JP2002011478A - Method of operating electric deionization device - Google Patents

Method of operating electric deionization device

Info

Publication number
JP2002011478A
JP2002011478A JP2000199288A JP2000199288A JP2002011478A JP 2002011478 A JP2002011478 A JP 2002011478A JP 2000199288 A JP2000199288 A JP 2000199288A JP 2000199288 A JP2000199288 A JP 2000199288A JP 2002011478 A JP2002011478 A JP 2002011478A
Authority
JP
Japan
Prior art keywords
chamber
exchange resin
water
anion exchange
electrodeionization apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000199288A
Other languages
Japanese (ja)
Other versions
JP4660890B2 (en
Inventor
Shin Sato
伸 佐藤
Takayuki Moribe
隆行 森部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000199288A priority Critical patent/JP4660890B2/en
Publication of JP2002011478A publication Critical patent/JP2002011478A/en
Application granted granted Critical
Publication of JP4660890B2 publication Critical patent/JP4660890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PROBLEM TO BE SOLVED: To stably and surely produce high quality water by efficiently removing weak electrolytes such as silica, boron or the like in an electric deionization device. SOLUTION: The electric deionization device is operated under such a condition that the regeneration ratio of an anion exchange resin filled in a desalting chamber is >=60%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体、液晶、製
薬、食品、電力等の分野の各種産業、民生用、又は研究
設備で利用される脱イオン水の製造に用いられる電気脱
イオン装置の運転方法に係り、特に、電気脱イオン装置
でシリカやホウ素等の弱電解物質を効率的に除去して、
高水質の生産水を製造するための電気脱イオン装置の運
転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrodeionization apparatus used in the production of deionized water used in various industries in the fields of semiconductors, liquid crystals, pharmaceuticals, foods, electric power, etc., for consumer use, or in research facilities. Regarding the operation method, in particular, by efficiently removing weak electrolytes such as silica and boron with an electrodeionization device,
The present invention relates to an operation method of an electrodeionization device for producing high quality water.

【0002】[0002]

【従来の技術】従来、半導体製造工場、液晶製造工場、
製薬工業、食品工業、電力工業等の各種の産業又は民生
用ないし研究施設等において使用される脱イオン水の製
造には、図1に示す如く、電極(陽極11,陰極12)
の間に複数のアニオン交換膜13及びカチオン交換膜1
4を交互に配列して濃縮室15と脱塩室16とを交互に
形成し、脱塩室16にイオン交換樹脂、イオン交換繊維
もしくはグラフト交換体等からなるアニオン交換体及び
カチオン交換体を混合もしくは複層状に充填した電気脱
イオン装置が多用されている(特許第1782943
号、特許第2751090号、特許第2699256
号)。なお、図1において、17は陽極室、18は陰極
室である。
2. Description of the Related Art Conventionally, semiconductor manufacturing plants, liquid crystal manufacturing plants,
In the production of deionized water used in various industries such as the pharmaceutical industry, the food industry, the electric power industry, etc., or for consumer or research facilities, as shown in FIG.
A plurality of anion exchange membranes 13 and cation exchange membranes 1
4 are alternately arranged to form a concentration chamber 15 and a desalination chamber 16 alternately, and an anion exchanger and a cation exchanger composed of an ion exchange resin, an ion exchange fiber or a graft exchanger are mixed in the desalination chamber 16. Alternatively, a multi-layered electrodeionization apparatus is often used (Japanese Patent No. 1782943).
Patent No. 2,751,090, Patent No. 2,699,256
issue). In FIG. 1, reference numeral 17 denotes an anode chamber, and 18 denotes a cathode chamber.

【0003】電気脱イオン装置は、水解離によってH
イオンとOHイオンを生成させ、脱塩室内に充填され
ているイオン交換体を連続して再生することによって、
効率的な脱塩処理が可能であり、従来から広く用いられ
てきたイオン交換樹脂装置のような薬品を用いた再生処
理を必要とせず、完全な連続採水が可能で、高純度の水
が得られるという優れた効果を発揮する。
[0003] The electrodeionization apparatus uses water to dissociate H +
Ions and OH - to produce ions, by continuously reproducing ion exchanger filled in the desalting compartment,
Efficient desalination treatment is possible, and complete continuous water sampling is possible without the need for regeneration treatment using chemicals such as ion exchange resin equipment that has been widely used in the past. It has an excellent effect of being obtained.

