JP2002008660A - Positive electrode active material for lithium secondary battery and its manufacturing method, and lithium secondary battery using it - Google Patents

Positive electrode active material for lithium secondary battery and its manufacturing method, and lithium secondary battery using it

Info

Publication number
JP2002008660A
JP2002008660A JP2000193749A JP2000193749A JP2002008660A JP 2002008660 A JP2002008660 A JP 2002008660A JP 2000193749 A JP2000193749 A JP 2000193749A JP 2000193749 A JP2000193749 A JP 2000193749A JP 2002008660 A JP2002008660 A JP 2002008660A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000193749A
Other languages
Japanese (ja)
Inventor
Takashi Kimura
高志 木村
Takeshi Sakurai
健 桜井
Tadashi Sugihara
忠 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000193749A priority Critical patent/JP2002008660A/en
Publication of JP2002008660A publication Critical patent/JP2002008660A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a fall of charge/discharge capacity and volume energy density by having no phase change of rhombic crystal even if charge/discharge is repeated, or even if phase change exits, by stabilizing a spinel-phase-like 2nd phase generated by phase change, with constant invertion ratio. SOLUTION: A composite expressed with LiAxByMn1-x-yO2 is included by substituting a part of Mn of a manganese acid lithium compound with an element A having a larger ionic radius than Mn and an element B having a smaller ionic radius than Mn. However, A is the element of either Sn or Pb or both elements, and B is one sort or two sorts or more of elements chosen from a group which consists of Ti, Cr, Fe, and Al. Moreover, 0<x<0.3, 0<y<0.3, and 0<(x+y)<0.3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に用いられる正極活物質及びその製造方法と、この正極
活物質を用いたリチウム二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material used for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the positive electrode active material.

【0002】[0002]

【従来の技術】一般的に、リチウム二次電池の概念は、
図4に示すように、内部がセパレータ1により第1室2
a及び第2室2bに区画された容器2に電解液3が貯留
され、第1室2aに正電極4が電解液3に浸漬した状態
で収容され、更に第2室2bに負電極5が電解液3に浸
漬した状態で収容される構造となっている。このリチウ
ム二次電池1では、正電極4はアルミメッシュ板に活物
質を含むスラリーを湿布又は含浸させた後に、この湿布
物又は含浸物を加熱・乾燥してアルミメッシュ板に活物
質を付着させることにより形成され、負電極5は黒鉛等
に代表される炭素又は金属リチウム等により板状に形成
される。
2. Description of the Related Art Generally, the concept of a lithium secondary battery is as follows.
As shown in FIG.
The electrolyte 3 is stored in the container 2 partitioned into a and a second chamber 2b, the positive electrode 4 is accommodated in the first chamber 2a in a state of being immersed in the electrolyte 3, and the negative electrode 5 is further accommodated in the second chamber 2b. It is structured to be accommodated in a state of being immersed in the electrolyte 3. In the lithium secondary battery 1, the positive electrode 4 is such that a slurry containing an active material is wetted or impregnated on an aluminum mesh plate, and then the wetted material or impregnated material is heated and dried to attach the active material to the aluminum mesh plate. The negative electrode 5 is formed in a plate shape from carbon or metal lithium represented by graphite or the like.

【0003】上記正電極4に付着させる活物質として
は、従来よりLiCoO2又はLiNiO2が使用されて
いるが、近年、斜方晶LiMnO2がリチウム二次電池
用正極活物質として機能することが報告されている(I.
Koetsushau,et.al.,J.Electrochem.Soc.,142(1995)2906
-2910)。しかし、この斜方晶LiMnO2からなる正極
活物質を正電極に付着させ、この正電極をリチウム二次
電池に組込んで充放電を繰返すと、充放電サイクルの進
行に伴って、組成式がLiMnO4で代表される立方晶
系に属する結晶構造を有するスピネル相的な相、若しく
はスピネル相が正方晶に歪んだと考えられる相の生成が
進行し、上記活物質の特徴である充放電の高容量性が次
第に失われるという問題が指摘されている(I.Koetsush
au and J.R.Dahn,J.Electrochem.Soc.,145(1998)2672-2
677)。
As the active material to be attached to the positive electrode 4, LiCoO 2 or LiNiO 2 has been conventionally used. In recent years, orthorhombic LiMnO 2 has been known to function as a positive electrode active material for a lithium secondary battery. Has been reported (I.
Koetsushau, et.al., J. Electrochem. Soc., 142 (1995) 2906
-2910). However, when the positive electrode active material composed of the orthorhombic LiMnO 2 is attached to a positive electrode, and the positive electrode is incorporated in a lithium secondary battery and charging and discharging are repeated, the composition formula is increased as the charging and discharging cycle progresses. Generation of a spinel phase having a crystal structure belonging to a cubic system represented by LiMnO 4 , or a phase in which the spinel phase is considered to be distorted into tetragonal crystal proceeds, and the charge and discharge characteristic of the active material described above. It has been pointed out that high capacity is gradually lost (I.Koetsush
au and JR Dahn, J. Electrochem. Soc., 145 (1998) 2672-2
677).

【0004】この点を解消するために、特開平6−34
9494号公報には、斜方晶LiMnO2に対して元素
添加を行い、安定化した組成物、即ち組成式Lixy
nOzで表される化合物(但し、AはH,Na,K,M
g,Ca,Sr,Ti,V,Cr,Fe,Ni,Co及
びAlからなる群より選ばれた1種又は2種以上の元素
であり、0<x<1.5であり、0<y<1であり、2
<z<3である。)からなる非水二次電池の固溶体材料
の製造方法が開示されている。この非水二次電池の固溶
体材料の製造方法では、元素添加を行うことにより安定
化した正極活物質を正電極に付着させ、この正電極を組
込んだリチウム二次電池において充放電を繰返すと、斜
方晶LiMnO2が安定化するので、スピネル相の生成
が阻止され、リチウム二次電池のサイクル寿命を向上で
きるようになっている。
To solve this problem, Japanese Patent Laid-Open Publication No. Hei 6-34
No. 9494 discloses a composition stabilized by adding an element to orthorhombic LiMnO 2 , that is, a composition formula Li x A y M
a compound represented by nO z (where A is H, Na, K, M
g, Ca, Sr, Ti, V, Cr, Fe, Ni, Co, and at least one element selected from the group consisting of Al, 0 <x <1.5, 0 <y <1 and 2
<Z <3. )), A method for producing a solid solution material for a non-aqueous secondary battery is disclosed. In this method for producing a solid solution material for a nonaqueous secondary battery, a positive electrode active material stabilized by adding an element is attached to a positive electrode, and charge and discharge are repeated in a lithium secondary battery incorporating the positive electrode. Since the orthorhombic LiMnO 2 is stabilized, the formation of the spinel phase is prevented, and the cycle life of the lithium secondary battery can be improved.

