JP2002008724A - Nano-particle composite polymer electrolyte and lithium secondary battery using this - Google Patents

Nano-particle composite polymer electrolyte and lithium secondary battery using this

Info

Publication number
JP2002008724A
JP2002008724A JP2000229960A JP2000229960A JP2002008724A JP 2002008724 A JP2002008724 A JP 2002008724A JP 2000229960 A JP2000229960 A JP 2000229960A JP 2000229960 A JP2000229960 A JP 2000229960A JP 2002008724 A JP2002008724 A JP 2002008724A
Authority
JP
Japan
Prior art keywords
polymer
electrolyte
gel
battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000229960A
Other languages
Japanese (ja)
Inventor
Ryoji Mishima
良治 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000229960A priority Critical patent/JP2002008724A/en
Publication of JP2002008724A publication Critical patent/JP2002008724A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gel polymer battery with excellent high-temperature characteristics and excellent low-temperature characteristics by increasing high temperature resistance and suppressing decreased content of an electrolyte solution caused by contraction at low temperature in a lithium gel polymer battery. SOLUTION: Inorganic, metal nano-particles having a particle size of 100 nm or less is mixed to a polymer to form a composite, and the particles are taken into a polymer network to spread the volume, to strengthen, to suppress contraction caused by temperature drop, and to impregnate a large volume of electrolyte solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムポリマー電
池に関するもので、より詳しくは、ポリマー電解質の改
良により、高温及び低温での電池性能を増大させたリチ
ウムポリマー電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium polymer battery, and more particularly to a lithium polymer battery having improved battery performance at high and low temperatures by improving a polymer electrolyte.

【0002】[0002]

【従来の技術】非水系リチウム二次電池の安全性を確保
する目的で、有機電解液を用いずに固体ポリマー電解質
を用いることが試みられてきている。しかし完全固体ポ
リマー(真性ポリマー)の適応では、まだ液系に比べ、
十分リチウムイオンの導電性が得られておらず、実用に
至っていない。
2. Description of the Related Art In order to ensure the safety of a non-aqueous lithium secondary battery, it has been attempted to use a solid polymer electrolyte without using an organic electrolyte. However, with the application of completely solid polymers (intrinsic polymers), compared to liquid systems,
Sufficient lithium ion conductivity has not been obtained, and it has not reached practical use.

【0003】そこで近年 溶液系と固体ポリマーの中間
を行くゲルポリマーが開発され、実用化が脚光を浴びて
いる。このゲルポリマーは大きく二つに分かれている。
一つは物理ゲルと称するもので、ポリマーにはPAN系
(ポリアクリルニトリル)PVDF系(ポリフッカビニ
ルデン)、PEO系(ポリエチレンオキシド)等があ
る。もう一方は、更に分子間架橋を行い、結合を強くし
たもので化学ゲルと称されるものである。ポリマーには
PMMA系(ポリメチルメタクレート)がある。
[0003] In recent years, a gel polymer has been developed which is intermediate between a solution system and a solid polymer, and its practical use has been spotlighted. This gel polymer is roughly divided into two.
One type is called a physical gel, and examples of the polymer include a PAN-based (polyacrylonitrile), PVDF-based (polyfukkavinyldene), and PEO-based (polyethylene oxide). The other is a so-called chemical gel which is further strengthened by further intermolecular cross-linking. Polymers include PMMA (polymethyl methacrylate).

【0004】物理ゲルの特徴は多くのポアーを含むため
多量の電解液を含ませることができるが、温度により、
構造が変化し易く、液漏れ等の原因に成り易い。一方化
学ゲルでは、構造変化は起こりにくいが、多量の電解液
を含ませることが、物理ゲルに比べ十分でなく、高いイ
オン導電性を得ることが難しい。
[0004] The physical gel is characterized by containing many pores, so that it can contain a large amount of electrolyte.
The structure is apt to change, which tends to cause liquid leakage and the like. On the other hand, chemical gels are unlikely to undergo a structural change, but contain a large amount of electrolytic solution, which is not sufficient compared to physical gels, and it is difficult to obtain high ionic conductivity.