【0004】このような電気脱イオン装置において、従
来、脱塩室に充填されているイオン交換体の残留イオン
交換容量を測定した例は「イオン交換セミナー98講演
集」(平成10年12月8日イオン交換学会)第33頁
に示されているが、イオン交換体の再生比率と生産水の
水質との関係において定量的に言及しているものはみら
れない。
[0004] In such an electrodeionization apparatus, an example of measuring the residual ion exchange capacity of an ion exchanger packed in a desalting chamber is described in "Ion Exchange Seminar 98 Lectures" (December 8, 1998). Although it is shown on page 33 of the Japan Ion Exchange Society), there is no quantitative reference to the relationship between the regeneration ratio of the ion exchanger and the quality of the produced water.

【0005】[0005]

【発明が解決しようとする課題】電気脱イオン装置にあ
っては、生産水の水質の向上、特に電気脱イオン装置に
おける除去が比較的困難とされているシリカやホウ素等
の弱電解物質の除去効率の向上を図ることにより、より
一層高純度の生産水を得ることが望まれている。
In the electrodeionization apparatus, the quality of the produced water is improved, and in particular, the removal of weak electrolytes such as silica and boron, which is relatively difficult to remove in the electrodeionization apparatus. It is desired to obtain a higher purity product water by improving the efficiency.

【0006】従って、本発明は、電気脱イオンにおいて
シリカ、ホウ素等の弱電解物質を効率的に除去して高水
質の生産水を安定かつ確実に製造することができる電気
脱イオン装置の運転方法を提供することを目的とする。
Accordingly, the present invention provides a method for operating an electrodeionization apparatus capable of efficiently and stably and reliably producing high quality water by removing weak electrolytes such as silica and boron during electrodeionization. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明の電気脱イオン装
置の運転方法は、陽極と陰極との間に複数のアニオン交
換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩
室とを交互に形成し、脱塩室にアニオン交換体とを含む
イオン交換体を充填してなる電気脱イオン装置の運転方
法において、該アニオン交換体の再生比率が60%以上
となる条件で運転することを特徴とする。
According to the method of operating the electrodeionization apparatus of the present invention, a plurality of anion exchange membranes and a plurality of cation exchange membranes are alternately arranged between an anode and a cathode to form a concentration chamber and a desalination chamber. Are alternately formed, and the method for operating an electrodeionization apparatus in which a deionization chamber is filled with an ion exchanger containing an anion exchanger is operated under the condition that the regeneration ratio of the anion exchanger is 60% or more. It is characterized by doing.

【0008】本発明者らは、電気脱イオン装置における
生産水の水質向上、中でもシリカ、ホウ素等の弱電解物
質の除去性の向上において、電気脱イオン装置の脱塩室
に充填されているイオン交換樹脂、特にアニオン交換樹
脂の再生比率との相関があること、特に95%を超える
シリカ除去率を得るための条件として、アニオン交換樹
脂の再生比率が重要な因子であることを知見した。
In order to improve the quality of the produced water in the electrodeionization apparatus, particularly to improve the removability of weak electrolytes such as silica and boron, the present inventors have proposed an ion deionization apparatus in which a deionization chamber is filled. It has been found that there is a correlation with the regeneration ratio of the exchange resin, particularly the anion exchange resin, and that the regeneration ratio of the anion exchange resin is an important factor as a condition for obtaining a silica removal ratio of more than 95%.

【0009】即ち、電気脱イオン装置では、脱塩室内の
アニオン交換樹脂によりシリカが除去され、除去された
シリカ及び他のイオンは、電気により連続的に再生され
ることで濃縮水中に濃縮される。このため、アニオン交
換樹脂の再生比率が高く、またアニオン交換樹脂量が多
く、脱塩室の流路が長い程、シリカを高度に除去するこ
とができることが考えられる。
That is, in the electrodeionization apparatus, silica is removed by the anion exchange resin in the desalting chamber, and the removed silica and other ions are continuously regenerated by electricity to be concentrated in the concentrated water. . For this reason, it is conceivable that the higher the regeneration ratio of the anion exchange resin, the larger the amount of the anion exchange resin, and the longer the flow path of the desalting chamber, the more highly the silica can be removed.