【0005】また特許第2547137号公報には、斜
方晶に同定されていないが、Li−Mn−O系活物質の
充放電サイクル特性を高める方法として、Mn酸化物に
Liを含有させたMn−Li合成物からなるリチウム二
次電池用正極活物質の、Mnの一部を周期律表6A族に
属するMo及びWのいずれか一方又は双方の元素で置換
してなる正極活物質、即ち複数元素による置換で特性の
改善に効果のある正極活物質が開示されている。この正
極活物質では、複数元素による置換でMn−Li合成物
の結晶構造が安定化するため、充放電サイクル特性が高
まると考察されている。更に特開平8−78007号公
報には、LiNiO2系の正極活物質の放電容量を改善
するために、LiaNib1 c2 d2で示される層状構
造を有する複合酸化物のうち、M1がMn,Fe,T
i,V,Cr又はCuのいずれかの元素であり、M2
Al,In及びSnからなる群より選ばれた1種又は2
種以上の元素であるリチウム二次電池が開示されてい
る。このリチウム二次電池では、課題解決手段の一つと
してAl,In,Sn等の元素でNiの一部を置換する
際に、Mn,Fe,Ti,V,Cr,Cuを加えると、
容易に置換化合物を生成できることが記載されている。
このイオン半径の異なる2元素で置換すると、置換が容
易になることは本発明でも結果的に利用しているけれど
も、上記公報では、2元素で置換すると、充電時の酸素
原子間の反発を抑制できるので、層状構造の安定化、即
ち放電容量を改善できると説明している。
In Japanese Patent No. 2547137, although not identified as orthorhombic, as a method for improving the charge-discharge cycle characteristics of a Li—Mn—O-based active material, Mn oxide containing Mn oxide contains Mn oxide. -A positive electrode active material for a lithium secondary battery comprising a Li compound, in which a part of Mn is replaced with one or both elements of Mo and W belonging to Group 6A of the periodic table, that is, a plurality of positive electrode active materials. A positive electrode active material that is effective in improving characteristics by substitution with an element is disclosed. It is considered that in this positive electrode active material, the crystal structure of the Mn-Li composite is stabilized by substitution with a plurality of elements, and thus the charge-discharge cycle characteristics are enhanced. Further, Japanese Patent Laid-Open No. 8-78007, in order to improve the discharge capacity of the positive electrode active material LiNiO 2 based, the complex oxide having a layered structure represented by Li a Ni b M 1 c M 2 d O 2 of, M 1 is Mn, Fe, T
i, V, Cr or Cu, wherein M 2 is one or two selected from the group consisting of Al, In and Sn
Lithium secondary batteries that are more than one element are disclosed. In this lithium secondary battery, Mn, Fe, Ti, V, Cr, and Cu are added when a part of Ni is replaced by an element such as Al, In, or Sn as one of means for solving the problem.
It is described that a substituted compound can be easily produced.
In the present invention, the fact that substitution with two elements having different ionic radii facilitates substitution is utilized as a result in the present invention. However, in the above publication, when substitution with two elements suppresses repulsion between oxygen atoms during charging. It is described that, since it is possible, the layered structure can be stabilized, that is, the discharge capacity can be improved.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来の特
開平6−349494号公報に示された非水二次電池の
固溶体材料の製造方法では、所定の元素を添加すること
により安定化した正極活物質が得られ、この正極活物質
は、未添加のLiMnO2と比較して、初期充放電容量
を改善することができるけれども、充放電サイクル特性
は未だ改善されていない。この充放電サイクル特性が改
善されない理由としては、充放電反応においてMnの価
数が3価と4価との間を変化する際にヤーンテラー効果
(元素の価数が変化することにより、結晶が部分的に伸
びたり縮んだりして歪むこと。)により結晶に与えられ
る歪みや、斜方晶からスピネル相的な第2相への相変態
の進行に伴って生じる体積変化により与えられる結晶粒
子の歪みが充放電サイクルを重ねる毎に蓄積され、これ
らの歪みが活物質相互や活物質と導電材との電気的接合
を阻害するように変化したり、或いは上記相変態により
生成したスピネル相的な第2相が充放電に寄与しないた
め、充放電サイクルの進行に伴って充放電の容量が次第
に低下するものと考えられる。
However, in the conventional method for producing a solid solution material for a non-aqueous secondary battery disclosed in Japanese Patent Application Laid-Open No. 6-349494, a positive electrode stabilized by adding a predetermined element is used. An active material was obtained, and this positive electrode active material could improve the initial charge / discharge capacity as compared with the unadded LiMnO 2 , but the charge / discharge cycle characteristics were not yet improved. The reason why the charge / discharge cycle characteristics are not improved is that when the valence of Mn changes between trivalent and tetravalent in the charge / discharge reaction, the Jahn-Teller effect (the valence of the element changes, and Strain due to the expansion and contraction of the crystal grains), and the strain of the crystal grains caused by the volume change caused by the progress of the phase transformation from the orthorhombic phase to the spinel phase second phase. Is accumulated each time charge and discharge cycles are repeated, and these strains change so as to inhibit the electrical connection between the active materials and the electrical connection between the active material and the conductive material, or the spinel-like phase generated by the phase transformation. Since the two phases do not contribute to charge and discharge, it is considered that the charge and discharge capacity gradually decreases as the charge and discharge cycle progresses.

【0007】また上記従来の特許2547137号公報
に示されたリチウム二次電池用正極活物質では、測定電
圧範囲が2〜3.8Vであることから、活物質の放電電
位が3.8V以下であると推察され、活物質の体積エネ
ルギ密度を高められない問題点がある。更に上記従来の
特開平8−78007号公報に示されたリチウム二次電
池では、正極活物質がNi基であり、結晶構造がLia
Nib1 c2 d2で示される層状構造であるため、充放
電を繰返すと、やはり上記と同様に充放電容量が次第に
低下するものと考えられる。
Further, in the positive electrode active material for a lithium secondary battery disclosed in the above-mentioned conventional Japanese Patent No. 2547137, since the measurement voltage range is 2 to 3.8 V, the discharge potential of the active material is 3.8 V or less. There is a problem that the volume energy density of the active material cannot be increased. Further, in the lithium secondary battery disclosed in the above-mentioned conventional Japanese Patent Application Laid-Open No. 8-78007, the positive electrode active material is Ni-based, and the crystal structure is Li a.
Since a layered structure represented by Ni b M 1 c M 2 d O 2, when repeated charge and discharge, is also considered that similarly to the above charge-discharge capacity decreases gradually.

【0008】本発明の目的は、充放電を繰返しても、斜
方晶の相変化がないか、或いはあっても相変化により生
成されるスピネル相的な第2相が一定の転化率で安定化
させることができ、充放電容量及び体積エネルギ密度の
低下を抑制することができる、リチウム二次電池用正極
活物質及びその製造方法並びにこれを用いたリチウム二
次電池を提供することにある。
It is an object of the present invention to provide a method in which, even when charging and discharging are repeated, there is no phase change of the orthorhombic system, or even if the phase change, the spinel-phase second phase generated by the phase change is stable at a constant conversion. It is an object of the present invention to provide a positive electrode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the same, which can be made to be capable of suppressing a decrease in charge / discharge capacity and volume energy density.

【0009】[0009]

【課題を解決するための手段】本発明者らは、充放電時
の活物質内を移動するLiイオンの通路を十分に確保で
きれば、充放電サイクル特性及び放電容量をともに改善
できるのではないかと考え、以下のような取組みで置換
すべき元素の絞込みを行った。充放電サイクルに対して
活物質は、充電時にLiイオンを放出し、かつ放電時に
Liイオンを取込むという反応を起こす。活物質の結晶
内部は、Mnが酸素に対して6配位した八面体からなる
層と、Liが酸素に対して6配位した八面体からなる層
とが相互に積み重なった層状構造をなしている。充電反
応では、Liは酸素と結合を断ち切り、酸素原子の最密
面(八面体の面の部分に相当する。)を通り抜けながら
活物質の表面まで伝導し、反対に放電反応では活物質の
表面からLiの空孔を埋めるように活物質の内部へ向っ
てLiが伝導する。
Means for Solving the Problems The present inventors have thought that if a sufficient path for Li ions moving in the active material during charging and discharging can be ensured, both the charging and discharging cycle characteristics and the discharge capacity can be improved. In consideration of this, elements to be replaced were narrowed down by the following approaches. In response to the charge / discharge cycle, the active material releases Li ions during charging and takes in Li ions during discharging. The inside of the crystal of the active material has a layered structure in which a layer composed of an octahedron in which Mn is coordinated to oxygen and a layer composed of an octahedron in which Li is coordinated to oxygen are mutually stacked. I have. In the charging reaction, Li cuts off the bond with oxygen and conducts to the surface of the active material while passing through the closest surface of oxygen atoms (corresponding to the octahedral surface). Conversely, the surface of the active material in the discharging reaction From the inside, Li conducts toward the inside of the active material so as to fill the voids of Li.

【0010】従って、放電容量がサイクル劣化するとい
うことは、活物質内部へ向けてのLiの伝導が阻害され
ることが原因であると考えられる。ここで代表的な活物
質の一つであるLiNiO2[Hiramo.et.al,Solid.stat
e.ionics.86/88(1996)791]と、開発対象の一つである
単斜晶LiMnO2[A.R.Armstrong&P.G.Brice,Nature3
81(1996)499]の構造の相違点を比較検討した結果、L
iの活物質内部の伝導において、障壁になる酸素原子の
最密面内の酸素原子の間隔に違いのあることが明らかに
なった。LiMnO2の最密酸素面の隙間の半径は0.
264Åであり、LiMnO2の最密酸素面の隙間の半
径は0.244Åであった。Liの伝導に最も適した酸
素最密面内の酸素原子の間隔は、LiNiO2又はLi
MnO2で異なるが、Liの伝導現象の障壁を小さくす
れば、放電反応においてLiがスムーズに伝導すると推
察される。
Therefore, it is considered that the cycle deterioration of the discharge capacity is caused by the inhibition of the conduction of Li into the active material. Here, one of the representative active materials, LiNiO 2 [Hiramo.et.al, Solid.stat
e.ionics.86 / 88 (1996) 791] and one of the objects to be developed, monoclinic LiMnO 2 [ARArmstrong & P.G.Brice, Nature3
81 (1996) 499], the difference in the structure was compared and found.
In the conduction inside the active material i, it was found that there was a difference in the spacing of oxygen atoms in the closest plane of oxygen atoms serving as barriers. The radius of the gap between the closest oxygen surfaces of LiMnO 2 is 0.1.
264 °, and the radius of the gap between the closest oxygen surfaces of LiMnO 2 was 0.244 °. The spacing of oxygen atoms in the oxygen closest plane that is most suitable for Li conduction is LiNiO 2 or LiNiO 2.
Although different for MnO 2 , it is assumed that if the barrier to the conduction phenomenon of Li is reduced, Li is smoothly conducted in the discharge reaction.

