JP2002009501A - Insulated waveguide - Google Patents

Insulated waveguide

Info

Publication number
JP2002009501A
JP2002009501A JP2000186498A JP2000186498A JP2002009501A JP 2002009501 A JP2002009501 A JP 2002009501A JP 2000186498 A JP2000186498 A JP 2000186498A JP 2000186498 A JP2000186498 A JP 2000186498A JP 2002009501 A JP2002009501 A JP 2002009501A
Authority
JP
Japan
Prior art keywords
waveguide
insulated
adjacent
insulating
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000186498A
Other languages
Japanese (ja)
Other versions
JP4183889B2 (en
Inventor
Hidekazu Kitagawa
英一 北川
Koji Mizushima
弘二 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPC Electronics Corp
Original Assignee
SPC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPC Electronics Corp filed Critical SPC Electronics Corp
Priority to JP2000186498A priority Critical patent/JP4183889B2/en
Publication of JP2002009501A publication Critical patent/JP2002009501A/en
Application granted granted Critical
Publication of JP4183889B2 publication Critical patent/JP4183889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguide Connection Structure (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an insulated waveguide that can suppress increase in a transmission loss of a microwave and can increase the breakdown voltage. SOLUTION: Waveguides 3 that are opposed and adjacent to each other are connected together while being insulated by an electric insulator 4. The electric insulator 4 is structured such that it has an insulating cylinder 10 each tip of which is inserted into the waveguides 3 that are opposed and adjacent to each other and an insulating flange section 11 that is integrally connected onto an outer circumference of the insulating cylinder 10 and clamped by flange sections 2 of the waveguides 3 that are adjacent to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、隣接して相互に対
向する導波管が電気絶縁体で絶縁されて接続されている
絶縁導波管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated waveguide in which adjacent and mutually opposing waveguides are connected by being insulated by an electric insulator.

【0002】[0002]

【従来の技術】導波管に落雷等により高電圧のサージ電
流が流れると、接続されている電気機器が損傷された
り、作業者が感電する恐れがあるので、隣接して相互に
対向する導波管を電気絶縁体で絶縁して接続した絶縁導
波管が用いられている。
2. Description of the Related Art When a high voltage surge current flows through a waveguide due to a lightning strike or the like, connected electric equipment may be damaged or an operator may receive an electric shock. An insulated waveguide in which a waveguide is insulated by an electrical insulator and connected is used.

【0003】従来のこの種の絶縁導波管としては、特開
平9−275301号公報に記載された絶縁導波管があ
る。
[0003] As this kind of conventional insulated waveguide, there is an insulated waveguide described in JP-A-9-275301.

【0004】この絶縁導波管は、図4に示すように、矩
形導波管本体1の各先端部にフランジ部2が一体に突設
されている構造の導波管3が隣接して相互に対向配置さ
れ、対向するフランジ部2の間には電気絶縁体4として
のテトラフロロエチレン等よりなる電気絶縁板5が矩形
導波管本体1の孔6を塞いで配置され、相互のフランジ
部2が電気絶縁性のボルト7とナット8で締結された連
結であった。
In this insulated waveguide, as shown in FIG. 4, a waveguide 3 having a structure in which a flange 2 is integrally protruded from each end of a rectangular waveguide main body 1 is adjacent to each other. An electric insulating plate 5 made of tetrafluoroethylene or the like as an electric insulator 4 is disposed between the opposing flange portions 2 so as to cover the holes 6 of the rectangular waveguide main body 1, and the mutual flange portions are provided. Reference numeral 2 denotes a connection fastened by an electrically insulating bolt 7 and a nut 8.

【0005】このような絶縁導波管によれば、導波管3
にサージ電流が流れるのを電気絶縁体4で阻止すること
ができる。
According to such an insulated waveguide, the waveguide 3
Can be prevented by the electric insulator 4.