【0010】しかしながら、本発明者らはアニオン交換
樹脂の再生比率とシリカ除去率との関係について鋭意検
討を重ねた結果、電気脱イオン装置においては、アニオ
ン交換樹脂の再生比率がある値より低くなると、シリカ
除去率が大きく低下することを見出し、本発明を完成さ
せた。
However, the present inventors have conducted intensive studies on the relationship between the regeneration rate of the anion exchange resin and the silica removal rate. As a result, in the electrodeionization apparatus, when the regeneration rate of the anion exchange resin becomes lower than a certain value. The present inventors have found that the silica removal rate is greatly reduced, and completed the present invention.

【0011】本発明に従って、脱塩室内のアニオン交換
体の再生比率(全アニオン交換体中のOH型アニオン交
換体の割合)が60%以上となるような条件で電気脱イ
オン装置の運転を行えば、シリカ除去率95%以上を達
成することができる。しかしながら、この再生比率が6
0%未満の場合、例えば55%程度の場合には、シリカ
除去率は80〜90%と大幅に低下する。
According to the present invention, the operation of the electrodeionization apparatus is performed under the condition that the regeneration ratio of the anion exchanger in the deionization chamber (the ratio of the OH-type anion exchanger in all the anion exchangers) is 60% or more. For example, a silica removal rate of 95% or more can be achieved. However, this regeneration ratio is 6
If it is less than 0%, for example, if it is about 55%, the silica removal rate will be significantly reduced to 80 to 90%.

【0012】本発明では、特に、電気脱イオン装置の脱
塩室の水の流路方向の長さ(以下「流路長」と称す。)
は、300mm以上であることが好ましく、また、脱塩
室内のイオン交換体中のアニオン交換体の割合は50%
以上であるときに、高いシリカ除去率を確実に達成する
ことができる。
In the present invention, in particular, the length in the flow direction of water in the desalting chamber of the electrodeionization apparatus (hereinafter referred to as "flow path length").
Is preferably at least 300 mm, and the proportion of the anion exchanger in the ion exchanger in the desalting chamber is 50%.
With the above, a high silica removal rate can be reliably achieved.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0014】なお、以下において電気脱イオン装置の脱
塩室内に充填されるイオン交換体として、アニオン交換
樹脂とカチオン交換樹脂との混合イオン交換樹脂を用い
る場合を例示して説明するが、本発明においてイオン交
換体はイオン交換樹脂に限らず、イオン交換繊維又はグ
ラフト交換体等からなるアニオン交換体とカチオン交換
体を混合して或いは複層状に脱塩室に充填したものであ
っても良い。
In the following, a case where a mixed ion exchange resin of an anion exchange resin and a cation exchange resin is used as an ion exchanger filled in a desalting chamber of an electrodeionization apparatus will be described. In the above, the ion exchanger is not limited to the ion exchange resin, but may be a mixture of an anion exchanger composed of ion exchange fibers or graft exchangers and a cation exchanger, or a mixture filled into the desalting chamber in a multi-layered form.

【0015】本発明においては、電気脱イオン装置の脱
塩室内に充填されたイオン交換樹脂のうち、アニオン交
換樹脂の再生比率が60%以上となる条件で電気脱イオ
ン装置を運転する。アニオン交換樹脂の再生比率が60
%未満であると、シリカ除去率が著しく低下するため好
ましくない。このような再生比率となるように電気脱イ
オン装置を運転するには、電気脱イオン装置に印加する
電圧条件や脱塩室及び濃縮室の通水流量、供給水のpH
及び電気伝導度等を調整すれば良く、この調整条件は、
予備実験等により容易に設定することができる。処理効
率、シリカ除去率、電気エネルギーコスト等を考慮した
場合、脱塩室中のアニオン交換樹脂の好ましい再生比率
は特に70〜80%である。
In the present invention, the electrodeionization apparatus is operated under the condition that the regeneration ratio of the anion exchange resin among the ion exchange resins filled in the deionization chamber of the electrodeionization apparatus is 60% or more. Regeneration ratio of anion exchange resin is 60
% Is not preferred because the silica removal rate is significantly reduced. In order to operate the electrodeionization apparatus so as to have such a regeneration ratio, the voltage conditions applied to the electrodeionization apparatus, the flow rate of water supplied to the desalination chamber and the concentration chamber, and the pH of the supply water
And the electric conductivity etc. may be adjusted.
It can be easily set by a preliminary experiment or the like. In consideration of the processing efficiency, the silica removal rate, the electric energy cost, and the like, the preferable regeneration rate of the anion exchange resin in the desalting chamber is particularly 70 to 80%.