【0011】またLiの伝導が容易に起これば、障壁を
越える活性化過程で活物質の構造との相互作用も小さく
なり、構造体自体の安定性も増すと考えられる。そこ
で、酸素がLiと同時にMnとも結合していることを利
用し、Mnの一部を元素置換することで、その置換され
た原子と酸素との間隔が変化することにより、酸素最密
面内の酸素原子の間隔を間接的に制御することを検討す
ることとした。換言すれば、Liの伝導に最も適した酸
素最密面内の酸素原子の間隔を得るために、Mnとこの
Mnを置換した原子の平均イオン半径をパラメータとし
て、平均イオン半径を大きくする方向で置換元素の選定
を行い、実験で確認した結果、本発明をなすに至った。
[0011] Further, if the conduction of Li occurs easily, it is considered that the interaction with the structure of the active material is reduced in the activation process over the barrier, and the stability of the structure itself is increased. Therefore, utilizing the fact that oxygen is also bonded to Mn at the same time as Li, by substituting a part of Mn with an element, the distance between the substituted atom and oxygen changes, so that oxygen in the densest oxygen plane is changed. Indirect control of the spacing of the oxygen atoms in the compound was considered. In other words, in order to obtain the interval of oxygen atoms in the oxygen closest plane most suitable for Li conduction, Mn and the average ionic radius of the atom substituted for Mn are used as parameters to increase the average ionic radius. As a result of selecting a substitution element and confirming it by an experiment, the present invention has been achieved.

【0012】請求項1に係る発明は、マンガン酸リチウ
ム化合物の改良である。その特徴ある構成は、Mnの一
部を、Mnよりイオン半径の大きい元素Aと、Mnより
イオン半径の小さい元素Bとに置換して、次の式(1)
で表される組成物を含むところにある。 LiAxyMn1-x-y2 ……(1) 但し、AはSn又はPbのいずれか一方又は双方の元素
であり、BはTi,Cr,Fe及びAlからなる群より
選ばれた1種又は2種以上の元素であり、0<x<0.
3であり、0<y<0.3であり、0<(x+y)<
0.3である。
The invention according to claim 1 is an improvement of a lithium manganate compound. The characteristic configuration is as follows: a part of Mn is replaced with an element A having an ionic radius larger than Mn and an element B having an ionic radius smaller than Mn, and the following formula (1) is obtained.
And a composition represented by the formula: LiA x B y Mn 1-xy O 2 ...... (1) where, A is an element of one or both of Sn or Pb, B is selected from the group consisting of Ti, Cr, Fe and Al 1 Species or two or more elements, and 0 <x <0.
3, 0 <y <0.3, and 0 <(x + y) <
0.3.

【0013】この請求項1に記載されたリチウム二次電
池用正極活物質では、充放電サイクルに伴う体積変化が
小さい、即ち相変化が起こり難くかつ相変態により生成
された第2相においても充放電反応を示す。この結果、
充放電を繰返しても、斜方晶の相変化がないか、或いは
あっても相変化により生成されるスピネル相的な第2相
が一定の転化率で安定化させることができるので、充放
電容量の低下を抑制することができるとともに、体積エ
ネルギ密度を低下させることはない。また初回充電前の
結晶系は斜方晶系で指数付けされることが好ましい。更
に上記式(1)において、AがSn又はPbのいずれか
一方又は双方の元素であり、BがCrであり、0.00
1≦x≦0.07であり、0.001≦y≦0.1であ
り、0.02≦(x+y)≦0.17であることが好ま
しい。
In the positive electrode active material for a lithium secondary battery according to the first aspect, the volume change accompanying the charge / discharge cycle is small, that is, the phase change hardly occurs and the second phase formed by the phase transformation is charged. It shows a discharge reaction. As a result,
Even if charge / discharge is repeated, there is no phase change of the orthorhombic phase, or even if there is, the spinel phase-like second phase generated by the phase change can be stabilized at a constant conversion. A reduction in capacity can be suppressed, and a volume energy density does not decrease. Further, it is preferable that the crystal system before the first charge is indexed by an orthorhombic system. Further, in the above formula (1), A is one or both elements of Sn or Pb, B is Cr, and 0.00
It is preferable that 1 ≦ x ≦ 0.07, 0.001 ≦ y ≦ 0.1, and 0.02 ≦ (x + y) ≦ 0.17.

【0014】請求項3に係る発明は、被秤量物の総量を
100重量%とするとき、Mnの酸化物又は酢酸塩2.
9〜5.3重量%と、Sn又はPbのいずれか一方又は
双方の酸化物,水酸化物,塩化物或いは酢酸塩のいずれ
か或いはこれらの混合物により構成された添加物C0.
01〜1.3重量%と、Ti,Cr,Fe及びAlから
なる群より選ばれた1種又は2種以上の酸化物,水酸化
物又は塩化物のいずれか又はこれらの混合物により構成
された添加物D0.15〜0.3重量%とをそれぞれ秤
量する工程と;秤量して直ちに、或いはMnの酸化物又
は酢酸塩と添加物C又はDのいずれか一方又は双方とを
750〜850℃の所定温度で5〜25時間空気中で焼
成して中間体を生成した後に、秤量物の混合物,又は秤
量物及び中間体の混合物,或いは中間体に、水酸化リチ
ウム1水和物を、Mnに対するLiの比で7〜60倍と
なるように添加し、140〜280℃の所定の温度で2
〜30時間保持する水熱条件下で反応させる工程と;反
応物を水又はエタノールで洗浄した後に真空乾燥する工
程とを含むリチウム二次電池用正極活物質の製造方法で
ある。この請求項3に記載された方法で正極活物質を製
造することにより、請求項1ないし3いずれかに記載さ
れた正極活物質を得ることができる。また上記請求項1
ないし3いずれかに記載された正極活物質を用いてリチ
ウム二次電池を製造することにより、このリチウム二次
電池の充放電容量の低下を抑制することができる。
According to a third aspect of the present invention, when the total amount of the objects to be weighed is 100% by weight, an oxide or acetate of Mn is added.
9 to 5.3% by weight, and an additive C0. Composed of one or both of oxides, hydroxides, chlorides and acetates of Sn or Pb, or a mixture thereof.
0.01 to 1.3% by weight and one or more oxides, hydroxides or chlorides selected from the group consisting of Ti, Cr, Fe and Al, or a mixture thereof. Weighing 0.15 to 0.3% by weight of the additive D; immediately after weighing, or 750 to 850 ° C. using the oxide or acetate of Mn and one or both of the additives C and D. After calcination in air at a predetermined temperature for 5 to 25 hours to produce an intermediate, lithium hydroxide monohydrate is added to a mixture of weighed substances, or a mixture of weighed substances and intermediate, or Mn. At a predetermined temperature of 140 to 280 ° C.
A method for producing a positive electrode active material for a lithium secondary battery, comprising: a step of reacting under hydrothermal conditions for holding for up to 30 hours; and a step of washing the reaction product with water or ethanol and then drying it in a vacuum. By manufacturing the positive electrode active material by the method described in claim 3, the positive electrode active material described in any one of claims 1 to 3 can be obtained. Claim 1
By manufacturing a lithium secondary battery using any of the positive electrode active materials described in any one of (3) to (3), it is possible to suppress a decrease in the charge / discharge capacity of the lithium secondary battery.

【0015】[0015]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、リチウム二次電
池10はこの実施の形態ではシート状の積層体であり、
正極集電板11と、正極活物質を含む正電極12と、電
解質シート13と、負極活物質を含む負電極14と、負
極集電板15とをこの順序で積層したものである。正極
集電板11はアルミニウム板からなり、負極集電板15
は銅板からなる。また正電極12に含まれる正極活物質
としては斜方晶系に指数づけされるマンガン酸リチウム
化合物が用いられ、負電極14に含まれる負極活物質と
してはグラファイト系の活物質が用いられる。更に電解
質シート13としては電解液が含まれるポリエチレンオ
キシド系のシートが用いられる。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG. 1, the lithium secondary battery 10 is a sheet-like laminate in this embodiment,
A positive electrode current collector plate 11, a positive electrode 12 containing a positive electrode active material, an electrolyte sheet 13, a negative electrode 14 containing a negative electrode active material, and a negative electrode current collector plate 15 are laminated in this order. The positive current collector 11 is made of an aluminum plate, and the negative current collector 15
Consists of a copper plate. As the positive electrode active material included in the positive electrode 12, a lithium manganate compound indexed to orthorhombic is used, and as the negative electrode active material included in the negative electrode 14, a graphite active material is used. Further, as the electrolyte sheet 13, a polyethylene oxide sheet containing an electrolyte is used.