【0005】[0005]

【発明が解決しようとする課題】従来のゲルポリマーが
液漏れを防ぐため、高温での樹脂の強度を上げるとイオ
ン導電性が下がるという相反する関係にあった。又 低
温においても樹脂の収縮により、電解液の磁実質的な含
有量が減少し、電池性能が著しく損なわれるという問題
があった。
In order to prevent liquid leakage of the conventional gel polymer, there was a contradictory relationship that when the strength of the resin at a high temperature was increased, the ionic conductivity was reduced. Further, even at a low temperature, there is a problem that the magnetic content of the electrolytic solution is reduced due to the shrinkage of the resin, and the battery performance is significantly impaired.

【0006】本発明は、上記問題を解決すべくなされた
ものであって、その目的とするところは、温度に安定
で、低温.高温特性の良いリチウムポリマー電池を提供
することにある。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to be stable in temperature and low in temperature. An object of the present invention is to provide a lithium polymer battery having good high-temperature characteristics.

【0007】[0007]

【問題を解決するための手段】本発明者は、上記問題を
解決すべく、鋭意研究の結果、通常のゲル電解質にナノ
粒子の無機物を複合させることにより、高温特性及び低
温特性の優れたゲル電解質を得ることを見出し、本発明
を完成した。
Means for Solving the Problems The present inventor has conducted intensive studies to solve the above-mentioned problems. As a result, the present inventors have developed a gel having excellent high-temperature characteristics and low-temperature characteristics by combining a normal gel electrolyte with inorganic nanoparticles. The inventors have found that an electrolyte is obtained and completed the present invention.

【0008】上記ゲル電解質を形成するポリマーには、
上述したごとく、PVDF系、PEO系、PAN系そし
てPMMA系がある。これらのポリマーは既に、実用段
階に入っている。又これらポリマーと複合させるナノ粒
子には、AL、SiO、MgO、TiO等の
無機酸化物、Ni,Cu,Si等のLiと化合物を作ら
ない金属紛の中より選ばれる。これらのナノ粒子の平均
粒径は、100nm以下が良く、好ましくは50nm以
下である。
[0008] The polymer forming the gel electrolyte includes:
As described above, there are a PVDF type, a PEO type, a PAN type and a PMMA type. These polymers are already in the practical stage. The nanoparticles to be composited with these polymers are selected from inorganic oxides such as AL 2 O 3 , SiO 2 , MgO, and TiO 2 and metal powders that do not form a compound with Li such as Ni, Cu, and Si. The average particle size of these nanoparticles is preferably 100 nm or less, and more preferably 50 nm or less.

【0009】ナノ粒子複合ゲルポリマーの作製には、5
〜10%のナノ粒子を上記モマー又はオリゴマーに混
合、重合を行わせ、粉末ポリマーを得る。得られたポリ
マーに有機電解液を浸透させ、ポリゲルマーを得ること
もできるし、液状モノマーにナノ粒子を混合、重合後乾
燥個化し、有機電解液に浸透させ、さらに架橋させてゲ
ルポリマーを得ることもできる。
In order to prepare a nanoparticle composite gel polymer, 5
〜1010% of nanoparticles are mixed with the above-mentioned momer or oligomer and polymerized to obtain a powder polymer. The resulting polymer can be infiltrated with an organic electrolyte to obtain a polygelmer, or the nanoparticles can be mixed with a liquid monomer, dried and singulated after polymerization, then penetrated into the organic electrolyte, and further crosslinked to obtain a gel polymer. Can also.

【0010】上記ナノ粒子複合ゲルポリマーは、ナノ粒
子が、ポリマーのネットワークの中に入り、ポリマーの
局所的な自由空間を広げる。図1.模式図参照 そのた
め自由空間に入る電解液の量は増大し、低温での収縮が
抑えられるから低温での容量低下も少なくなる。
[0010] In the above nanoparticle composite gel polymer, the nanoparticles enter the polymer network and expand the local free space of the polymer. FIG. Refer to the schematic diagram. Therefore, the amount of the electrolytic solution entering the free space increases, and contraction at a low temperature is suppressed, so that a decrease in capacity at a low temperature is reduced.