【0016】前述の如く、シリカ除去率は脱塩室の流路
長や脱塩室内のアニオン交換樹脂の混合比率(全イオン
交換樹脂中のアニオン交換樹脂の割合)とも相関があ
り、脱塩室の流路長が極端に短い場合や脱塩室内のアニ
オン交換樹脂の混合比率が極端に少ない場合には、上記
再生比率を満足する場合であっても、シリカ除去率が低
下するため、用いる電気脱イオン装置の脱塩室の流路長
は300mm以上であり、脱塩室中のアニオン交換樹脂
の混合比率は50%以上であることが好ましい。
As described above, the silica removal rate is correlated with the flow path length of the desalting chamber and the mixing ratio of the anion exchange resin in the desalting chamber (the ratio of the anion exchange resin in the total ion exchange resin). When the flow path length is extremely short or when the mixing ratio of the anion exchange resin in the desalting chamber is extremely small, even if the above-mentioned regeneration ratio is satisfied, the silica removal rate decreases, so The flow path length of the desalting chamber of the deionizer is preferably 300 mm or more, and the mixing ratio of the anion exchange resin in the desalting chamber is preferably 50% or more.

【0017】脱塩室の流路長は長いほど生産水の水質を
高めることができ、特に400mm以上であることが好
ましいが、電気脱イオン装置の組み立て作業性や製造コ
スト、電気脱イオン装置の寸法等を考慮した場合、脱塩
室の流路長は800mm以下であることが好ましい。
The longer the flow path length of the desalting chamber, the higher the quality of the produced water can be. Particularly, it is preferable that the length is 400 mm or more. In consideration of the dimensions and the like, it is preferable that the flow path length of the desalting chamber is 800 mm or less.

【0018】また、脱塩室中のアニオン交換樹脂の混合
比率も多い程シリカやホウ素等の弱電解物質の除去率を
高めることができ、特に60%以上であることが好まし
いが、アニオン交換樹脂の混合比率が過度に多いと相対
的にカチオン交換樹脂が少なくなって、カチオン成分の
除去率が低下するため、アニオン交換樹脂の混合比率は
90%以下とすることが好ましい。
The removal ratio of weak electrolytes such as silica and boron can be increased by increasing the mixing ratio of the anion exchange resin in the desalting chamber. Is too large, the cation exchange resin relatively decreases, and the removal rate of the cation component decreases. Therefore, the mixing ratio of the anion exchange resin is preferably 90% or less.

【0019】本発明の方法は、このように脱塩室内のア
ニオン交換樹脂の再生比率を60%以上とすること、好
ましくは更に脱塩室内のアニオン交換樹脂の混合比率を
50%以上とし、脱塩室の流路長を300mm以上とす
ること以外は、常法に従って電気脱イオン装置の運転を
行うことができる。
In the method of the present invention, the regeneration ratio of the anion exchange resin in the desalting chamber is set to 60% or more, and preferably, the mixing ratio of the anion exchange resin in the desalting chamber is set to 50% or more. The operation of the electrodeionization apparatus can be performed according to a conventional method except that the flow path length of the salt chamber is 300 mm or more.

【0020】従って、原水(この水は、通常、活性炭塔
及び逆浸透膜分離装置等で順次前処理される。)の一部
を電気脱イオン装置の濃縮室に供給し、残部を脱塩室に
供給して脱イオン処理し、脱塩室の流出水を処理水(生
産水)として取り出せば良い。なお、通常の場合、濃縮
室の流出水は一部が系外に排出され、残部は濃縮室の供
給側へ循環される。
Therefore, a part of the raw water (this water is usually pre-treated in an activated carbon tower and a reverse osmosis membrane separation device, etc.) is supplied to the concentration chamber of the electrodeionization apparatus, and the remainder is supplied to the desalination chamber. , And deionized, and the effluent from the desalting chamber may be taken out as treated water (produced water). In a normal case, a part of the effluent from the concentration chamber is discharged out of the system, and the remaining part is circulated to the supply side of the concentration chamber.

【0021】この濃縮室の流出水の循環は、水回収率の
向上のために行われるが、この循環水量は本発明の運転
条件が維持される範囲であれば良く、特に制限はない
が、通常、濃縮室の流出水の50〜95%程度とし、電
気脱イオン装置の水回収率は0.5〜0.95程度の条
件で運転を実施するのが好ましい。
The circulation of the effluent from the concentrating chamber is performed to improve the water recovery rate. The amount of the circulated water is not particularly limited as long as the operating conditions of the present invention are maintained. Usually, it is preferable to operate the effluent from the concentrating chamber at about 50 to 95% and the water recovery of the electrodeionization apparatus at about 0.5 to 0.95.

【0022】前述の如く、電気脱イオン装置の脱塩室内
のアニオン交換樹脂の再生比率を60%以上、アニオン
交換樹脂の混合比率を50%以上、脱塩室の流路長を3
00mm以上とすることにより、シリカ除去率95%を
達成することができるが、更にシリカ除去率を高めよう
とする場合には、上記条件において、濃縮水のシリカ濃
度を低下させることが有効である。この制御方法として
は、系外への濃縮水排出量を多くして水回収率を低くす
る方法もあるが、濃縮水に生産水の一部や純水などのシ
リカ濃度の低い水を混合させる方法を採用することもで
きる。
As described above, the regeneration ratio of the anion exchange resin in the deionization chamber of the electrodeionization apparatus is 60% or more, the mixing ratio of the anion exchange resin is 50% or more, and the flow path length of the deionization chamber is 3%.
By setting the thickness to 00 mm or more, a silica removal rate of 95% can be achieved. However, in order to further increase the silica removal rate, it is effective to reduce the silica concentration of the concentrated water under the above conditions. . As this control method, there is a method of increasing the amount of concentrated water discharged to the outside of the system to lower the water recovery rate. However, the concentrated water is mixed with water having a low silica concentration such as a part of production water or pure water. A method can also be adopted.

【0023】本発明において用いる電気脱イオン装置
は、複数のアニオン交換膜及びカチオン交換膜を交互に
配列して濃縮室と脱塩室とを交互に形成した一般的なも
のであり、脱塩室にアニオン交換樹脂とカチオン交換樹
脂との混合イオン交換樹脂等のイオン交換体が充填され
たものである。また、濃縮室にもこのようなイオン交換
体が充填されていても良い。
The electrodeionization apparatus used in the present invention is a general one in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged to form a concentration chamber and a desalination chamber alternately. And an ion exchanger such as a mixed ion exchange resin of an anion exchange resin and a cation exchange resin. In addition, such an ion exchanger may be filled in the concentration chamber.

【0024】[実施例]以下に実施例及び比較例を挙げ
て本発明をより具体的に説明する。
[Examples] The present invention will be more specifically described below with reference to examples and comparative examples.

【0025】実施例1〜4、比較例1〜4 野木町水を活性炭装置、逆浸透膜装置及び脱気膜装置で
順次処理した水を電気脱イオン装置に通水した。この電
気脱イオン装置のイオン交換膜及び脱塩室に充填するイ
オン交換樹脂としては次のものを用い、図1に示す構成
の電気脱イオンスタックを組み立てた。脱塩室内のイオ
ン交換樹脂中のアニオン交換樹脂の割合(アニオン交換
樹脂混合比率)は表1に示す通りとした。
Examples 1-4, Comparative Examples 1-4 Nogi-cho water was sequentially treated with an activated carbon device, a reverse osmosis membrane device and a degassing membrane device, and then passed through an electrodeionization device. The following ion exchange resins were used to fill the ion exchange membrane and the desalting chamber of the electrodeionization apparatus, and an electrodeionization stack having the structure shown in FIG. 1 was assembled. The proportion of the anion exchange resin in the ion exchange resin in the desalting chamber (mixing ratio of the anion exchange resin) was as shown in Table 1.