【0016】一方、上記正極活物質として用いられるマ
ンガン酸リチウム化合物のMnの一部が、Mnよりイオ
ン半径の大きい元素と、Mnよりイオン半径の小さい元
素Bとに置換されて、次の式(1)で表される組成物を
含む。 LiAxyMn1-x-y2 ……(1) 但し、AはSn又はPbのいずれか一方又は双方の元素
であり、BはTi,Cr.Fe,及びAlからなる群よ
り選ばれた1種又は2種以上の元素である。また0<x
<0.3好ましくは0.01<x<0.12であり、0
<y<0.3好ましくは0.01<y<0.15であ
り、0<(x+y)<0.3好ましくは0.02<(x
+y)<0.17である。
On the other hand, part of Mn of the lithium manganate compound used as the positive electrode active material is replaced with an element having an ionic radius larger than Mn and an element B having an ionic radius smaller than Mn, and the following formula ( It contains the composition represented by 1). LiA x B y Mn 1-xy O 2 ...... (1) where, A is an element of one or both of Sn or Pb, B is Ti, Cr. One or more elements selected from the group consisting of Fe and Al. Also, 0 <x
<0.3, preferably 0.01 <x <0.12, and 0
<Y <0.3, preferably 0.01 <y <0.15, and 0 <(x + y) <0.3, preferably 0.02 <(x
+ Y) <0.17.

【0017】上記元素Aは斜方晶LiMnO2内では原
子価が変化せず、リチウムイオンの挿入脱離反応(充放
電反応)には直接的には寄与しない。このため、高濃度
の元素置換を行うと、正極活物質の実効充放電容量が低
下するので、実用上の観点から実効充放電容量の低下を
30%以内に抑える必要性と固溶限とを検討した結果、
置換の上限を0.3未満、即ちx<0.3とした。また
元素BのうちAlは斜方晶LiMnO2内では原子価が
変化しないので、上述の理由により置換の上限を0.3
未満、即ちy<0.3とした。Al以外の元素Bは斜方
晶LiMnO2内では原子価が変化し、リチウムイオン
の挿入脱離反応に寄与できているが、斜方晶への固溶限
の問題もあるので、置換の上限を0.3未満、即ちy<
0.3とした。更に元素A及びBを混合して置換する場
合、実効充電容量の維持と結晶構造を保つという要件を
満たすため、やはり上限を0.3未満、即ち(x+y)
<0.3とした。
The element A does not change its valence in the orthorhombic LiMnO 2 and does not directly contribute to the lithium ion insertion / desorption reaction (charge / discharge reaction). For this reason, when the element substitution at a high concentration is performed, the effective charge / discharge capacity of the positive electrode active material decreases. Therefore, from a practical viewpoint, the necessity of suppressing the decrease in the effective charge / discharge capacity to within 30% and the solid solubility limit are reduced. As a result of consideration,
The upper limit of substitution was less than 0.3, that is, x <0.3. Since the valence of Al in the element B does not change in the orthorhombic LiMnO 2 , the upper limit of substitution is set to 0.3 for the above-mentioned reason.
Less, that is, y <0.3. The element B other than Al changes its valence in the orthorhombic LiMnO 2 and can contribute to the insertion / desorption reaction of lithium ions. However, there is a problem of the solubility limit to the orthorhombic crystal. Less than 0.3, ie, y <
0.3. Further, when the elements A and B are mixed and substituted, the upper limit is also less than 0.3, that is, (x + y) in order to satisfy the requirements of maintaining the effective charge capacity and maintaining the crystal structure.
<0.3.

【0018】上記のような置換組成の範囲内において
も、2つの元素A及びBの群から選び出す元素の組合せ
によっては、一部の元素が主として酸化物の形態で斜方
晶から析出し、斜方晶と析出物との混合物を形成する場
合のあることが試験の結果、明らかになった。この場
合、得られた斜方晶と析出物の混合物を詳細に検討する
と、元素A及びBは確かに斜方晶に固溶しているが、固
溶限を越えた分の元素A及びBが主に酸化物の形態をと
って析出していることが明らかになった。また正極活物
質の結晶系(初回充電前)は斜方晶系で指数付けされる
ことが好ましい。即ち、得られた正極活物質の粉末を粉
末X線回折で測定して得られる回折ピークが斜方晶の面
指数で同定されることが好ましい。
Even within the above range of the substitution composition, depending on the combination of the elements selected from the group of the two elements A and B, some of the elements are mainly precipitated from the orthorhombic form in the form of oxides, Tests have shown that a mixture of tetragonal crystals and precipitates may form. In this case, when the obtained mixture of the orthorhombic crystal and the precipitate is examined in detail, the elements A and B are certainly dissolved in the orthorhombic crystal, but the elements A and B exceed the solid solubility limit. Has been found to precipitate mainly in the form of an oxide. The crystal system (before the first charge) of the positive electrode active material is preferably indexed in an orthorhombic system. That is, it is preferable that a diffraction peak obtained by measuring the obtained powder of the positive electrode active material by powder X-ray diffraction is identified by an orthorhombic plane index.

【0019】更に元素AとしてはSn又はPbのいずれ
か一方又は双方の元素が好適であり、元素BとしてはC
rが好適である。この場合、0.001≦x≦0.07
更に好ましくは0.01≦x≦0.05であり、0.0
01≦y≦0.1更に好ましくは0.01≦y≦0.0
6であり、0.02≦(x+y)≦0.17更に好まし
くは0.02≦(x+y)≦0.11である。0.00
1≦x≦0.07に限定したのは、0.001未満では
充放電サイクル特性の安定化という効果が得られず、
0.07を越えるとSn等の酸化物の析出量が多くな
り、相対的に単位重量当たりの放電容量が減少してしま
うからである。また0.001≦y≦0.1に限定した
のは、0.001未満ではLiMnO2化合物中にSn
等を固溶させることができず、即ち充放電サイクル特性
の安定化という効果が得られず、0.1を越えるとCr
の酸化物の析出量が多くなり、相対的に単位重量当たり
の放電容量が減少してしまうからである。更に0.01
≦x≦0.05に限定したのは、0.01未満では体積
エネルギ密度が低く、0.05を越えても体積エネルギ
密度が殆ど変化しないからである。
Further, the element A is preferably one or both of Sn and Pb, and the element B is C
r is preferred. In this case, 0.001 ≦ x ≦ 0.07
More preferably, 0.01 ≦ x ≦ 0.05, and 0.0
01 ≦ y ≦ 0.1, more preferably 0.01 ≦ y ≦ 0.0
6, and 0.02 ≦ (x + y) ≦ 0.17, more preferably 0.02 ≦ (x + y) ≦ 0.11. 0.00
The reason for limiting to 1 ≦ x ≦ 0.07 is that if less than 0.001, the effect of stabilizing the charge / discharge cycle characteristics cannot be obtained.
If it exceeds 0.07, the amount of oxides such as Sn increases, and the discharge capacity per unit weight relatively decreases. Also, the reason for limiting to 0.001 ≦ y ≦ 0.1 is that if it is less than 0.001, Sn in the LiMnO 2 compound
Cannot be dissolved, that is, the effect of stabilizing the charge / discharge cycle characteristics cannot be obtained.
This is because the amount of oxide precipitates increases, and the discharge capacity per unit weight relatively decreases. Further 0.01
The reason for limiting to ≦ x ≦ 0.05 is that if it is less than 0.01, the volume energy density is low, and if it exceeds 0.05, the volume energy density hardly changes.

【0020】このように構成された正極用活物質の製造
方法を説明する。先ず被秤量物の総量を100重量%と
するとき、Mnの酸化物又は酢酸塩2.9〜5.3重量
%好ましくは3.5〜4.5重量%と、元素Aの酸化
物,塩化物又は酢酸塩のいずれか又はこれらの混合物に
より構成された添加物C0.01〜1.3重量%好まし
くは0.05〜1.0重量%と、元素Bの酸化物,水酸
化物又は塩化物のいずれか又はこれらの混合物により構
成された添加物D0.15〜0.3重量%好ましくは
0.16〜0.25重量%とをそれぞれ秤量する。次い
で秤量して直ちに、或いはMnの酸化物又は酢酸塩と添
加物CまたはDのいずれか一方又は双方とを750〜8
50℃の所定温度で5〜25時間空気中で焼成して中間
体を生成する。次に上記秤量物の混合物,又は秤量物及
び中間体の混合物,或いは中間体に、水酸化リチウム1
水和物を、Mnに対するLiの比で30〜60倍となる
ように添加し、140〜280℃の所定の温度で2〜3
0時間保持する水熱条件下で反応させる(水熱合成
法)。更にこの反応物を水又はエタノールで洗浄した後
に真空乾燥する。これにより正極用活物質が製造され
る。
A method for producing the positive electrode active material thus configured will be described. First, assuming that the total weight of the objects to be weighed is 100% by weight, 2.9 to 5.3% by weight of Mn oxide or acetate, preferably 3.5 to 4.5% by weight, and oxide of element A, chloride C or 0.01 to 1.3% by weight, preferably 0.05 to 1.0% by weight of an additive C composed of any one of a compound and an acetate or a mixture thereof, and an oxide, hydroxide or chloride of the element B. 0.15 to 0.3% by weight, preferably 0.16 to 0.25% by weight of an additive D constituted by any of these substances or a mixture thereof. Then, immediately after weighing, or the oxide or acetate of Mn and one or both of additives C and D are 750 to 8
Calcination in air at a predetermined temperature of 50 ° C. for 5 to 25 hours produces an intermediate. Next, lithium hydroxide 1 was added to the mixture of the above weighed substances, or the mixture of the weighed substances and the intermediate, or the intermediate.
The hydrate is added so that the ratio of Li to Mn is 30 to 60 times, and at a predetermined temperature of 140 to 280 ° C, 2 to 3 times.
The reaction is carried out under hydrothermal conditions maintained for 0 hours (hydrothermal synthesis method). Further, the reaction product is washed with water or ethanol and then dried under vacuum. Thereby, the positive electrode active material is manufactured.

【0021】Mnの酸化物又は酢酸塩としては、Mn2
3,MnOOH,Mn(CH3COO)2・4H2O等が
挙げられ、その平均粒径は5〜50μmであることが好
ましい。また添加物CとしてはSnO2、PbO2等が挙
げられ、その平均粒径は8〜60μmであることが好ま
しい。更に添加物DとしてはCr23,TiO2,Fe
OOH,Al(OH)3等が挙げられ、その平均粒径は
10〜30μmであることが好ましい。なお、上述のよ
うにして製造された正極活物質の平均粒径は0.3〜1
0μmであることが好ましい。LiをMnの40倍量仕
込む水熱合成において、Mnの酸化物等を2.9〜5.
3重量%に限定したのは、2.9重量%未満ではMnに
対して相対的にLiが過剰になり、結晶粒子の粗大化が
起こり放電容量の低下に繋がる不具合があり、5.3重
量%を越えるとMnに対してLiが相対的に不足し、M
n酸化物が過剰分として析出し、放電容量が低下する不
具合があるからである。また添加物Cの酸化物等を0.
01〜1.3重量%に限定したのは、0.01重量%未
満では充放電サイクル特性の改善に効果がなく、1.3
重量%を越えるとSn等の酸化物が析出し、相対的に単
位重量当たりの放電容量が低下するからである。更に添
加物Dの酸化物等を0.15〜0.3重量%に限定した
のは、0.15重量%未満では充放電サイクル特性の改
善に効果がなく、0.3重量%を越えるとCr等の酸化
物が析出し、相対的に単位重量当たりの放電容量が低下
するからである。
As Mn oxides or acetates, Mn 2
O 3 , MnOOH, Mn (CH 3 COO) 2 .4H 2 O, etc., and the average particle size is preferably 5 to 50 μm. Examples of the additive C include SnO 2 and PbO 2 , and the average particle size is preferably 8 to 60 μm. Further, as additive D, Cr 2 O 3 , TiO 2 , Fe
OOH, Al (OH) 3, etc., and the average particle size is preferably 10 to 30 μm. The average particle size of the positive electrode active material manufactured as described above is 0.3 to 1
It is preferably 0 μm. In the hydrothermal synthesis in which Li is charged 40 times the amount of Mn, 2.9 to 5.
The reason why the content is limited to 3% by weight is that if the content is less than 2.9% by weight, Li becomes excessive relative to Mn, crystal grains become coarse and the discharge capacity decreases, and 5.3% by weight. %, Li becomes relatively insufficient with respect to Mn.
This is because there is a problem that the n-oxide precipitates as an excess and the discharge capacity decreases. Further, the content of the oxide or the like of the additive C is set to 0.
The reason why the content is limited to 0.01 to 1.3% by weight is that if it is less than 0.01% by weight, there is no effect on the improvement of the charge / discharge cycle characteristics, and 1.3% by weight.
If the content exceeds 10% by weight, an oxide such as Sn precipitates, and the discharge capacity per unit weight relatively decreases. Further, the reason why the content of the oxides of the additive D and the like is limited to 0.15 to 0.3% by weight is that if the content is less than 0.15% by weight, there is no effect on the improvement of the charge / discharge cycle characteristics. This is because oxides such as Cr precipitate and the discharge capacity per unit weight relatively decreases.

【0022】Mnの酸化物又は酢酸塩と、添加物C又は
Dとのいずれか一方又は双方を、750〜850℃の温
度で5〜25時間空気中で焼成して中間体を形成させる
ための化合物には、添加物Cの群ではSnO2、PbO2
等があり、添加物Dの群ではFeOOH,Fe23,C
23等がある。
A method for calcining one or both of the oxide or acetate of Mn and the additive C or D at a temperature of 750 to 850 ° C. for 5 to 25 hours to form an intermediate. The compounds include SnO 2 and PbO 2 in the additive C group.
In the group of additive D, FeOOH, Fe 2 O 3 , C
r 2 O 3 and the like.

【0023】反応槽としてはフッ素樹脂製ものを用いる
ことが好ましい。水酸化リチウム1水和物を、Mnに対
するLiの比で7〜60倍となるように添加するのは、
7倍未満では斜方晶に属するLiMnO2構造への転換
が十分に起こらず、60倍を越えると添加しても製品の
質や形態に及ぼす効果に差異がなくなるからである。こ
の水酸化リチウム1水和物の添加量は35〜45倍であ
ることが更に好ましい。また水熱条件下における反応温
度を140〜280℃に限定したのは、反応温度が14
0℃に達しないと斜方晶系に属するLiMnO2構造へ
の転換が十分に起こらず、280℃を越えるとオートク
レープを用いた合成においては臨界状態に近くなるため
である。この水熱条件下における反応温度は200〜2
50℃であることが更に好ましい。更に水熱条件下にお
ける反応時間を2〜30時間に限定したのは、2時間未
満ではLiMnO2構造への転換が十分に起こらず、3
0時間を越えて保持しても、製造される正極活物質に特
に差異がないという理由によるものである。この水熱条
件下における反応時間は4〜6時間であることが更に好
ましい。
It is preferable to use a reaction vessel made of a fluororesin. Lithium hydroxide monohydrate is added so that the ratio of Li to Mn is 7 to 60 times,
If it is less than 7 times, conversion to the orthorhombic LiMnO 2 structure does not sufficiently occur, and if it exceeds 60 times, there is no difference in the effect on the quality and form of the product even if it is added. More preferably, the amount of lithium hydroxide monohydrate added is 35 to 45 times. The reason why the reaction temperature under hydrothermal conditions is limited to 140 to 280 ° C. is that the reaction temperature is 14
If the temperature does not reach 0 ° C., conversion to the LiMnO 2 structure belonging to the orthorhombic system does not sufficiently occur. If the temperature exceeds 280 ° C., a critical state is approached in the synthesis using an autoclave. The reaction temperature under this hydrothermal condition is 200 to 2
More preferably, the temperature is 50 ° C. Furthermore, the reason why the reaction time under hydrothermal conditions was limited to 2 to 30 hours is that conversion to the LiMnO 2 structure did not sufficiently occur if the reaction time was less than 2 hours.
This is because there is no particular difference in the manufactured positive electrode active material even when the positive electrode active material is maintained for more than 0 hours. The reaction time under this hydrothermal condition is more preferably 4 to 6 hours.

【0024】このように製造された正極用活物質では、
充放電サイクルの進行に伴うスピネル相の生成を効果的
に阻止することができる。この充放電サイクル特性の向
上に最も寄与した理由としては以下の2つの理由が考え
られる。第1の理由は、斜方晶LiMnO2の相の安定
化にあると考えられる。斜方晶LiMnO2の金属イオ
ンと酸化物イオンとの結合距離はLiCoO2やLiN
iO2と比較して短く、リチウムイオンの拡散経路の障
壁エネルギは他の正極活物質と比較して高いと考えられ
る。Mnの一部をMnより大きなイオン半径の元素で置
換することにより、金属イオンと酸化物イオンとの結合
距離の平均値がやや大きくなり、リチウムイオンの拡散
障壁のエネルギが少し低下することで、リチウムが拡散
し易い、充放電の安定した活物質が得られたためである
と考えられる。
In the positive electrode active material thus manufactured,
The formation of the spinel phase accompanying the progress of the charge / discharge cycle can be effectively prevented. The following two reasons can be considered as the reasons that contributed most to the improvement of the charge / discharge cycle characteristics. The first reason is considered to be the stabilization of the phase of orthorhombic LiMnO 2 . The bonding distance between metal ions and oxide ions of orthorhombic LiMnO 2 is LiCoO 2 or LiN.
Shorter than iO 2 , it is considered that the barrier energy of the diffusion path of lithium ions is higher than other positive electrode active materials. By substituting a part of Mn with an element having an ionic radius larger than Mn, the average value of the bonding distance between the metal ion and the oxide ion becomes slightly larger, and the energy of the diffusion barrier for lithium ions is slightly reduced. This is considered to be because an active material in which lithium easily diffuses and whose charge and discharge were stable was obtained.

【0025】ここで、元素置換においては単純にMnよ
りイオン半径の大きな元素による置換だけでは、所望の
固溶体を生成することができず、必ずMnとイオン半径
が同等か若しくは小さい元素との組合せで置換する必要
がある。これは大きなイオン半径を有する元素による置
換で生じる歪みが小さいイオン半径を有する元素による
置換で緩和することができ、固溶限が広がるためである
と考えられる。第2の理由は、斜方晶LiMnO2の相
変態の結果、生成されるスピネル相的な第2相が充放電
反応に寄与しているためであると考えられる。
Here, in elemental substitution, simply by substitution with an element having a larger ionic radius than Mn, a desired solid solution cannot be formed. Need to be replaced. This is considered to be because the distortion caused by the substitution with the element having the large ionic radius can be alleviated by the substitution with the element having the small ionic radius, and the solid solubility limit is widened. The second reason is considered to be that the spinel phase-like second phase generated as a result of the phase transformation of the orthorhombic LiMnO 2 contributes to the charge / discharge reaction.

【0026】一般的な知識として、いわゆるLiMn2
4の組成式を有するスピネル相の充放電特性の安定化
のためには、Mnの占める位置の原子の平均イオン半径
を小さくすると、効果的であることが知られている。具
体的にはMnの一部をA1で置換した組成物である。本
発明の斜方晶LiMnO2を充放電した後の電極に含ま
れる活物質の構成相をX線回折測定で同定しようとする
と、正極を構成するバインダや導電助剤等の影響によっ
て、斜方晶LiMnO2相や第2相の格子定数の測定が
困難で、置換元素がどのような配分でそれぞれの活物質
中に存在するかは今もって不明ではある。Mnよりイオ
ン半径の小さいCr,Al,Ti等はLiMnO2相が
第2相への相変化した後も、第2相を安定化し、充放電
に寄与していると考えられる。
As general knowledge, what is called LiMn 2
It is known that it is effective to reduce the average ionic radius of the atoms occupied by Mn in order to stabilize the charge / discharge characteristics of the spinel phase having the composition formula of O 4 . Specifically, it is a composition in which a part of Mn is substituted by A1. When the constituent phases of the active material contained in the electrode after charging and discharging the orthorhombic LiMnO 2 of the present invention are to be identified by X-ray diffraction measurement, the constituent phases of the active material are obliquely affected by the binder and the conductive additive constituting the positive electrode. It is difficult to measure the lattice constants of the crystalline LiMnO 2 phase and the second phase, and it is still unclear how the substitution elements are present in each active material. It is considered that Cr, Al, Ti and the like having an ionic radius smaller than Mn stabilize the second phase even after the LiMnO 2 phase changes to the second phase and contribute to charge and discharge.

【0027】[0027]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>Mnの酸化物(Mn23:平均粒径46.
2μm)を4.0312重量%と、Crの酸化物(Cr
23:平均粒径20μm)を0.2111重量%と、S
nの酸化物(SnO4:平均粒径5μm)を0.251
1重量%とをそれぞれ秤量した後に混合し、この混合物
を800℃の温度で10時間空気中で焼成して中間体を
作製した。この中間体をPTFE製反応槽に供給し、次
いで水酸化リチウム1水和物(LiOH・H2O)を、
Mnに対するLiの比で35倍(95.507重量%)
となるように添加し、230℃の所定の温度で6時間保
持する水熱条件下で水熱反応させた。さらに反応物を水
で洗浄した後に真空乾燥した。これにより正極活物質
(LiSn0.03Cr0.05Mn0.922)を得た。この活
物質を実施例1とした。
Next, examples of the present invention will be described in detail together with comparative examples. Example 1 Mn oxide (Mn 2 O 3 : average particle diameter 46.
2 μm) and 4.03212% by weight of Cr oxide (Cr
2 O 3 : average particle size 20 μm) is 0.2111% by weight,
The oxide of n (SnO 4 : average particle size 5 μm) is 0.251
1% by weight and then mixed, and the mixture was calcined at 800 ° C. for 10 hours in air to produce an intermediate. This intermediate is supplied to a reaction vessel made of PTFE, and then lithium hydroxide monohydrate (LiOH · H 2 O) is added.
35 times the ratio of Li to Mn (95.507% by weight)
And subjected to a hydrothermal reaction under hydrothermal conditions of maintaining at a predetermined temperature of 230 ° C. for 6 hours. The reaction was further washed with water and dried under vacuum. Thereby, a positive electrode active material (LiSn 0.03 Cr 0.05 Mn 0.92 O 2 ) was obtained. This active material was used as Example 1.

【0028】<実施例2>Mnの酸化物(Mn23:平
均粒径46.2μm)を3.9032重量%と、Crの
酸化物(Cr23:平均粒径20μm)を0.2043
重量%と、Pbの酸化物(PbO4:平均粒径5μm)
を0.3858重量%とをそれぞれ秤量した後に混合
し、この混合物を800℃の温度で10時間空気中で焼
成して中間体を作製した。この中間体をPTFE製反応
槽に供給し、次いで水酸化リチウム1水和物(LiOH
・H2O)を、Mnに対するLiの比で35倍(95.
5067重量%)となるように添加し、実験例1と同一
の水熱条件下で水熱反応させた。さらに反応物を水で洗
浄した後に真空乾燥した。これにより正極活物質(Li
Pb0.03Cr0.05Mn0.922)を得た。この活物質を
実施例2とした。
Example 2 3.9032% by weight of Mn oxide (Mn 2 O 3 : average particle size 46.2 μm) and 0% of Cr oxide (Cr 2 O 3 : average particle size 20 μm) .2043
% By weight and an oxide of Pb (PbO 4 : average particle size 5 μm)
And 0.3858% by weight, respectively, and then mixed. The mixture was calcined at 800 ° C. for 10 hours in air to produce an intermediate. This intermediate is supplied to a PTFE reaction tank, and then lithium hydroxide monohydrate (LiOH
H 2 O) by 35 times the ratio of Li to Mn (95.
5067% by weight) and subjected to a hydrothermal reaction under the same hydrothermal conditions as in Experimental Example 1. The reaction was further washed with water and dried under vacuum. Thereby, the positive electrode active material (Li
Pb 0.03 Cr 0.05 Mn 0.92 O 2 ) was obtained. This active material was used as Example 2.

【0029】<比較例1>Mnの酸化物(Mn23:平
均粒径44.7μm)を5.101重量%と、LiOH
・H2Oを94.899重量%とをそれぞれ秤量(Mn
に対してLiが85倍当量となる。)し、これらをPT
FE製の反応槽に供給し、実施例1と同一の水熱条件で
水熱反応させた。次にこの反応生成物を水で洗浄した後
に真空乾燥して正極活物質を得た。この正極活物質を比
較例1とした。
Comparative Example 1 An oxide of Mn (Mn 2 O 3 : average particle diameter 44.7 μm) was 5.101% by weight, and LiOH was used.
Weighing 94.899% by weight of H 2 O (Mn
Li becomes 85 times equivalent to the above. ) And PT
It was supplied to a reaction vessel made of FE and subjected to a hydrothermal reaction under the same hydrothermal conditions as in Example 1. Next, the reaction product was washed with water and dried under vacuum to obtain a positive electrode active material. This positive electrode active material was used as Comparative Example 1.

【0030】<比較試験及び評価>実施例1,2及び比
較例1の正極活物質を製造するための化合物の配合比
と、製造された正極活物質の組成を表1に示した。また
実施例1,2及び比較例1の正極活物質をバインダ及び
導電助剤と混合してスラリーを調製し、このスラリーを
ドクタプレード法により正極シートに引き伸ばして乾燥
させることにより、正極集電体上に正極シートをそれぞ
れ積層し、正電極とした。これらの正電極を図2に示す
ように、充放電サイクル試験装置21に取付けた。この
装置21は容器22に電解液23(リチウム塩を有機溶
媒に溶かしたもの)が貯留され、上記正電極12が負電
極14(金属リチウム)及び参照極24(金属リチウ
ム)とともに電解液23に浸され、更に正電極12、負
電極14及び参照極24がポテンシオスタット25(ポ
テンショメータ)にそれぞれ電気的に接続された構成と
なっている。この装置を用いて充放電サイクル試験を行
い、各正極活物質の放電容量を測定した。このとき充放
電時の電流値を10mA/gとしたときの結果を表2に
示し、充放電時の電流値を20mA/gとしたときの結
果を表3に示し、充放電時の電流値を80mA/gとし
たときの結果を表4に示す。更に実施例1,2及び比較
例1の正極活物質のX線回折パターンを(銅のKα線を
用いて測定した結果を)図3に示す。
<Comparative Tests and Evaluations> Table 1 shows the compounding ratios of the compounds for producing the positive electrode active materials of Examples 1 and 2 and Comparative Example 1, and the compositions of the produced positive electrode active materials. Further, a slurry was prepared by mixing the positive electrode active materials of Examples 1 and 2 and Comparative Example 1 with a binder and a conductive auxiliary, and the slurry was stretched on a positive electrode sheet by a doctor blade method and dried to obtain a slurry on the positive electrode current collector. The positive electrode sheets were laminated on each other to form a positive electrode. These positive electrodes were attached to a charge / discharge cycle test apparatus 21 as shown in FIG. In this device 21, an electrolyte solution 23 (a solution in which a lithium salt is dissolved in an organic solvent) is stored in a container 22, and the positive electrode 12 is connected to the electrolyte solution 23 together with the negative electrode 14 (metal lithium) and the reference electrode 24 (metal lithium). It is soaked, and the positive electrode 12, the negative electrode 14, and the reference electrode 24 are electrically connected to a potentiostat 25 (potentiometer). A charge / discharge cycle test was performed using this apparatus, and the discharge capacity of each positive electrode active material was measured. Table 2 shows the results when the current value during charging and discharging was 10 mA / g, and Table 3 shows the results when the current value during charging and discharging was 20 mA / g. Is set to 80 mA / g, and the results are shown in Table 4. FIG. 3 shows the X-ray diffraction patterns of the positive electrode active materials of Examples 1 and 2 and Comparative Example 1 (measured using Kα ray of copper).