【0006】しかしながら、このような構造の絶縁導波
管では、サージ電圧が高くなると、電気絶縁板5の厚み
を厚くしなければならず、電気絶縁板5の厚みが厚くな
るとマイクロ波の伝送損失が大きくなり、また隣接する
フランジ部2の間からのマイクロ波の漏れが大きくなる
問題点があった。
However, in the insulating waveguide having such a structure, when the surge voltage increases, the thickness of the electric insulating plate 5 must be increased, and when the thickness of the electric insulating plate 5 is increased, the microwave transmission loss is increased. And the leakage of the microwave from between the adjacent flange portions 2 becomes large.

【0007】そこで、マイクロ波の伝送損失の増大を低
減する絶縁導波管として、図4に示す構造の絶縁導波管
で、図5に示すように矩形導波管本体1の孔6に対応し
て電気絶縁体4としての電気絶縁板5に結合孔9を貫通
させた構造のものが検討されている。
Therefore, as an insulating waveguide for reducing an increase in microwave transmission loss, an insulating waveguide having the structure shown in FIG. 4 corresponds to the hole 6 of the rectangular waveguide main body 1 as shown in FIG. A structure in which a coupling hole 9 is made to pass through an electric insulating plate 5 as an electric insulator 4 is being studied.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図5に
示す絶縁導波管では、結合孔9を介してのK点間の沿面
距離が近くなり、サージ電圧が高くなると、沿面放電が
起こり、絶縁導波管の耐電圧が低下する問題点がある。
However, in the insulated waveguide shown in FIG. 5, the creeping distance between the points K via the coupling holes 9 becomes short, and when the surge voltage becomes high, creeping discharge occurs and the insulating There is a problem that the withstand voltage of the waveguide is reduced.

【0009】本発明の目的は、マイクロ波の伝送損失の
増大を低減でき、耐電圧を増大させることができる絶縁
導波管を提供することにある。
An object of the present invention is to provide an insulated waveguide capable of reducing an increase in microwave transmission loss and increasing a withstand voltage.

【0010】本発明の他の目的は、マイクロ波の伝送損
失の増大を低減でき、耐電圧を要求に応じて倍々に順次
増大させることができる絶縁導波管を提供することにあ
る。
It is another object of the present invention to provide an insulated waveguide capable of reducing an increase in microwave transmission loss and capable of sequentially increasing the withstand voltage twice as required.

【0011】本発明の他の目的は、隣接するフランジ部
の外側での耐電圧を増大させることができる絶縁導波管
を提供することにある。
Another object of the present invention is to provide an insulated waveguide capable of increasing the withstand voltage outside the adjacent flange portion.

【0012】本発明の他の目的は、電気絶縁体を複数段
に挿入しても反射波を打ち消すことができる絶縁導波管
を提供することにある。
Another object of the present invention is to provide an insulated waveguide capable of canceling a reflected wave even when an electric insulator is inserted in a plurality of stages.

【0013】[0013]

【課題を解決するための手段】本発明は、隣接して相互
に対向する導波管が電気絶縁体で絶縁されて接続されて
いる絶縁導波管を改良するものである。
SUMMARY OF THE INVENTION The present invention is an improvement in an insulated waveguide in which adjacent, opposed waveguides are connected insulated by an electrical insulator.

【0014】本発明に係る絶縁導波管においては、電気
絶縁体は隣接して相互に対向する導波管の中に各先端部
が挿入される絶縁筒体と、該絶縁筒体の外周に一体に連
接されていて隣接する各導波管のフランジ部で挟持され
る絶縁フランジ部とを有する構造であり、隣接する2つ
の導波管はその対向端部間にこの電気絶縁体が介在され
て電気的に絶縁されて接続されていることを特徴とす
る。
In the insulated waveguide according to the present invention, the electrical insulator includes an insulating cylinder in which respective tips are inserted into adjacent waveguides facing each other, and an outer periphery of the insulating cylinder. An insulating flange portion connected integrally and sandwiched by flange portions of adjacent waveguides, wherein two adjacent waveguides have this electrical insulator interposed between their opposing ends. And are electrically insulated and connected.