【0026】アニオン交換膜:(株)トクヤマ製「ネオ
セプタAHA」 カチオン交換膜:(株)トクヤマ製「ネオセプタCM
B」 アニオン交換樹脂:ダウケミカル社製「550A」 カチオン交換樹脂:ダウケミカル社製「650C」 電気脱イオン装置の脱塩室は横187mm、厚さ2.5
mmであり、流路長は表1に示す通りである。脱塩室は
3室とし、濃縮室及び電極室にはメッシュスペーサーを
装填した。
Anion exchange membrane: "Neosepta AHA" manufactured by Tokuyama Corporation Cation exchange membrane: "Neosepta CM manufactured by Tokuyama Corporation"
B "Anion exchange resin:" 550A "manufactured by Dow Chemical Company Cation exchange resin:" 650C "manufactured by Dow Chemical Company The desalting chamber of the electrodeionization apparatus is 187 mm wide and 2.5 mm thick.
mm, and the flow path length is as shown in Table 1. There were three desalting chambers, and the enrichment chamber and the electrode chamber were loaded with mesh spacers.

【0027】電気脱イオン装置の水収支は、生産水量4
0L/hr、濃縮水循環水量(濃縮室流出水のうち、濃縮
室入口側へ循環する水量)15L/hr、濃縮水排出量
(濃縮室流出水のうち、系外へ排出する水量)2L/h
rとした。
The water balance of the electrodeionization apparatus is calculated as follows.
0 L / hr, concentrated water circulating water amount (amount of water circulating to the inlet side of the concentrating chamber out of the condensing chamber effluent), 15 L / hr, concentrated water discharge (amount of water discharged from the concentrating chamber out of the system out of the system) 2 L / h
r.

【0028】各電気脱イオン装置毎に任意の電圧条件で
4日間運転を行い、生産水のシリカ濃度から電気脱イオ
ン装置におけるシリカ除去率を調べ、結果を表1に示し
た。また、4日間の運転直後に電気脱イオン装置を解体
して脱塩室内のアニオン交換樹脂を取り出し、均一に混
合した状態で再生比率を測定し、結果を表1に示した。
Each electrodeionization apparatus was operated for four days under an arbitrary voltage condition, and the silica removal rate in the electrodeionization apparatus was determined from the silica concentration of the produced water. The results are shown in Table 1. Immediately after the operation for 4 days, the electrodeionization apparatus was disassembled and the anion exchange resin in the deionization chamber was taken out. The regeneration ratio was measured in a state of uniform mixing. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1より、アニオン交換樹脂の再生比率が
60%以上、アニオン交換樹脂の混合比率が50%以上
で、脱塩室の流路長が300mm以上であれば、シリカ
除去率95%を達成することができることがわかる。
According to Table 1, if the regeneration ratio of the anion exchange resin is 60% or more, the mixing ratio of the anion exchange resin is 50% or more, and the flow path length of the desalting chamber is 300 mm or more, the silica removal rate is 95%. It can be seen that this can be achieved.

【0031】[0031]

【発明の効果】以上詳述した通り、本発明によれば、電
気脱イオン装置においてシリカ、ホウ素等の弱電解物質
を効率的に除去して高水質の生産水を安定かつ確実に製
造することができる。
As described above in detail, according to the present invention, it is possible to stably and reliably produce high-quality water by efficiently removing weak electrolytes such as silica and boron in an electrodeionization apparatus. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気脱イオン装置の一般的な構成を示す模式的
な断面図である。
FIG. 1 is a schematic sectional view showing a general configuration of an electrodeionization apparatus.

【符号の説明】[Explanation of symbols]

10 イオン交換体 11 陽極 12 陰極 13 アニオン交換膜 14 カチオン交換膜 15 濃縮室 16 脱塩室 17 陽極室 18 陰極室 DESCRIPTION OF SYMBOLS 10 Ion exchanger 11 Anode 12 Cathode 13 Anion exchange membrane 14 Cation exchange membrane 15 Concentration room 16 Demineralization room 17 Anode room 18 Cathode room