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】表2(充放電時の電流値:10mA/g)
から明らかなように、比較例1では充放電を繰返したと
ころ、次第に放電容量が低下し、6回繰返した時点で放
電容量が1回目に対して約40%低下した。これに対
し、実施例1では放電容量の低下が極めて少なく、50
回目繰返した時点で1回目に対して約32%低下するに
止まった。また比較例1では1回目の放電容量が13
3.38mAh/gであったのに対し、実施例1及び2
では1回目の放電容量が156.47mAh/g及び1
77.05mAh/gとそれぞれ約17%及び約33%
増大した。また、表2(充放電時の電流値:10mA/
g)及び表3(充放電時の電流値:20mA/g)から
明らかなように、実施例1は充放電電流が10mA/g
から20mA/gと2倍になっても、比較例1のように
容量の減少がみられない。これにより実施例1は比較例
1と比べて抵抗が小さいといえる。
Table 2 (Current value during charging and discharging: 10 mA / g)
As is clear from the above, in Comparative Example 1, when the charge and discharge were repeated, the discharge capacity gradually decreased, and when the charge and discharge were repeated six times, the discharge capacity was reduced by about 40% from the first time. In contrast, in Example 1, the decrease in discharge capacity was extremely small,
At the time of the repetition, it decreased only by about 32% from the first time. In Comparative Example 1, the first discharge capacity was 13
In contrast to 3.38 mAh / g, Examples 1 and 2
In this case, the first discharge capacity was 156.47 mAh / g and 1
77.05 mAh / g, about 17% and about 33%, respectively
Increased. Table 2 (Current value during charge / discharge: 10 mA /
g) and Table 3 (current value during charging / discharging: 20 mA / g), Example 1 has a charging / discharging current of 10 mA / g.
However, the capacity does not decrease as in Comparative Example 1 even when the capacity doubles to 20 mA / g. Thus, it can be said that the resistance of Example 1 is smaller than that of Comparative Example 1.

【0036】また、表3(充放電時の電流値:20mA
/g)から明らかなように、比較例1では充放電を繰返
したところ、次第に放電容量が低下し、19回繰返した
時点で放電容量が1回目に対して約11%低下した。こ
れに対し、実施例1では放電容量の低下が極めて少な
く、50回目繰返した時点で約4%低下するに止まっ
た。また比較例1では1回目の放電容量が73.59m
Ah/gであったのに対し、実施例1及び2では1回目
の放電容量が138.80mAh/g及び146.48
mAh/gとそれぞれ約89%及び約100%増大し
た。また、表4から明らかなように、比較例1及び実施
例2では充放電時の電流値を80mA/gにすることが
できなかったのに対し、実施例1では充放電時の電流値
を80mA/gに保った状態で7回充放電を繰返すこと
ができた。更に、図3から明らかなように、実施例1及
び2の初回充電前の結晶系は斜方晶系で指数付けされる
ことが判った。
Table 3 (Current value during charging / discharging: 20 mA)
/ G), in Comparative Example 1, when the charge and discharge were repeated, the discharge capacity gradually decreased, and when the charge and discharge were repeated 19 times, the discharge capacity decreased by about 11% from the first time. On the other hand, in Example 1, the decrease in the discharge capacity was extremely small, and the decrease was only about 4% at the time of the 50th repetition. In Comparative Example 1, the first discharge capacity was 73.59 m.
Ah / g, whereas in Examples 1 and 2, the first discharge capacity was 138.80 mAh / g and 146.48.
mAh / g increased by about 89% and about 100%, respectively. As is clear from Table 4, the current value during charging and discharging could not be set to 80 mA / g in Comparative Example 1 and Example 2, whereas the current value during charging and discharging was changed in Example 1. Charge / discharge could be repeated 7 times while maintaining 80 mA / g. Further, as apparent from FIG. 3, it was found that the crystal systems of Examples 1 and 2 before the first charge were indexed as orthorhombic.

【0037】[0037]

【発明の効果】以上述べたように、本発明によれば、マ
ンガン酸リチウム化合物のMnの一部を、Mnよりイオ
ン半径の大きい元素A(Sn,Pb)と、Mnよりイオ
ン半径の小さい元素B(Ti,Cr,Fe,Al等)と
に置換して、式(LiAxyMn1-x-y2)で表される
組成物を含むので、充放電サイクルに伴う体積変化が小
さい、即ち相変化が起こり難くかつ相変態により生成さ
れた第2相においても充放電反応を示す。この結果、充
放電を繰返しても、斜方晶の相変化がないか、或いはあ
っても相変化により生成されるスピネル相的な第2相が
一定の転化率で安定化させることができるので、充放電
容量及び体積エネルギ密度の低下を抑制することができ
る。また初回充電前の結晶系を斜方晶系で指数付けした
り、或いはAとしてSn又はPbを用い、BとしてCr
を用い、0.001≦x≦0.07であり、0.001
≦y≦0.1であり、0.02≦(x+y)≦0.17
であれば、上記効果をより顕著に奏することができる。
As described above, according to the present invention, a part of Mn of the lithium manganate compound is converted into an element A (Sn, Pb) having an ionic radius larger than Mn and an element A having an ionic radius smaller than Mn. B is replaced with (Ti, Cr, Fe, Al, etc.) and, because it contains represented by composition formula (LiA x B y Mn 1- xy O 2), the volume change due to charging and discharging cycle is small, That is, the phase change hardly occurs, and the second phase generated by the phase transformation also shows a charge / discharge reaction. As a result, even if the charging and discharging are repeated, there is no phase change of the orthorhombic phase, or even if there is, the spinel phase-like second phase generated by the phase change can be stabilized at a constant conversion rate. In addition, it is possible to suppress a decrease in charge / discharge capacity and volume energy density. The crystal system before the first charge is indexed by an orthorhombic system, or Sn or Pb is used as A, and Cr is used as B.
0.001 ≦ x ≦ 0.07, and 0.001
≦ y ≦ 0.1, and 0.02 ≦ (x + y) ≦ 0.17
If so, the above effects can be more remarkably exhibited.

【0038】またMnの酸化物又は酢酸塩と添加物Cと
添加物Dとをそれぞれ秤量し、直ちに,或いはMnの酸
化物又は酢酸塩と添加物C又はDのいずれか一方又は双
方を所定の条件で熱処理して中間体を生成した後に、上
記秤量物の混合物,又は上記秤量物及び中間体の混合
物,或いは上記中間体に、水酸化リチウム1水和物を所
定量添加し、所定の温度で所定時間保持する水熱条件下
で反応させ、更にこの反応物を洗浄した後に真空乾燥す
れば、上記正極活物質を得ることができる。更に上記正
極活物質を用いてリチウム二次電池を製造すれば、充放
電サイクルの進行に伴うスピネル相の生成を効果的に阻
止できるので、充放電容量の低下を抑制することができ
る。
Further, the oxide or acetate of Mn, the additive C and the additive D are weighed, respectively, or immediately, or either or both of the oxide or acetate of Mn and the additive C or D are subjected to a predetermined method. After heat treatment under the conditions to produce an intermediate, a predetermined amount of lithium hydroxide monohydrate is added to the mixture of the weighed substances, or the mixture of the weighed substance and the intermediate, or the intermediate, and the mixture is heated to a predetermined temperature. The reaction is carried out under a hydrothermal condition maintained for a predetermined time, and the reaction product is further washed and vacuum-dried, whereby the positive electrode active material can be obtained. Furthermore, when a lithium secondary battery is manufactured using the above-described positive electrode active material, generation of a spinel phase accompanying the progress of a charge / discharge cycle can be effectively prevented, so that a decrease in charge / discharge capacity can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施の形態のリチウム二次電池の要部断
面構成図。
FIG. 1 is a cross-sectional view of a main part of a lithium secondary battery according to an embodiment of the present invention.

【図2】実施例及び比較例のリチウム二次電池用正極活
物質の充放電サイクル試験に用いられる装置。
FIG. 2 shows an apparatus used for a charge / discharge cycle test of the positive electrode active materials for lithium secondary batteries of Examples and Comparative Examples.