【0011】低温の収縮を抑えるナノ粒子の効果は、粒
子が1μmに近い大きさになると、独立した粒子として
働き、ポリマーのネットの中には取りこまれないので、
殆ど効果がないことが知られている。ナノ粒子の量が多
くなると、その分電解液の浸透する量が減じるため、自
由空間を広げる効果と、ナノ粒子の体積の間には最適値
が存在する。ナノ粒子の量は体積率で5〜10%が好ま
しい。浸透する電解液は体積比で60%以上が望まし
く、高温(室温以上)で十分浸透させても低温でポリマ
ーの収縮により、余分の液が分離して、全体として有効
に働かなくなる。
[0011] The effect of the nanoparticles to suppress the shrinkage at low temperature is that when the particles reach a size close to 1 µm, they act as independent particles and cannot be incorporated into the polymer net.
It is known that it has little effect. As the amount of the nanoparticles increases, the amount of permeation of the electrolyte decreases correspondingly, so that there is an optimum value between the effect of expanding the free space and the volume of the nanoparticles. The amount of the nanoparticles is preferably 5 to 10% by volume. It is desirable that the volume of the electrolyte solution to penetrate is 60% or more by volume ratio. Even if the electrolyte solution is sufficiently penetrated at a high temperature (at a room temperature or more), the excess solution is separated due to shrinkage of the polymer at a low temperature, and the whole does not work effectively.

【0012】又 高温でも、ポリマーの熱膨張による架
橋が、はずれ、ポリマーと液が分離し、性能が下がるの
みか、液漏れの原因になる。ナノ粒子複合ポリマーで
は、ナノ粒子と樹脂網との相互作用により、高温でのポ
リマーの強度を増加させるので、高温での性能を維持す
ることができる。
[0012] Even at high temperatures, crosslinking due to thermal expansion of the polymer is lost, the polymer and the liquid are separated, and only the performance is reduced or the liquid is leaked. In the nanoparticle composite polymer, the interaction between the nanoparticles and the resin network increases the strength of the polymer at a high temperature, so that the performance at a high temperature can be maintained.

【0013】[0013]

【発明の実施の形態】発明の好適な実施形態として、ナ
ノ粒子複合ゲルポリマーの作製には、通常の重合により
作製した粉末ポリマーに電解質溶液とナノ粒子を加えて
スラリー化した後、加熱溶解してポリマー溶液となし、
架橋剤、触媒を加えてさらに重合させて(重合は熱重
合、UV重合、EV重合)ゲルポリマーを得ることもで
きるし、電解質溶液にモノマー、ナノ粒子、触媒を混
合、重合してポリマー溶液となし、以下同様の手順でも
得られる。
BEST MODE FOR CARRYING OUT THE INVENTION As a preferred embodiment of the invention, a nanoparticle composite gel polymer is prepared by adding an electrolyte solution and nanoparticles to a powdered polymer prepared by ordinary polymerization, forming a slurry, and then heating and dissolving. And a polymer solution,
A gel polymer can be obtained by adding a cross-linking agent and a catalyst and further polymerizing (polymerization is thermal polymerization, UV polymerization, EV polymerization). Alternatively, a monomer, nanoparticles, and a catalyst are mixed with an electrolyte solution and polymerized to form a polymer solution. None, and can be obtained by the same procedure.

【0014】他の実施形態として、ポリマー電池への応
用がある。薄膜状のゲル膜を有機溶媒電解液を浸透させ
たセパレーターの替わりに使用する方法である。反応前
溶液をスペーサーを用い、一定の厚みにセットした後、
重合/ゲル化反応を行わせ、50〜100μmのゲル膜
を作製する。ゲル膜の各々の面に正極板と負極板のシー
トを張り合わせ、電池を組み立てる方法がとられる。
Another embodiment is applied to a polymer battery. This is a method in which a thin gel film is used instead of a separator impregnated with an organic solvent electrolyte. After setting the pre-reaction solution to a certain thickness using a spacer,
The polymerization / gelation reaction is performed to produce a gel film of 50 to 100 μm. A method of assembling a battery by attaching sheets of a positive electrode plate and a negative electrode plate to each surface of the gel film is adopted.

【0015】さらに電池の効率(不可逆容量の低減)を
あげる為に正極、負極を構成している金属酸化物紛及び
炭素紛とゲルポリマーを混錬して、各々粒子をゲルポリ
マーで覆うような状態でスラリー化し、正極板、負極板
をシート状に成形、セパレーター代替のゲル膜の両面に
張り合わせ、電池を組みあげることが有効である。
Further, in order to increase the efficiency of the battery (reduction of irreversible capacity), the metal oxide powder and carbon powder constituting the positive electrode and the negative electrode are kneaded with a gel polymer, and each particle is covered with the gel polymer. It is effective to form a slurry in a state, form a positive electrode plate and a negative electrode plate into a sheet shape, and attach them to both sides of a gel film instead of a separator to assemble a battery.

【0016】又 負極にLi金属や合金の薄板をそのま
ま使用することが可能になる。接触する電解質塩がゲル
ポリマーである為、物理的拘束により、デンドライトの
発生及び成長が阻止されるためである。Li金属を用い
ることにより、負極容量は得られる最高の理論容量に近
ずけられる。
Also, it is possible to use a thin plate of Li metal or alloy as it is for the negative electrode. This is because the generation and growth of dendrites are prevented by physical constraint because the electrolyte salt in contact is a gel polymer. By using Li metal, the anode capacity can be approached to the highest theoretical capacity obtained.

【0017】ポリマー電池に使用される正極活物質はL
iCoO、LiNiO、LiMn等或るいは
それらの複合材が使われ、負極材には炭素材、Sn酸化
物、Li金属又はLi合金等が使われる。それ以外にも
溶媒で使用可能な正極材、負極材の使用はすべて可能で
ある。
The positive electrode active material used in the polymer battery is L
iCoO 2 , LiNiO 2 , LiMn 2 O 4 or a composite material thereof is used, and a carbon material, Sn oxide, Li metal or Li alloy is used as a negative electrode material. Other than that, the use of a positive electrode material and a negative electrode material that can be used in a solvent is all possible.

【0018】[0018]

【実施例】本発明を実施例及び比較例により、さらに具
体的に説明する。 [ゲルポリマーの作製]PAN(ポリアクリルニトリ
ル)に高分子分散剤で分散処理を施した、平均粒径約5
0nmのAl粒子5%をMNP(N−メチルピロ
リドン)と共に溶解、スラリー化した。そのスラリーを
ガラス板上に約100μmに塗布後、80〜100℃で
約12時間真空乾燥を行い、溶媒を抽出薄膜を作製し
た。
The present invention will be described more specifically with reference to examples and comparative examples. [Preparation of gel polymer] PAN (polyacrylonitrile) was subjected to dispersion treatment with a polymer dispersant, and had an average particle size of about 5
Dissolving 5% Al 2 O 3 particles of 0nm with MNP (N-methylpyrrolidone) was slurried. After applying the slurry to a thickness of about 100 μm on a glass plate, the slurry was vacuum-dried at 80 to 100 ° C. for about 12 hours to extract a solvent to form a thin film.

【0019】次にこの膜をPC(ポリカーボネイト):
EC(エチレンカーボネイト):DMC(ジメチルカー
ボネイト)1:1:1の溶媒に1MのLiBFを溶か
した溶液を−10℃にて平衡膨潤するまで含浸させ、ゲ
ルポリマー電解質を得た。上記ゲル状ポリマー膜の電解
質溶液の含有量は−10℃で40%であり、120℃加
熱までポリマーと電解液の分離は生じなかった。
Next, this film is made of PC (polycarbonate):
A solution prepared by dissolving 1 M LiBF 4 in a solvent of EC (ethylene carbonate): DMC (dimethyl carbonate) 1: 1: 1 was impregnated at −10 ° C. until equilibrium swelling was obtained to obtain a gel polymer electrolyte. The content of the electrolyte solution in the gel polymer membrane was 40% at -10 ° C, and the polymer and the electrolytic solution did not separate until heated at 120 ° C.

【0020】[イオン導電性の測定]上記ゲルポリマー
膜を−10℃において交流インピーダンス法により、導
電性の測定をおこなった。その結果導電率は−10℃で
10−4S/cmであった。
[Measurement of Ionic Conductivity] Conductivity of the gel polymer film was measured at −10 ° C. by an alternating current impedance method. As a result, the conductivity was 10-4 S / cm at -10C.

【0021】[比較例]実施例において、ナノ粒子のA
を添加しなかった以外は実施例と全く同じ方法
でゲル薄膜を得て、同じ方法で測定を行った。−10℃
での電解質液の含有量は30%であり、100℃加熱で
ポリマーと溶液の分離が生じた。イオン導電率の測定で
は、−10℃で10−5S/cmであった。
[Comparative Example] In the examples, the nanoparticles A
A gel thin film was obtained in exactly the same manner as in the example except that l 2 O 3 was not added, and the measurement was performed in the same manner. -10 ° C
Was 30%, and the polymer and the solution were separated by heating at 100 ° C. In the measurement of ionic conductivity, it was 10-5 S / cm at -10 degreeC.

【0022】[0022]

【発明の効果】以上説明した如く、ナノ粒子を複合させ
たポリマーに電解質溶液を含浸させたゲルポリマーを用
いることにより、低温での収縮を抑え、溶液の含浸量を
低下することなく、低温特性の優れたゲルポリマー電池
を提供することができる。
As described above, by using a gel polymer obtained by impregnating an electrolyte solution with a polymer in which nanoparticles are composited, shrinkage at a low temperature can be suppressed, and the low-temperature properties can be obtained without reducing the amount of solution impregnation. And a gel polymer battery excellent in the above.

【0023】[0023]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 模式図面Fig. 1 Schematic drawing

【符号の説明】[Explanation of symbols]

1‥ ナノ粒子 2‥ ポリマーネット 1 ‥ Nanoparticles 2 ‥ Polymer net

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と負極及びポリマー電解質を備えたポ
リマー電解質電池においてポリマー電解質基材に、無機
ナノ粒子紛を複合させたポリマー電解質を用いることを
特徴とするリチウムポリマー電池。
1. A lithium polymer battery comprising: a polymer electrolyte battery provided with a positive electrode, a negative electrode, and a polymer electrolyte, wherein a polymer electrolyte in which inorganic nanoparticle powder is compounded is used as a polymer electrolyte substrate.
【請求項2】紛状又は液状の電解質モノマー、或いはオ
リゴマーに粒径100nm以下からなる無機ナノ粒子を
均一混合した後、重合或いは架橋して得られたポリマー
に電解質溶液を含ませた複合ゲルポリマーを用いること
を特徴とする請求項1のリチウムポリマー電池。
2. A composite gel polymer comprising a polymer obtained by uniformly mixing inorganic nanoparticles having a particle size of 100 nm or less with a powdery or liquid electrolyte monomer or oligomer, and then polymerizing or cross-linking the polymer to contain an electrolyte solution. The lithium polymer battery according to claim 1, wherein
JP2000229960A 2000-06-23 2000-06-23 Nano-particle composite polymer electrolyte and lithium secondary battery using this Pending JP2002008724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229960A JP2002008724A (en) 2000-06-23 2000-06-23 Nano-particle composite polymer electrolyte and lithium secondary battery using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229960A JP2002008724A (en) 2000-06-23 2000-06-23 Nano-particle composite polymer electrolyte and lithium secondary battery using this

Publications (1)

Publication Number Publication Date
JP2002008724A true JP2002008724A (en) 2002-01-11

Family

ID=18722987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229960A Pending JP2002008724A (en) 2000-06-23 2000-06-23 Nano-particle composite polymer electrolyte and lithium secondary battery using this

Country Status (1)

Country Link
JP (1) JP2002008724A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060046149A1 (en) * 2004-09-02 2006-03-02 Yong Hyun H Organic/inorganic composite porous film and electrochemical device prepared thereby
US7682740B2 (en) 2004-02-07 2010-03-23 Lg Chem, Ltd. Organic/inorganic composite porous layer-coated electrode and electrochemical device comprising the same
JP2014056822A (en) * 2012-09-13 2014-03-27 Samsung Electronics Co Ltd Lithium battery
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
CN108886164A (en) * 2016-03-28 2018-11-23 (株)七王能源 A kind of secondary cell composite electrolyte with multi-layer structure
CN109301320A (en) * 2018-09-30 2019-02-01 中国航发北京航空材料研究院 The composite solid electrolyte and preparation method of inorganic solid electrolyte vertical orientation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682740B2 (en) 2004-02-07 2010-03-23 Lg Chem, Ltd. Organic/inorganic composite porous layer-coated electrode and electrochemical device comprising the same
US20060046149A1 (en) * 2004-09-02 2006-03-02 Yong Hyun H Organic/inorganic composite porous film and electrochemical device prepared thereby
US8409746B2 (en) 2004-09-02 2013-04-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US9490463B2 (en) 2004-09-02 2016-11-08 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
JP2014056822A (en) * 2012-09-13 2014-03-27 Samsung Electronics Co Ltd Lithium battery
CN108886164A (en) * 2016-03-28 2018-11-23 (株)七王能源 A kind of secondary cell composite electrolyte with multi-layer structure
CN108886164B (en) * 2016-03-28 2022-05-06 (株)七王能源 Composite electrolyte with multilayer structure for secondary battery
CN109301320A (en) * 2018-09-30 2019-02-01 中国航发北京航空材料研究院 The composite solid electrolyte and preparation method of inorganic solid electrolyte vertical orientation

Similar Documents

Publication Publication Date Title
EP2713432B1 (en) Novel polymer electrolyte and lithium secondary battery including same
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
KR102518144B1 (en) All-solid-state battery and a method of manufacturing the same includes double layer solid electrolyte
EP2706605B1 (en) Electrode assembly having a novel structure and secondary battery using same
CN111422919B (en) Quaternary positive electrode material, preparation method thereof, positive electrode and battery
CN108232286B (en) Preparation method of composite positive electrode added with polymer and application of composite positive electrode in solid-state battery
CN109244546B (en) Solid composite electrolyte film, preparation method thereof and all-solid-state battery
KR20170012962A (en) all solid state battery and its making method
US11710852B2 (en) Separator for secondary battery and lithium secondary battery including same
JP2000040527A (en) Stacked electrolyte and battery using it
WO2002087004A1 (en) Lithium polymer secondary cell
KR20150045336A (en) Anode active material, anode including the anode active material, and lithium secondary battery including the anode
CN111952672A (en) Preparation method and application of high-performance solid electrolyte composite membrane
CN114335536B (en) Plastic crystal modified positive electrode solid-state battery and preparation method thereof
CN110176568A (en) A kind of preparation method of high-performance coating diaphragm
KR101553957B1 (en) Method for preparing electrode active material for rechargeable lithium battery, electrode active material for rechargeable lithium battery, and rechargeable lithium battery
KR100306870B1 (en) Polymer electrolyte and lithium-polymer battery using the same
JP2002008724A (en) Nano-particle composite polymer electrolyte and lithium secondary battery using this
KR20220055930A (en) Coating composition for separator of secondary battery and method of manufacturing the same
JP5711825B2 (en) Integrated electrode assembly and secondary battery using the integrated electrode assembly
CN115483431B (en) Diaphragm-free solid lithium ion battery and preparation method thereof
CN114388745B (en) High-performance lithium ion battery self-supporting polymer thick pole piece and preparation method thereof
KR101571531B1 (en) All-solid polymer electrolyte film containing micro-particles and the all-solid lithium polymer battery thereof
Wang et al. Preparation of monodispersed ZrO2 nanoparticles and their applications in poly [(vinylidene fluoride)‐co‐hexafluoropropylene]‐based composite polymer electrolytes
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it