【0015】このような絶縁導波管は、隣接する導波管
の中に電気絶縁体の絶縁筒体の各先端部を挿入し、隣接
するフランジ部間に電気絶縁体の絶縁フランジ部を介在
させているので、電気絶縁箇所での耐電圧を増大させる
ことができる。これにより、絶縁フランジ部の厚さが薄
くても十分な耐電圧を得ることができ、マイクロ波の伝
送損失を増大させないで電気絶縁箇所での耐電圧を増大
させることができる。
In such an insulated waveguide, each end of an insulating cylinder of an electrical insulator is inserted into an adjacent waveguide, and an insulating flange of the electrical insulator is interposed between the adjacent flanges. As a result, the withstand voltage at the electrically insulating portion can be increased. Thus, a sufficient withstand voltage can be obtained even if the thickness of the insulating flange portion is small, and the withstand voltage at the electrically insulating portion can be increased without increasing the microwave transmission loss.

【0016】また、本発明に係る絶縁導波管において
は、電気絶縁体は隣接して相互に対向する導波管の中に
各先端部が挿入される絶縁筒体と、該絶縁筒体の外周に
一体に連接されていて隣接する各導波管のフランジ部で
挟持される絶縁フランジ部とを有する構造であり、隣接
する3つ以上の導波管はそれぞれの対向端部間にこの電
気絶縁体がそれぞれ介在されて電気的に絶縁されて接続
されていることを特徴とする。
In the insulated waveguide according to the present invention, the electrical insulator includes an insulated tubular body having respective tips inserted into adjacent and mutually opposed waveguides; And an insulating flange portion integrally connected to the outer periphery and sandwiched by flange portions of adjacent waveguides, and three or more adjacent waveguides are connected between their opposing ends. An insulator is interposed and electrically insulated and connected.

【0017】このような絶縁導波管でも、隣接する導波
管の中に電気絶縁体の絶縁筒体の各先端部を挿入し、隣
接するフランジ部間に電気絶縁体の絶縁フランジ部を介
在させているので、電気絶縁箇所での耐電圧を増大させ
ることができる。これにより、絶縁フランジ部の厚さが
薄くても十分な耐電圧を得ることができ、マイクロ波の
伝送損失を増大させないで電気絶縁箇所での耐電圧を増
大させることができる。さらに、この絶縁導波管では、
隣接する3つ以上の導波管はそれぞれの対向端部間にこ
の電気絶縁体をそれぞれ介在させて電気的に絶縁して接
続しているので、この電気絶縁体の使用個数Nに応じて
耐電圧をN倍に増大させることができる。
In such an insulated waveguide as well, each end of the insulating cylinder of the electric insulator is inserted into the adjacent waveguide, and the insulating flange of the electric insulator is interposed between the adjacent flanges. As a result, the withstand voltage at the electrically insulating portion can be increased. Thus, a sufficient withstand voltage can be obtained even if the thickness of the insulating flange portion is small, and the withstand voltage at the electrically insulating portion can be increased without increasing the microwave transmission loss. Furthermore, in this insulated waveguide,
Since three or more adjacent waveguides are electrically insulated and connected to each other with the electric insulator interposed between their opposing ends, the three or more waveguides are resistant in accordance with the number N of electric insulators used. The voltage can be increased N times.

【0018】また、本発明に係る絶縁導波管において
は、電気絶縁体の絶縁フランジ部が導波管のフランジ部
の外に突出する長さを有していることを特徴とする。
Further, the insulating waveguide according to the present invention is characterized in that the insulating flange portion of the electrical insulator has a length protruding outside the flange portion of the waveguide.

【0019】このような絶縁導波管によれば、導波管の
フランジ部の外での沿面放電を絶縁フランジ部の突出長
さに応じて防止することができる。
According to such an insulated waveguide, creeping discharge outside the flange of the waveguide can be prevented in accordance with the protruding length of the insulated flange.

【0020】また、本発明に係る絶縁導波管において
は、隣接する電気絶縁体の中心間の距離が、導波管へ入
射するマイクロ波の管内波長の1/4の整数倍に定めら
れていることを特徴とする。
In the insulated waveguide according to the present invention, the distance between the centers of adjacent electric insulators is set to an integral multiple of 1/4 of the guide wavelength of microwave incident on the waveguide. It is characterized by being.