フロントページの続き Fターム(参考) 4D006 GA17 KA26 KC20 MA13 MA14 PB02 PB23 PB70 PC01 4D061 DA01 DB18 EB13 EB17 EB19 EB22 EB39 FA03 FA06 FA09 GC02 GC05 GC14 Continued on the front page F term (reference) 4D006 GA17 KA26 KC20 MA13 MA14 PB02 PB23 PB70 PC01 4D061 DA01 DB18 EB13 EB17 EB19 EB22 EB39 FA03 FA06 FA09 GC02 GC05 GC14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極との間に複数のアニオン交換
膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室
とを交互に形成し、脱塩室にアニオン交換体を含むイオ
ン交換体を充填してなる電気脱イオン装置の運転方法に
おいて、 該アニオン交換体の再生比率が60%以上となる条件で
運転することを特徴とする電気脱イオン装置の運転方
法。
1. A method according to claim 1, wherein a plurality of anion exchange membranes and a plurality of cation exchange membranes are alternately arranged between the anode and the cathode to alternately form a concentration chamber and a desalination chamber, and the desalination chamber contains an anion exchanger. An operation method of an electrodeionization apparatus packed with an ion exchanger, wherein the operation is performed under a condition that a regeneration ratio of the anion exchanger is 60% or more.
【請求項2】 請求項1において、該脱塩室内のイオン
交換体のうちの50%以上がアニオン交換体であり、該
脱塩室の水の流路方向の長さが300mm以上であるこ
とを特徴とする電気脱イオン装置の運転方法。
2. The deionization chamber according to claim 1, wherein at least 50% of the ion exchangers in the desalting chamber are anion exchangers, and the length of the water in the desalting chamber in the flow path direction is at least 300 mm. A method for operating an electrodeionization device, comprising:
JP2000199288A 2000-06-30 2000-06-30 Operation method of electrodeionization equipment Expired - Fee Related JP4660890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000199288A JP4660890B2 (en) 2000-06-30 2000-06-30 Operation method of electrodeionization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000199288A JP4660890B2 (en) 2000-06-30 2000-06-30 Operation method of electrodeionization equipment

Publications (2)

Publication Number Publication Date
JP2002011478A true JP2002011478A (en) 2002-01-15
JP4660890B2 JP4660890B2 (en) 2011-03-30

Family

ID=18697329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199288A Expired - Fee Related JP4660890B2 (en) 2000-06-30 2000-06-30 Operation method of electrodeionization equipment

Country Status (1)

Country Link
JP (1) JP4660890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103010150A (en) * 2012-12-28 2013-04-03 浙江吉利汽车研究院有限公司杭州分公司 Seat belt height self-adaptive adjustment method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564786A (en) * 1991-09-05 1993-03-19 Nippon Rensui Kk Production of pure water
JPH05181249A (en) * 1991-12-29 1993-07-23 Konica Corp Concentration processing device and concentration processing method for aqueous solution
JPH1157420A (en) * 1997-08-14 1999-03-02 Japan Organo Co Ltd Water run treatment method for electric deionized water manufacturing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564786A (en) * 1991-09-05 1993-03-19 Nippon Rensui Kk Production of pure water
JPH05181249A (en) * 1991-12-29 1993-07-23 Konica Corp Concentration processing device and concentration processing method for aqueous solution
JPH1157420A (en) * 1997-08-14 1999-03-02 Japan Organo Co Ltd Water run treatment method for electric deionized water manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103010150A (en) * 2012-12-28 2013-04-03 浙江吉利汽车研究院有限公司杭州分公司 Seat belt height self-adaptive adjustment method and device

Also Published As

Publication number Publication date
JP4660890B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
JP3956836B2 (en) Electrodeionization equipment
JP3951642B2 (en) Method for operating electrodeionization apparatus, electrodeionization apparatus and electrodeionization system
JP2003094064A (en) Electric deionization equipment
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
JP3952127B2 (en) Electrodeionization treatment method
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP2003145163A (en) Electric deionization device and electric deionization method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP5098216B2 (en) Electric regenerative pure water production apparatus and pure water production method
JP4599668B2 (en) Operation method of electrodeionization equipment
JP3188511B2 (en) Electrodialysis machine
JP4552273B2 (en) Electrodeionization equipment
JP2018199136A (en) Pure water production method
JP4505965B2 (en) Pure water production method
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP2002011478A (en) Method of operating electric deionization device
JP4016663B2 (en) Operation method of electrodeionization equipment
KR100692698B1 (en) Electric deionizing apparatus and electric deionizing treatment method using the same
JPH11244854A (en) Production of pure water
JP2003326270A (en) Electric regenerative demineralizer
JP3966104B2 (en) Operation method of electrodeionization equipment
JP2000005763A (en) Electric deionized water production device
JP3979889B2 (en) How to produce deionized water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4660890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees