnS: Cu, Al phosphors of Examples 1 to 3 are all 0.014 or less. The relative light emission luminance showed a higher light emission luminance than the phosphor of Comparative Example 1, which is a conventional ZnS: Cu, Al phosphor.

【0033】[0033]

【発明の効果】本発明は、上記の構成を採用することに
より、従来の硫化亜鉛系蛍光体よりも近赤外線によるラ
マン分光スペクトルの縦波光学モード(LOモード)に
起因するラマン光強度が高く、それに伴って発光効率が
高い蛍光体を得ることが可能となった。また、近赤外線
によるラマン分光スペクトルのラマンシフト値(σLO
が波数330〜354cm-1の範囲のラマン線のピーク
強度(ILO)で発光強度を評価することができ、該評価
を極めて簡便に行うことができるようになった。
According to the present invention, by adopting the above structure, the Raman light intensity due to the longitudinal wave optical mode (LO mode) of the Raman spectroscopy spectrum by near infrared rays is higher than that of the conventional zinc sulfide-based phosphor. Accordingly, it has become possible to obtain a phosphor having high luminous efficiency. In addition, Raman shift value (σ LO ) of Raman spectrum by near infrared ray
The emission intensity can be evaluated based on the peak intensity (I LO ) of the Raman line in the wave number range of 330 to 354 cm −1 , and the evaluation can be performed extremely easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ZnS:Cu,Al蛍光体に波長の異なる光を
照射した時のそれぞれのラマン分光スペクトルを例示す
るグラフである。
FIG. 1 is a graph illustrating Raman spectroscopy spectra of ZnS: Cu, Al phosphors when irradiated with light having different wavelengths.

【図2】ZnS:Cu,Al蛍光体に近赤外線を照射し
た時のラマン分光スペクトルを例示するグラフである。
FIG. 2 is a graph illustrating a Raman spectrum when ZnS: Cu, Al phosphor is irradiated with near infrared rays.

【図3】ZnS:Cu,Al蛍光体の発光効率と近赤外
線を照射した時のラマン分光スペクトルのラマンシフト
値330〜354cm-1におけるラマン線の強度との相
関を示すグラフである。
FIG. 3 is a graph showing a correlation between the luminous efficiency of a ZnS: Cu, Al phosphor and the intensity of a Raman ray at a Raman shift value of 330 to 354 cm −1 in a Raman spectroscopic spectrum upon irradiation with near infrared rays.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安達 隆二 神奈川県小田原市成田1060番地 化成オプ トニクス株式会社内 (72)発明者 市原 高史 神奈川県小田原市成田1060番地 化成オプ トニクス株式会社内 (72)発明者 木島 直人 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 Fターム(参考) 2G043 AA06 BA11 CA05 EA03 FA02 KA01 KA09 4H001 CA06 XA16 XA30 YA13 YA29 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ryuji Adachi 1060 Narita, Odawara City, Kanagawa Prefecture Inside Kasei Optonics Co., Ltd. (72) Inventor Takashi Ichihara 1060 Narita, Odawara City, Kanagawa Prefecture Inside Kasei Optonics Co., Ltd. (72) Inventor Naoto Kijima 1000 Kamoshita-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture F-term in Yokohama Research Laboratory, Mitsubishi Chemical Corporation 2G043 AA06 BA11 CA05 EA03 FA02 KA01 KA09 4H001 CA06 XA16 XA30 YA13 YA29

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 硫化亜鉛系蛍光体に近赤外域の単色光を
照射し、その時の散乱光を分光して得られる近赤外ラマ
ン分光スペクトルのラマンシフト値(σLO)が波数33
0〜354cm-1の範囲におけるラマン線のピーク強度
(ILO)と、標準試料であるシリコンウエハーの面指数
100面について前記と同一条件で得られた近赤外ラマ
ン分光スペクトルのラマンシフト値(σS )が波数52
1cm-1におけるラマン線の強度(IS )との比(ILO
/IS )が0.7以上であることを特徴とする硫化亜鉛
系蛍光体。
1. A near-infrared monochromatic light is irradiated to a zinc sulfide-based phosphor, and a Raman shift value (σ LO ) of a near-infrared Raman spectrum obtained by dispersing the scattered light at that time has a wave number of 33.
The peak intensity (I LO ) of the Raman line in the range of 0 to 354 cm −1 and the Raman shift value of the near-infrared Raman spectrum obtained under the same conditions as described above for a plane index of 100 of a silicon wafer as a standard sample ( σ S ) has a wave number of 52
The ratio (I LO ) to the Raman line intensity (I S ) at 1 cm −1
/ I s ) is 0.7 or more.
【請求項2】 前記ラマンシフト値(σLO)が波数34
8〜354cm-1の範囲であることを特徴とする請求項
1に記載の硫化亜鉛系蛍光体。
2. The method according to claim 1, wherein the Raman shift value (σ LO ) is a wave number of 34.
2. The zinc sulfide-based phosphor according to claim 1, wherein the phosphor is in a range of 8 to 354 cm -1 .
【請求項3】 硫化亜鉛系蛍光体に近赤外域の単色光を
照射し、その時の散乱光を分光して得られる近赤外ラマ
ン分光スペクトルのラマンシフト値(σHEX)が波数2
90〜310cm-1の範囲おけるラマン線のピーク強度
(IHEX )と、近赤外ラマン分光スペクトルのラマンシ
フト値(σLO)が波数330〜354cm-1の範囲にお
けるラマン線のピーク強度(ILO)との比(IHEX /I
LO)が0.014以下であることを特徴とする硫化亜鉛
系蛍光体。
3. A Raman shift value (σ HEX ) of a near-infrared Raman spectrum obtained by irradiating near-infrared monochromatic light to a zinc sulfide-based phosphor and dispersing the scattered light at that time has a wave number of 2.
The peak intensity (I HEX ) of the Raman line in the range of 90 to 310 cm −1 and the peak intensity (I HEX ) of the Raman line in the range where the Raman shift value (σ LO ) of the near-infrared Raman spectroscopy spectrum is in the wave number range of 330 to 354 cm −1. LO ) ratio (I HEX / I
LO ) is 0.014 or less.
【請求項4】 前記単色光がクリプトン(Kr)ガスか
ら発振される752.5nmのレーザー光であることを
特徴とする請求項1〜3のいづれか一項に記載の硫化亜
鉛系蛍光体。
4. The zinc sulfide-based phosphor according to claim 1, wherein the monochromatic light is a laser beam of 752.5 nm oscillated from krypton (Kr) gas.
【請求項5】 前記硫化亜鉛系蛍光体が銅及びアルミニ
ウム共付活硫化亜鉛蛍光体(ZnS:Cu、Al)であ
ることを特徴とする請求項1〜4のいづれか一項に記載
の硫化亜鉛系蛍光体。
5. The zinc sulfide according to claim 1, wherein the zinc sulfide-based phosphor is a copper and aluminum co-activated zinc sulfide phosphor (ZnS: Cu, Al). System phosphor.
【請求項6】 硫化亜鉛系蛍光体に近赤外域の単色光を
照射し、その時の散乱光を分光して得られる近赤外ラマ
ン分光スペクトルのラマンシフト値(σLO)が波数33
0〜354cm-1の範囲のラマン線のピーク強度
(ILO)を測定し、その強度により前記蛍光体の発光輝
度を評価することを特徴とする硫化亜鉛系蛍光体の発光
輝度評価方法。
6. A Raman shift value (σ LO ) of a near-infrared Raman spectrum obtained by irradiating a zinc sulfide-based phosphor with near-infrared monochromatic light and dispersing the scattered light at that time has a wave number of 33.
A method for evaluating the emission luminance of a zinc sulfide-based phosphor, comprising measuring a peak intensity (I LO ) of a Raman line in a range of 0 to 354 cm −1 and evaluating the emission luminance of the phosphor based on the intensity.
JP2000196499A 2000-06-29 2000-06-29 Zinc sulfide phosphor and method for evaluating luminance of the phosphor. Pending JP2002012862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000196499A JP2002012862A (en) 2000-06-29 2000-06-29 Zinc sulfide phosphor and method for evaluating luminance of the phosphor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000196499A JP2002012862A (en) 2000-06-29 2000-06-29 Zinc sulfide phosphor and method for evaluating luminance of the phosphor.

Publications (1)

Publication Number Publication Date
JP2002012862A true JP2002012862A (en) 2002-01-15

Family

ID=18694982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000196499A Pending JP2002012862A (en) 2000-06-29 2000-06-29 Zinc sulfide phosphor and method for evaluating luminance of the phosphor.

Country Status (1)

Country Link
JP (1) JP2002012862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134789A (en) * 2012-11-21 2013-06-05 华中科技大学 Spectrum recover method based on Laplacian-Markov field
JP5986225B2 (en) * 2012-12-25 2016-09-06 タツモ株式会社 Dispersion type EL phosphor manufacturing method
JP2018151273A (en) * 2017-03-14 2018-09-27 沢井製薬株式会社 Particle diameter measuring method, particle diameter measuring apparatus and quality control method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134789A (en) * 2012-11-21 2013-06-05 华中科技大学 Spectrum recover method based on Laplacian-Markov field
JP5986225B2 (en) * 2012-12-25 2016-09-06 タツモ株式会社 Dispersion type EL phosphor manufacturing method
JP2018151273A (en) * 2017-03-14 2018-09-27 沢井製薬株式会社 Particle diameter measuring method, particle diameter measuring apparatus and quality control method using the same

Similar Documents

Publication Publication Date Title
Ruelle et al. Cathodoluminescent properties and energy transfer in red calcium sulfide phosphors (CaS: Eu, Mn)
CN102216418B (en) Beta-sialon phosphor, use thereof and method for producing same
WO2019188377A1 (en) Phosphor, production method for same, and light-emitting device
JP6155382B2 (en) Phosphor, light emitting element and light emitting device
JP6155383B2 (en) Phosphor, light emitting element and light emitting device
JP6603458B2 (en) Phosphor, method for producing the same, and light emitting device using the phosphor
JP2017088719A (en) Red phosphor
TWI424046B (en) Green color fluorescent element
EP0007838B1 (en) Luminescent blue-emitting materials based on bivalent europium, processes for their preparation and their use
JP6359066B2 (en) Potassium fluoride manganate for manganese-activated bifluoride phosphor raw material and method for producing manganese-activated bifluoride phosphor using the same
JP2002012862A (en) Zinc sulfide phosphor and method for evaluating luminance of the phosphor.
JP4433793B2 (en) Phosphor and light emitting device using the same
Waymouth Optical Measurements on Electroluminescent Zinc Sulfide
RU2390535C2 (en) Infrared luminophor based on yttrium oxysulphide
CN113366085B (en) Red phosphor and method for producing same
JP2002302672A (en) Rare earth oxysulfide phosphor and its evaluation method
JP3849011B2 (en) Luminescent material emitting yellowish light and its manufacturing method
EP3954748B1 (en) Red phosphor and method for producing same
JP4790794B2 (en) Red phosphor, red light emitting device or device, and white light emitting device or device
Hutten et al. A New Method of Preparing Strongly Luminescent Thallium Activated Alkali Halides and Some Properties of These Phosphors
JPH11106749A (en) Phosphor for active light-emitting liquid display element
JP4244265B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
US10611956B2 (en) Phosphor, light emitting device, and method for producing phosphor
JP2000290649A (en) Fluorescent substance, its production, and color cathode ray tube
WO2015129742A1 (en) Phosphor, light emitting element, and light emitting device