【0021】このような絶縁導波管によれば、導波管内
への電気絶縁体の挿入により入射マイクロ波の反射波が
発生しても、これら反射波の移相が打ち消し合って、マ
イクロ波の伝送を支障なく行なわせることができる。
According to such an insulated waveguide, even if reflected microwaves of incident microwaves are generated due to insertion of an electrical insulator into the waveguide, the phase shifts of these reflected waves cancel each other out, and the microwaves are removed. Can be transmitted without any trouble.

【0022】[0022]

【発明の実施の形態】図1及び図2は本発明に係る絶縁
導波管における実施の形態の第1例を示したもので、図
1は本例の絶縁導波管の縦断面図、図2は本例で用いて
いる電気絶縁体の斜視図である。
1 and 2 show a first embodiment of an insulated waveguide according to the present invention. FIG. 1 is a longitudinal sectional view of the insulated waveguide of this embodiment. FIG. 2 is a perspective view of the electric insulator used in the present example.

【0023】本例の絶縁導波管は、図1に示すように、
隣接して相互に対向する2つの導波管3が電気絶縁体4
で絶縁されて接続されている。電気絶縁体4は、テトラ
フロロエチレン等の電気絶縁物により図1及び図2に示
すように、隣接して相互に対向する導波管3の矩形導波
管本体1の中に各先端部が挿入される矩形の絶縁筒体1
0と、該絶縁筒体10の外周に一体に連接されていて隣
接する各導波管3のフランジ部2で挟持される矩形の絶
縁フランジ部11とを有して構成されており、隣接する
2つの導波管3はその対向端部間にこの電気絶縁体4が
図示のように介在されて電気的に絶縁されて接続されて
いる。導波管3の中に挿入される絶縁筒体10の長さ
は、該導波管3の長辺の幅の約1/2程度の長さであ
る。隣接する2つの導波管3の機械的接続は、図示しな
いが、図3の場合と同様に電気絶縁性のボルト7とナッ
ト8で締結されて行なわれている。電気絶縁性のボルト
7とナット8とは、それぞれが合成樹脂で形成されてい
てもよく、あるいは金属製のボルト7とナット8を用い
て、このボルト7が貫通する各導波管3のフランジ部2
と絶縁フランジ部11の孔に絶縁チューブを挿入し、こ
の絶縁チューブにボルト7を通し、各フランジ部2に絶
縁ワッシャを当ててナット8で締結する構造等であって
もよい。電気絶縁体4の絶縁フランジ部11は、導波管
3のフランジ部2の外に所定の長さで突出されている。
As shown in FIG.
Two adjacent waveguides 3 facing each other are electrically insulating
Are insulated and connected. As shown in FIG. 1 and FIG. 2, each of the distal ends of the electric insulator 4 is formed in the rectangular waveguide body 1 of the adjacent waveguide 3 by an electric insulator such as tetrafluoroethylene. Rectangular insulating cylinder 1 to be inserted
0, and a rectangular insulating flange 11 that is integrally connected to the outer periphery of the insulating cylinder 10 and is sandwiched between the flanges 2 of the adjacent waveguides 3. The two waveguides 3 are electrically insulated and connected with the electric insulator 4 interposed therebetween as shown in the drawing. The length of the insulating cylinder 10 inserted into the waveguide 3 is about 約 of the width of the long side of the waveguide 3. Although not shown, the mechanical connection between two adjacent waveguides 3 is performed by fastening with electrically insulating bolts 7 and nuts 8 as in the case of FIG. The electrically insulating bolts 7 and nuts 8 may be made of synthetic resin, respectively, or may be formed by using metal bolts 7 and nuts 8 and flanges of the waveguides 3 through which the bolts 7 pass. Part 2
A structure may be adopted in which an insulating tube is inserted into the hole of the insulating flange portion 11, a bolt 7 is passed through the insulating tube, an insulating washer is applied to each flange portion 2, and the nut 8 is fastened. The insulating flange portion 11 of the electric insulator 4 projects outside the flange portion 2 of the waveguide 3 by a predetermined length.

【0024】このような絶縁導波管では、隣接する導波
管3の中に電気絶縁体4の絶縁筒体10の各先端部を挿
入し、隣接するフランジ部2間に電気絶縁体4の絶縁フ
ランジ部11を介在させているので、電気絶縁箇所での
耐電圧を増大させることができる。これにより、絶縁フ
ランジ部11の厚さが薄くても十分な耐電圧を得ること
ができ、マイクロ波の伝送損失を増大させないで電気絶
縁箇所での耐電圧を増大させることができる。
In such an insulated waveguide, each end of the insulating cylinder 10 of the electric insulator 4 is inserted into the adjacent waveguide 3, and the electric insulator 4 is inserted between the adjacent flanges 2. Since the insulating flange portion 11 is interposed, the withstand voltage at the electrically insulating portion can be increased. Accordingly, a sufficient withstand voltage can be obtained even if the thickness of the insulating flange portion 11 is small, and the withstand voltage at the electrically insulating portion can be increased without increasing the microwave transmission loss.

【0025】また、電気絶縁体4の絶縁フランジ部11
が導波管3のフランジ部2の外に突出されているので、
導波管3のフランジ部2の外での沿面放電を絶縁フラン
ジ部11の突出長さに応じて防止することができる。
The insulating flange portion 11 of the electric insulator 4
Is projected out of the flange portion 2 of the waveguide 3,
Creeping discharge outside the flange portion 2 of the waveguide 3 can be prevented according to the length of the protrusion of the insulating flange portion 11.

【0026】図3は本発明に係る絶縁導波管における実
施の形態の第2例を示した縦断面図である。
FIG. 3 is a longitudinal sectional view showing a second embodiment of the insulated waveguide according to the present invention.

【0027】本例の絶縁導波管では、隣接する3つの導
波管3はそれぞれの対向端部間に、前述した図2に示す
構造の電気絶縁体4が、それぞれ介在されて電気的に絶
縁されて前述したように接続されて構成されている。相
互の電気絶縁体4の中心間の距離Lは、入射マイクロ波
の管内波長λの1/4の整数倍に定められている。
In the insulated waveguide of this embodiment, the three adjacent waveguides 3 are electrically interposed between the opposing ends, with the electric insulator 4 having the structure shown in FIG. It is insulated and connected as described above. The distance L between the centers of the mutual electrical insulators 4 is determined to be an integral multiple of 1/4 of the guide wavelength λ of the incident microwave.

【0028】この例では、3つの導波管3を用いた例に
付いて示したが、M(2以上の自然数)個の導波管3を
用いた場合でも、(M−1)個の接続部に図2に示す電
気絶縁体4を介在させることができる。この場合も、隣
接する電気絶縁体4の中心間の距離Lは、入射マイクロ
波の管内波長λの1/4の整数倍に定められている。
In this example, an example in which three waveguides 3 are used is shown. However, even when M (a natural number of 2 or more) waveguides 3 are used, (M-1) number of waveguides 3 are used. The electrical insulator 4 shown in FIG. 2 can be interposed in the connection portion. Also in this case, the distance L between the centers of the adjacent electric insulators 4 is set to an integral multiple of 1 / of the guide wavelength λ of the incident microwave.

【0029】このような絶縁導波管でも、隣接する導波
管3の中に電気絶縁体4の絶縁筒体10の各先端部を挿
入し、隣接するフランジ部2間に電気絶縁体4の絶縁フ
ランジ部11を介在させているので、電気絶縁箇所での
耐電圧を増大させることができる。これにより、絶縁フ
ランジ部11の厚さが薄くても十分な耐電圧を得ること
ができ、マイクロ波の伝送損失を増大させないで電気絶
縁箇所での耐電圧を増大させることができる。さらに、
この絶縁導波管では、隣接する3つ以上の導波管3はそ
れぞれの対向端部間にこの電気絶縁体4をそれぞれ介在
させて電気的に絶縁して接続しているので、この電気絶
縁体4の使用個数Nに応じて耐電圧をN倍に増大させる
ことができる。
Also in such an insulated waveguide, each end of the insulating cylinder 10 of the electric insulator 4 is inserted into the adjacent waveguide 3, and the electric insulator 4 is inserted between the adjacent flanges 2. Since the insulating flange portion 11 is interposed, the withstand voltage at the electrically insulating portion can be increased. Accordingly, a sufficient withstand voltage can be obtained even if the thickness of the insulating flange portion 11 is small, and the withstand voltage at the electrically insulating portion can be increased without increasing the microwave transmission loss. further,
In this insulated waveguide, three or more adjacent waveguides 3 are electrically insulated and connected to each other with the electric insulator 4 interposed between their opposing ends. The withstand voltage can be increased N times according to the number N of the bodies 4 used.

【0030】また、電気絶縁体4の絶縁フランジ部11
を導波管3のフランジ部2の外に突出させているので、
導波管3のフランジ部2の外での沿面放電を絶縁フラン
ジ部11の突出長さに応じて防止することができる。
The insulating flange portion 11 of the electric insulator 4
Is projected out of the flange portion 2 of the waveguide 3,
Creeping discharge outside the flange portion 2 of the waveguide 3 can be prevented according to the length of the protrusion of the insulating flange portion 11.

【0031】さらに、隣接する電気絶縁体4の絶縁フラ
ンジ部11の中心間の距離Lを、導波管3へ入射するマ
イクロ波の管内波長の1/4の整数倍に定めているの
で、導波管3内への電気絶縁体4の挿入により入射マイ
クロ波の反射波が発生しても、これら反射波の移相が打
ち消し合って、マイクロ波の伝送を支障なく行なわせる
ことができる。
Further, since the distance L between the centers of the insulating flange portions 11 of the adjacent electric insulators 4 is set to an integral multiple of 1/4 of the guide wavelength of the microwave incident on the waveguide 3, Even if reflected waves of incident microwaves are generated by the insertion of the electrical insulator 4 into the wave tube 3, the phase shifts of these reflected waves cancel each other out, so that microwave transmission can be performed without any trouble.

【0032】なお、図3に示すような例においては、隣
接する電気絶縁体4の絶縁フランジ部11の間を同質の
絶縁体で導波管3の外周を一体に包囲するように被覆す
ることもできる。
In the example shown in FIG. 3, the space between the insulating flanges 11 of the adjacent electric insulators 4 is covered with the same insulator so as to integrally surround the outer periphery of the waveguide 3. Can also.

【0033】上記例では、矩形の絶縁導波管に本発明を
適用した例について示したが、本発明はこれに限定され
るものではなく、円形の絶縁導波管にも同様に適用でき
るものである。
In the above example, an example is shown in which the present invention is applied to a rectangular insulated waveguide. However, the present invention is not limited to this, and can be similarly applied to a circular insulated waveguide. It is.

【0034】[0034]

【発明の効果】本発明に係る絶縁導波管においては、隣
接する導波管の中に電気絶縁体の絶縁筒体の各先端部を
挿入し、隣接するフランジ部間に電気絶縁体の絶縁フラ
ンジ部を介在させているので、電気絶縁箇所での耐電圧
を増大させることができる。これにより、絶縁フランジ
部の厚さが薄くても十分な耐電圧を得ることができ、マ
イクロ波の伝送損失を増大させないで電気絶縁箇所での
耐電圧を増大させることができる。
In the insulated waveguide according to the present invention, each tip of the insulating cylinder of the electric insulator is inserted into the adjacent waveguide, and the insulation of the electric insulator is inserted between the adjacent flanges. Since the flange portion is interposed, the withstand voltage at the electrically insulating portion can be increased. Thus, a sufficient withstand voltage can be obtained even if the thickness of the insulating flange portion is small, and the withstand voltage at the electrically insulating portion can be increased without increasing the microwave transmission loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る絶縁導波管における実施の形態の
第1例の縦断面図である。
FIG. 1 is a longitudinal sectional view of a first example of an embodiment of an insulated waveguide according to the present invention.

【図2】本例で用いている電気絶縁体の斜視図である。FIG. 2 is a perspective view of an electric insulator used in the present example.

【図3】本発明に係る絶縁導波管における実施の形態の
第2例の縦断面図である。
FIG. 3 is a longitudinal sectional view of a second example of the embodiment of the insulated waveguide according to the present invention.