【図3】実施例1,2及び比較例1の正極活物質のX線
回折パターンを示す図。
FIG. 3 is a diagram showing X-ray diffraction patterns of the positive electrode active materials of Examples 1 and 2 and Comparative Example 1.

【図4】リチウム二次電池の構造を模型的に示す断面拡
大説明図。
FIG. 4 is an enlarged sectional explanatory view schematically showing a structure of a lithium secondary battery.

【符号の説明】[Explanation of symbols]

10 リチウム二次電池 10. Lithium secondary battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉原 忠 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 Fターム(参考) 5H029 AJ05 AK03 AL12 AM02 AM07 5H050 AA07 BA16 BA17 CA09 CB12 EA24 FA19 GA02 GA27 HA01 HA02 HA14  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tadashi Sugihara 1-297 Kitabukuro-cho, Omiya-shi, Saitama F-term in Mitsubishi Materials Corporation Research Laboratory 5H029 AJ05 AK03 AL12 AM02 AM07 5H050 AA07 BA16 BA17 CA09 CB12 EA24 FA19 GA02 GA27 HA01 HA02 HA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 マンガン酸リチウム化合物において、M
nの一部を、Mnよりイオン半径の大きい元素Aと、M
nよりイオン半径の小さい元素Bとに置換して、次の式
(1)で表される組成物を含むことを特徴とするリチウ
ム二次電池用正極活物質。 LiAxyMn1-x-y2 ……(1) 但し、AはSn又はPbのいずれか一方又は双方の元素
であり、BはTi,Cr,Fe及びAlからなる群より
選ばれた1種又は2種以上の元素であり、0<x<0.
3であり、0<y<0.3であり、0<(x+y)<
0.3である。
1. A lithium manganate compound, wherein M
Part of n is composed of an element A having an ionic radius larger than Mn and M
A positive electrode active material for a lithium secondary battery, comprising a composition represented by the following formula (1), which is substituted with an element B having an ionic radius smaller than n. LiA x B y Mn 1-xy O 2 ...... (1) where, A is an element of one or both of Sn or Pb, B is selected from the group consisting of Ti, Cr, Fe and Al 1 Species or two or more elements, and 0 <x <0.
3, 0 <y <0.3, and 0 <(x + y) <
0.3.
【請求項2】 初回充電前の結晶系が斜方晶系で指数付
けされることを特徴とする請求項1記載のリチウム二次
電池用正極活物質。
2. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the crystal system before the first charge is indexed by an orthorhombic system.
【請求項3】AがSn又はPbのいずれか一方又は双方
の元素であり、BがCrであり、0.001≦x≦0.
07であり、0.001≦y≦0.1であり、0.02
≦(x+y)≦0.17である請求項1記載のリチウム
二次電池用正極活物質。
3. A is one or both elements of Sn and Pb, B is Cr, and 0.001 ≦ x ≦ 0.
07, 0.001 ≦ y ≦ 0.1, 0.02
The positive electrode active material for a lithium secondary battery according to claim 1, wherein ≤ (x + y) ≤ 0.17.
【請求項4】 被秤量物の総量を100重量%とすると
き、Mnの酸化物又は酢酸塩2.9〜5.3重量%と、
Sn又はPbのいずれか一方又は双方の酸化物,水酸化
物,塩化物或いは酢酸塩のいずれか或いはこれらの混合
物により構成された添加物C0.01〜1.3重量%
と、Ti,Cr,Fe及びAlからなる群より選ばれた
1種又は2種以上の酸化物,水酸化物又は塩化物のいず
れか又はこれらの混合物により構成された添加物D0.
15〜0.3重量%とをそれぞれ秤量する工程と;秤量
して直ちに、或いは前記Mnの酸化物又は酢酸塩と前記
添加物C又はDのいずれか一方又は双方とを750〜8
50℃の所定温度で5〜25時間空気中で焼成して中間
体を生成した後に、前記秤量物の混合物,又は前記秤量
物及び前記中間体の混合物,或いは前記中間体に、水酸
化リチウム1水和物を、Mnに対するLiの比で7〜6
0倍となるように添加し、140〜280℃の所定の温
度で2〜30時間保持する水熱条件下で反応させる工程
と;前記反応物を水又はエタノールで洗浄した後に真空
乾燥する工程とを含むリチウム二次電池用正極活物質の
製造方法。
4. When the total weight of the objects to be weighed is 100% by weight, 2.9 to 5.3% by weight of an oxide or acetate of Mn;
Additive C comprised of one or both of Sn and Pb, or an oxide, hydroxide, chloride or acetate thereof, or a mixture thereof, in an amount of 0.01 to 1.3% by weight.
And one or more oxides, hydroxides or chlorides selected from the group consisting of Ti, Cr, Fe and Al, or an additive D0.
Weighing 15 to 0.3% by weight of each; 750 to 8 immediately after weighing, or the oxide or acetate of Mn and one or both of the additives C and D.
After baking in air at a predetermined temperature of 50 ° C. for 5 to 25 hours to produce an intermediate, the mixture of the weighed substances, or the mixture of the weighed substance and the intermediate, or the intermediate is charged with lithium hydroxide 1 The hydrate is converted to a 7 to 6 ratio of Li to Mn.
A step of adding the mixture so as to be 0 times and reacting under a hydrothermal condition of maintaining the mixture at a predetermined temperature of 140 to 280 ° C. for 2 to 30 hours; and a step of washing the reaction product with water or ethanol and then drying it in vacuo. A method for producing a positive electrode active material for a lithium secondary battery, comprising:
【請求項5】 請求項1ないし3いずれか記載のリチウ
ム二次電池用正極活物質を用いて製造されたリチウム二
次電池。
5. A lithium secondary battery manufactured using the positive electrode active material for a lithium secondary battery according to claim 1.
JP2000193749A 2000-06-28 2000-06-28 Positive electrode active material for lithium secondary battery and its manufacturing method, and lithium secondary battery using it Withdrawn JP2002008660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000193749A JP2002008660A (en) 2000-06-28 2000-06-28 Positive electrode active material for lithium secondary battery and its manufacturing method, and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000193749A JP2002008660A (en) 2000-06-28 2000-06-28 Positive electrode active material for lithium secondary battery and its manufacturing method, and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JP2002008660A true JP2002008660A (en) 2002-01-11

Family

ID=18692689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000193749A Withdrawn JP2002008660A (en) 2000-06-28 2000-06-28 Positive electrode active material for lithium secondary battery and its manufacturing method, and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JP2002008660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136604A1 (en) * 2014-03-10 2015-09-17 株式会社日立製作所 Positive electrode active material for secondary batteries and lithium ion secondary battery using same
WO2021131241A1 (en) * 2019-12-24 2021-07-01 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136604A1 (en) * 2014-03-10 2015-09-17 株式会社日立製作所 Positive electrode active material for secondary batteries and lithium ion secondary battery using same
JPWO2015136604A1 (en) * 2014-03-10 2017-04-06 株式会社日立製作所 Positive electrode active material for secondary battery and lithium ion secondary battery using the same
US9711792B2 (en) 2014-03-10 2017-07-18 Hitachi, Ltd. Positive electrode active material for secondary batteries and lithium ion secondary battery using the same
WO2021131241A1 (en) * 2019-12-24 2021-07-01 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP7045586B2 (en) Lithium-manganese-based positive electrode active material with spinel structure, positive electrode containing this, and lithium secondary battery
JP4742866B2 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
US20190280296A1 (en) Lithium cobalt oxide positive electrode material, method for preparing same, and lithium-ion secondary battery
US7435402B2 (en) Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries
JP7060776B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2004105162A6 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery, and method for producing positive electrode active material for secondary battery
KR20160011597A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR20200125443A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6541115B2 (en) Positive electrode material and lithium secondary battery using the same for positive electrode
JP4767484B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
JPWO2020049803A1 (en) Positive electrode active material and battery equipped with it
JP2008120679A (en) Lithium-containing compound oxide, method for producing the same, and nonaqueous secondary battery
JP2020184535A (en) Anode active material for lithium secondary battery, manufacturing method therefor and lithium secondary battery containing the same
JP6769338B2 (en) How to use non-aqueous electrolyte storage element, electrical equipment and non-aqueous electrolyte storage element
JP6865601B2 (en) Positive electrode active material for sodium ion secondary battery and its manufacturing method, and sodium ion secondary battery
JP2008130287A (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2015153551A (en) Positive electrode active material particle powder, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2016157602A (en) Positive electrode active material for sodium secondary battery and production method therefor, and sodium ion secondary battery
JP6834363B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP3975614B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
KR102580743B1 (en) Cathode active material, and lithium ion battery including the same
JP7033161B2 (en) Anode active material for lithium secondary battery, its manufacturing method and lithium secondary battery containing it
JP3578503B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JP6792836B2 (en) Lithium composite oxide for positive electrode active material and its manufacturing method, positive electrode active material for lithium secondary battery and lithium secondary battery
JP2024503799A (en) Positive electrode active material and lithium secondary battery containing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904