【図4】従来の絶縁導波管の縦断面図である。FIG. 4 is a longitudinal sectional view of a conventional insulating waveguide.

【図5】図4の絶縁導波管を改良した絶縁導波管の縦断
面図である。
FIG. 5 is a longitudinal sectional view of an insulated waveguide obtained by improving the insulated waveguide of FIG. 4;

【符号の説明】[Explanation of symbols]

1 矩形導波管本体 2 フランジ部 3 導波管 4 電気絶縁体 5 電気絶縁板 6 孔 7 ボルト 8 ナット 9 結合孔 10 絶縁筒体 11 絶縁フランジ部 DESCRIPTION OF SYMBOLS 1 Rectangular waveguide main body 2 Flange part 3 Waveguide 4 Electrical insulator 5 Electrical insulating plate 6 Hole 7 Bolt 8 Nut 9 Coupling hole 10 Insulating cylinder 11 Insulating flange

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 隣接して相互に対向する導波管が電気絶
縁体で絶縁されて接続されている絶縁導波管において、 前記電気絶縁体は隣接して相互に対向する前記導波管の
中に各先端部が挿入される絶縁筒体と、該絶縁筒体の外
周に一体に連接されていて隣接する前記各導波管のフラ
ンジ部で挟持される絶縁フランジ部とを有する構造であ
り、隣接する2つの前記導波管はその対向端部間に前記
電気絶縁体が介在されて電気的に絶縁されて接続されて
いることを特徴とする絶縁導波管。
1. An insulated waveguide in which adjacent and mutually opposed waveguides are insulated and connected by an electrical insulator, wherein said electrical insulator is a part of said adjacent and mutually opposed waveguides. A structure having an insulating cylindrical body into which each end is inserted, and an insulating flange portion integrally connected to the outer periphery of the insulating cylindrical body and sandwiched by flange portions of the adjacent waveguides. An insulated waveguide, wherein two adjacent waveguides are electrically insulated and connected with the electric insulator interposed between their opposing ends.
【請求項2】 隣接して相互に対向する導波管が電気絶
縁体で絶縁されて接続されている絶縁導波管において、 前記電気絶縁体は隣接して相互に対向する前記導波管の
中に各先端部が挿入される絶縁筒体と、該絶縁筒体の外
周に一体に連接されていて隣接する前記各導波管のフラ
ンジ部で挟持される絶縁フランジ部とを有する構造であ
り、隣接する3つ以上の前記導波管はそれぞれの対向端
部間に前記電気絶縁体がそれぞれ介在されて電気的に絶
縁されて接続されていることを特徴とする絶縁導波管。
2. An insulated waveguide in which adjacent and mutually opposing waveguides are insulated and connected by an electric insulator, wherein said electric insulator is adjacent to said mutually opposing waveguides. A structure having an insulating cylindrical body into which each end is inserted, and an insulating flange portion integrally connected to the outer periphery of the insulating cylindrical body and sandwiched by flange portions of the adjacent waveguides. An insulated waveguide, wherein three or more adjacent waveguides are electrically insulated and connected with each other with the electric insulator interposed between their opposing ends.
【請求項3】 前記電気絶縁体の前記絶縁フランジ部は
前記導波管の前記フランジ部の外に突出する長さを有し
ていることを特徴とする請求項1または2に記載の絶縁
導波管。
3. The insulated conductor according to claim 1, wherein the insulating flange portion of the electrical insulator has a length protruding outside the flange portion of the waveguide. Wave tube.
【請求項4】 隣接する前記電気絶縁体の中心間の距離
は、前記導波管へ入射するマイクロ波の管内波長の1/
4の整数倍に定められていることを特徴とする請求項2
に記載の絶縁導波管。
4. The distance between the centers of adjacent electric insulators is 1/1 / s of the guide wavelength of microwave incident on the waveguide.
3. The method according to claim 2, wherein the number is set to an integral multiple of 4.
4. The insulated waveguide according to claim 1.
JP2000186498A 2000-06-21 2000-06-21 Insulated waveguide Expired - Fee Related JP4183889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186498A JP4183889B2 (en) 2000-06-21 2000-06-21 Insulated waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186498A JP4183889B2 (en) 2000-06-21 2000-06-21 Insulated waveguide

Publications (2)

Publication Number Publication Date
JP2002009501A true JP2002009501A (en) 2002-01-11
JP4183889B2 JP4183889B2 (en) 2008-11-19

Family

ID=18686646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186498A Expired - Fee Related JP4183889B2 (en) 2000-06-21 2000-06-21 Insulated waveguide

Country Status (1)

Country Link
JP (1) JP4183889B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175707A (en) * 2011-02-23 2012-09-10 General Electric Co <Ge> Antenna protection device and system
JP2015185992A (en) * 2014-03-24 2015-10-22 島田理化工業株式会社 Insulation wave guide tube
EP3301754A1 (en) * 2016-09-29 2018-04-04 Rohde & Schwarz GmbH & Co. KG Hollow conductor system and method for assembling a hollow conductor system
EP3301750A1 (en) * 2016-09-29 2018-04-04 Rohde & Schwarz GmbH & Co. KG Hollow conductor connecting member, hollow conductor system and method for forming a hollow conductor system
WO2022135688A1 (en) * 2020-12-22 2022-06-30 Telefonaktiebolaget Lm Ericsson (Publ) An improved waveguide interface

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175707A (en) * 2011-02-23 2012-09-10 General Electric Co <Ge> Antenna protection device and system
JP2015185992A (en) * 2014-03-24 2015-10-22 島田理化工業株式会社 Insulation wave guide tube
EP3301754A1 (en) * 2016-09-29 2018-04-04 Rohde & Schwarz GmbH & Co. KG Hollow conductor system and method for assembling a hollow conductor system
EP3301750A1 (en) * 2016-09-29 2018-04-04 Rohde & Schwarz GmbH & Co. KG Hollow conductor connecting member, hollow conductor system and method for forming a hollow conductor system
US10347957B2 (en) 2016-09-29 2019-07-09 Rohde & Schwarz Gmbh & Co. Kg Hollow conductor system comprising at least two hollow conductor bundles connected by first and second connecting members and including respective hollow conductor lines and corresponding voids
WO2022135688A1 (en) * 2020-12-22 2022-06-30 Telefonaktiebolaget Lm Ericsson (Publ) An improved waveguide interface

Also Published As

Publication number Publication date
JP4183889B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP2000516020A (en) Electrical connection device
US8822846B2 (en) Cable holding structure
US4122298A (en) Offset constant thickness web for insulator support disk
JP4231001B2 (en) Insulated bus system and method of connecting the bus unit
JP2002009501A (en) Insulated waveguide
US8568166B2 (en) High-voltage coaxial cable and connector
EP0181955B2 (en) Electric connector
KR101489214B1 (en) Coaxial cable
JPH08148913A (en) Waveguide and microstrip line converter
US4757160A (en) Current-carrying connection between two elongate conductors of an electrical installation
JP4496402B2 (en) Gas insulation device and insulation spacer thereof
KR101697624B1 (en) gas insulating bus and manufacturing method thereof
KR100710036B1 (en) Connector for magnetron and coaxial cables and microwave oven using the same
KR20210014506A (en) RF cable earthing apparatus and making method of the same
JP2004282907A (en) Switchgear
US5886592A (en) Feedthrough ceramic capacitor having a grounding fitting for frictionally fixing the capacitor to a capacitor support
JP4028002B2 (en) Sheath insulated prefabricated connection for power cable
JP7205078B2 (en) automotive wiring harness
JP2008539687A (en) Data transmission
KR101877527B1 (en) Insulation protection pipes and insulation joint boxes for extra high voltage cables having the same
JP3224109B2 (en) Cable connection
WO2018159441A1 (en) Waveguide and signal transmission device
RU2047243C1 (en) Device for input of s h f signal into cathode slow-wave structure of inverted coaxial-cylinder magnetron
KR200189853Y1 (en) High voltage cable connecting housing by using frp
JP2024081332A (en) Method for manufacturing bushing and electric field mitigation shield

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees