JP2002008500A - Vacuum chamber - Google Patents

Vacuum chamber

Info

Publication number
JP2002008500A
JP2002008500A JP2000197882A JP2000197882A JP2002008500A JP 2002008500 A JP2002008500 A JP 2002008500A JP 2000197882 A JP2000197882 A JP 2000197882A JP 2000197882 A JP2000197882 A JP 2000197882A JP 2002008500 A JP2002008500 A JP 2002008500A
Authority
JP
Japan
Prior art keywords
vacuum vessel
conductor
insulating
vacuum
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000197882A
Other languages
Japanese (ja)
Inventor
Ayumi Morita
歩 森田
Masashige Tsuji
雅薫 辻
Takuya Mishiro
拓也 三代
Shuichi Kikugawa
修一 喜久川
Toru Tanimizu
徹 谷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000197882A priority Critical patent/JP2002008500A/en
Publication of JP2002008500A publication Critical patent/JP2002008500A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a miniaturized vacuum switch gear which equips a mean of suppressing generation of heat efficiently. SOLUTION: The vacuum switch gear comprise insulating spacers 105A, 105B having a large electric resistance and arranged around electrodes. A heat generated around the electrodes while electric current flows is released through the insulating spacers 105A, 105B to the outside of the vacuum switch gear efficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導体、遮断器、断路
器、負荷開閉器、接地装置のいずれか1つ又は2以上を
集合した真空スイッチギヤ又は導体を収納した真空容器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum switchgear in which one or more of a conductor, a circuit breaker, a disconnector, a load switch, and a grounding device are assembled, or a vacuum vessel containing a conductor.

【0002】[0002]

【従来の技術】都市部での消費電力は一部の地域に集中
し、消費電力の増加する需要に対応して、配電用変電所
の立地困難、配電用配管の配置に余裕が無いこと、更に
高い供給設備の稼働率化への要求等により、配電電圧の
昇圧、即ち、回線当たりの容量を大きくすることによ
り、高い電圧系統に積極的に負荷の吸収を図ることが、
効率的な電力供給設備の形成につながる。このために
は、配電器材・受変電設備の更なるコンパクト化を図る
必要がある。コンパクト化を図る受変電機器としては、
例えば特開平3−273804号公報に記載されたSF
6ガス絶縁スイッチギヤが考えられる。
2. Description of the Related Art The power consumption in urban areas is concentrated in some areas, and in response to the increasing demand for power consumption, it is difficult to locate distribution substations and there is not enough room for distribution piping. In response to demands for higher utilization of supply facilities, the distribution voltage is boosted, that is, by increasing the capacity per line, it is possible to actively absorb the load in a high voltage system.
This leads to the formation of efficient power supply facilities. For this purpose, it is necessary to further reduce the size of distribution equipment and power receiving and transforming equipment. As substation equipment for downsizing,
For example, SF described in JP-A-3-273804
A six gas insulated switchgear is conceivable.

【0003】このスイッチギヤは配電函に絶縁ガスを充
填したユニット室及び母線室に、遮断器、2個の断路器
及び接地開閉器を個別に製作して収納している。遮断器
として真空遮断器を使用する場合、真空遮断器の操作機
構により可動電極が固定電極に対して上下に移動して、
投入、遮断を行う。
In this switchgear, a circuit breaker, two disconnectors, and a grounding switch are individually manufactured and housed in a unit room and a bus room in which a distribution box is filled with insulating gas. When using a vacuum circuit breaker as a circuit breaker, the movable electrode moves up and down with respect to the fixed electrode by the operation mechanism of the vacuum circuit breaker,
Turn on and off.

【0004】また、特開昭55−143727号公報に
記載された真空遮断器の如く、主軸を支点して可動電極
が左右に回動して固定電極に対して接離させ、投入、遮
断するものもある。ところで、SF6ガス絶縁スイッチ
ギヤでは、ガス容器内で絶縁破壊が生じると、アークの
発生によって容器内部の圧力が増加し、爆発する危険が
ある。そこで、内部圧力を増加する要求に対しては、容
器を構成する鋼板の厚みが厚くなり、その分高価にな
る。また、路肩などの人の往来が多い場所での使用は避
けている。
Further, as in a vacuum circuit breaker described in Japanese Patent Application Laid-Open No. 55-143727, a movable electrode is rotated left and right around a main shaft to contact and separate from a fixed electrode, and is turned on and off. There are also things. By the way, in the SF6 gas insulated switchgear, when dielectric breakdown occurs in the gas container, the pressure inside the container increases due to generation of an arc, and there is a danger of explosion. Therefore, in response to a demand for increasing the internal pressure, the thickness of the steel plate constituting the container increases, and the price increases accordingly. We also avoid using it in places where there are many traffic such as shoulders.

【0005】この問題に対応して、特開平11−417
26号公報に記載されたスイッチギヤの様に、接地され
た真空容器内に開閉部を収納したものが考案されてい
る。真空容器の厚みは大気圧に耐え得る程度(およそ1
mm)でよく、かつ定格72kVクラスまではSF6ガ
スに比べて絶縁耐力に優れるため装置全体を小型にでき
る。
In response to this problem, Japanese Patent Application Laid-Open No. H11-417
As a switchgear described in Japanese Patent Publication No. 26, there is proposed a switchgear in which an opening / closing unit is housed in a grounded vacuum vessel. The thickness of the vacuum vessel is such that it can withstand atmospheric pressure (about 1).
mm), and up to a rated voltage of 72 kV, which has a higher dielectric strength than SF6 gas.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
スイッチギヤでは放熱効率の問題がある。通電時に各部
で発生するジュール熱は、固定電極或いは可動電極と接
続された真空容器端部のケーブルヘッドで局所的な放熱
している。また、内部の導体温度が上昇するため、熱電
子放出が促進されて絶縁性能が低下する。発熱を抑える
ためには、導体サイズを大きくして電流密度を下げた
り、或いは開閉部では電極により高い接触圧を与えて、
接触抵抗を下げなければならない。それゆえ、装置全体
が拡大するし、操作機構にはより大きな駆動力が必要と
なり、結局装置が大型化する欠点がある。
However, the above switchgear has a problem of heat radiation efficiency. The Joule heat generated in each part when energized is locally radiated by the cable head at the end of the vacuum vessel connected to the fixed electrode or the movable electrode. In addition, since the internal conductor temperature increases, thermionic emission is promoted, and the insulation performance decreases. To suppress heat generation, increase the conductor size to lower the current density, or apply a higher contact pressure to the electrodes in the open / close section,
The contact resistance must be reduced. Therefore, there is a drawback that the whole device is enlarged, the operation mechanism requires a larger driving force, and the device is eventually enlarged.

【0007】本発明の目的は、真空容器の発熱を効果的
に抑制した手段を設けて、より小型化された真空スイッ
チギヤを提供することにある。
An object of the present invention is to provide a more compact vacuum switchgear by providing means for effectively suppressing heat generation in a vacuum vessel.

【0008】[0008]

【課題を解決するための手段】本発明は、熱発生源に接
続された導体と真空容器との間にセラミック部材からな
る放熱用絶縁スペーサを配置し、放熱用絶縁スペーサに
より導体に伝達される熱を、真空容器外に放出する。
According to the present invention, a radiating insulating spacer made of a ceramic member is arranged between a conductor connected to a heat generating source and a vacuum vessel, and the radiating insulating spacer is transmitted to the conductor by the radiating insulating spacer. The heat is released outside the vacuum vessel.

【0009】更に本発明は、真空容器から引出された引
出導体に絶縁層を設け、絶縁層に設けた導電層を接地
し、導体を通電する電流により発生する磁界による誘導
電流が、真空容器の表面と導電層の間より一方側の接地
から他方側の接地を介して循環して流れる循環電流を、
真空容器の表面と導電層との間の一部に設けた阻止手段
で阻止して、循環電流による発生熱を抑制する。
Further, according to the present invention, an insulating layer is provided on a lead conductor drawn out of a vacuum vessel, a conductive layer provided on the insulating layer is grounded, and an induced current due to a magnetic field generated by a current flowing through the conductor is generated in the vacuum vessel. A circulating current that circulates from the ground on one side to the ground on the other side from between the surface and the conductive layer,
The heat generated by the circulating current is suppressed by the stopping means provided at a part between the surface of the vacuum vessel and the conductive layer.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を図1ない
し図3を用いて説明する。図1の回路図は本発明の集合
型スイッチギヤ全体の構成を示す。図2は集合型スイッ
チギヤの正面図であり、図3は一相分のスイッチギヤの
断面を示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The circuit diagram of FIG. 1 shows the overall configuration of the collective switchgear of the present invention. FIG. 2 is a front view of the collective switchgear, and FIG. 3 shows a cross section of the switchgear for one phase.

【0011】先ず、集合型スイッチギヤ100の構成に
関して、図1及び図2を用いて説明する。集合型スイッ
チギヤ100は、複数の回路、例えば図1では3回路分
のスイッチギヤ1,2,3と母線ユニット8で構成され
る。母線ユニット8内の各母線8X,8Y,8Zによっ
て各相の回路スイッチギヤ1,2,3を互いに接続して
いる。
First, the configuration of the collective switchgear 100 will be described with reference to FIGS. The collective switchgear 100 includes a plurality of circuits, for example, switchgears 1, 2, 3 for three circuits in FIG. The circuit switch gears 1, 2, 3 of each phase are connected to each other by buses 8X, 8Y, 8Z in the bus unit 8.

【0012】回路スイッチギヤ1は電源側ケーブル11
により、外部の系統電源12と電気的に接続される。回
路スイッチギヤ2は、負荷13に接続しており、回路ス
イッチギヤ3は系統電源14に接続している。回路スイ
ッチギヤ1,2,3によって、2回線受電切換、或るい
はループ受電などを可能にする。回路スイッチギヤ3は
負荷に接続している。尚、電源及び負荷の接続は、どの
回路スイッチギヤを選択しても構わず、設置場所のケー
ブル引き込み状態を考慮して決定すればよい。
The circuit switchgear 1 includes a power supply side cable 11
Thereby, it is electrically connected to the external system power supply 12. The circuit switchgear 2 is connected to a load 13, and the circuit switchgear 3 is connected to a system power supply 14. The circuit switchgears 1, 2, 3 enable two-line power reception switching or loop power reception. The circuit switchgear 3 is connected to a load. The connection of the power supply and the load may be selected in any circuit switch gear, and may be determined in consideration of the cable lead-in state at the installation location.

【0013】各相の回路スイッチギヤ1,2,3の構造
は同一であるから、以下では第2の回路スイッチギヤ2
を説明し、他の回路スイッチギヤ1,3の説明は省略す
る。また、回路スイッチギヤ2を構成する相スイッチギ
ヤ2X、2Y、2Zの構成もそれぞれ同一であるから、
第1相の相スイッチギヤ2Xのみを説明し、他の相スイ
ッチギヤ2Y、2Zの説明は省略する。
Since the structures of the circuit switch gears 1, 2 and 3 of each phase are the same, the second circuit switch gear 2 will be described below.
And the description of the other circuit switchgears 1 and 3 is omitted. Also, since the configurations of the phase switch gears 2X, 2Y, and 2Z constituting the circuit switch gear 2 are also the same,
Only the first-phase phase switch gear 2X will be described, and description of the other phase switch gears 2Y and 2Z will be omitted.

【0014】相スイッチギヤ2Xは、遮断機能、断路機
能、及び接地開閉機能を真空容器内に一体に収納したも
のである。即ち、相スイッチギヤ2Xは、主として遮断
部5、断路部6、接地開閉部7の3つの部分で構成され
ている。遮断部5は母線ユニット8の母線8Xと接続し
ている。接地開閉部7は負荷側導体21に接続し、負荷
側導体21は真空容器外に延びるケーブルヘッド10と
接続している。ケーブルヘッド10は負荷13に接続し
ている。
The phase switch gear 2X has a shut-off function, a disconnection function, and a ground opening / closing function integrally housed in a vacuum vessel. That is, the phase switch gear 2 </ b> X mainly includes three parts, that is, the breaking part 5, the disconnecting part 6, and the grounding opening / closing part 7. The breaking unit 5 is connected to the bus 8X of the bus unit 8. The grounding switch 7 is connected to the load-side conductor 21, and the load-side conductor 21 is connected to the cable head 10 extending outside the vacuum vessel. The cable head 10 is connected to a load 13.

【0015】相スイッチギヤ2Xの詳細構成について図
3ないし図5を用いて説明する。相スイッチギヤ2Xの
遮断部5、断路部6、接地開閉部7等の電気機器は真空
容器60内に配置されている。真空容器60は2つの真
空容器部40,41で構成する。一方側の真空容器部4
0内には遮断部5が、他方側の真空容器部41内には断
路部6及び接地開閉部7を収納する。真空容器部40,
41は、セラミック製の絶縁仕切板42で空間的に分離
している。絶縁仕切板42は円盤状の高熱伝導率のセラ
ミックで製作する。絶縁仕切板42の内部には接続導体
52を貫通する貫通穴を形成している。
The detailed configuration of the phase switch gear 2X will be described with reference to FIGS. Electrical devices such as the shut-off unit 5, disconnecting unit 6, and ground opening / closing unit 7 of the phase switch gear 2X are arranged in the vacuum vessel 60. The vacuum vessel 60 is composed of two vacuum vessel sections 40 and 41. Vacuum container part 4 on one side
The shut-off unit 5 is housed in the vacuum vessel unit 41, and the disconnecting unit 6 and the grounding opening / closing unit 7 are housed in the vacuum vessel unit 41 on the other side. Vacuum container section 40,
41 is spatially separated by a ceramic insulating partition plate 42. The insulating partition plate 42 is made of a disc-shaped ceramic having a high thermal conductivity. A through hole that penetrates the connection conductor 52 is formed inside the insulating partition plate 42.

【0016】操作手順は、例えば回路スイッチギヤ2に
接続した負荷13を切り離す場合、遮断部5の切動作に
よって電流を遮断し、断路部6を切動作して雷などの高
電圧が印加されても負荷側に影響が及ばないようにす
る。また、負荷側の保守・点検の際は、遮断部5及び断
路部6を開極し、更に接地開閉部7を入動作して作業者
の安全を確保する。いずれも、系統から回路を切り離し
た後は、個別の真空容器部40,41に収納された遮断
部5及び断路部6の2箇所で絶縁された状態になる。
In the operation procedure, for example, when the load 13 connected to the circuit switchgear 2 is cut off, the current is cut off by the cutoff operation of the cutoff section 5 and the disconnection section 6 is cut off to apply a high voltage such as lightning. So that the load side is not affected. Further, at the time of maintenance / inspection on the load side, the breaking section 5 and the disconnecting section 6 are opened, and the grounding opening / closing section 7 is turned on to secure the safety of the worker. In any case, after the circuit is disconnected from the system, the circuit is insulated at the two locations of the interrupting section 5 and the disconnecting section 6 housed in the individual vacuum vessel sections 40 and 41.

【0017】本発明のように、真空容器部40,41を
完全に2つに分離することによって、万一、一方の真空
容器部40が真空漏れを起こしたとしても、他方の真空
容器部41の絶縁を確保されるため、負荷側に閃絡する
ことはなく、作業者の安全を確保できる。
As in the present invention, by completely separating the vacuum vessel sections 40 and 41 into two, even if one of the vacuum vessel sections 40 causes a vacuum leak, the other vacuum vessel section 41 may be used. As a result, the safety of the worker can be secured without flashing on the load side.

【0018】真空容器部40は、金属筒43、絶縁仕切
板42、母線側ブッシング44、端板45、ベローズ4
8Aを真空炉中のろう付け接合して構成する。金属筒4
3は接地線Eを接続し、接地電位とし、作業者が課電時
に触れても安全を確保する。真空容器部40の内部には
遮断室47を設けてある。遮断室47は、絶縁仕切板4
2、中間シールド49、及びセラミック製の絶縁板50
によってその外側の空間と分離した構造とした。
The vacuum vessel section 40 includes a metal tube 43, an insulating partition plate 42, a busbar bushing 44, an end plate 45, and a bellows 4.
8A is formed by brazing in a vacuum furnace. Metal tube 4
Reference numeral 3 is used to connect a ground line E to a ground potential to ensure safety even when an operator touches the power supply. A shut-off chamber 47 is provided inside the vacuum vessel section 40. The shut-off chamber 47 is provided with the insulating partition plate 4.
2. Intermediate shield 49 and ceramic insulating plate 50
The structure is separated from the space outside.

【0019】中間シールド49の取付部詳細を図4に示
す。中間シールド49及び金属筒43は、それぞれ絶縁
仕切板42に設けたメタライズ51A,51Bとろう付
け接合する。メタライズ51Aと51Bは電気的に絶縁
している。その結果、中間シールド49は浮遊電位とな
る。遮断室47を他の空間と分離した理由は、遮断時に
発生するアークが直接真空容器に触れて地絡事故を起こ
すのを避けるため、更に遮断時に発生した荷電粒子(イ
オン・電子)を遮断室47内に封じ込めて、主回路と接
地電位の金属筒43との間で絶縁破壊が生じないように
するためである。
FIG. 4 shows details of the mounting portion of the intermediate shield 49. The intermediate shield 49 and the metal cylinder 43 are brazed to metallizations 51A and 51B provided on the insulating partition plate 42, respectively. Metallizations 51A and 51B are electrically insulated. As a result, the intermediate shield 49 has a floating potential. The reason why the cutoff chamber 47 is separated from other spaces is that charged particles (ions and electrons) generated at the time of cutoff are further separated from the cutoff chamber in order to prevent an arc generated at the cutoff from directly touching the vacuum vessel and causing a ground fault. 47 to prevent dielectric breakdown between the main circuit and the metal tube 43 at the ground potential.

【0020】尚、絶縁仕切板42の外周部Pは電気的に
浮いた状態となっており、通電時には電荷が蓄積された
状態になる。安全性を確保するには、より接地電位に近
づければよい。具体的には、図4のように、メタライズ
51Bを絶縁仕切板42の外周端まで施し、かつ絶縁仕
切板42の厚みtに比べて、金属筒43から外周端まで
の距離L1を大きくすればよい。このとき、外周端Pは
課電された接続導体52からとうざかり、且つ接地電位
の金属筒43とメタライズ51Bでシールドされた状態
になるため、電荷の蓄電はほとんどない。また、絶縁仕
切板42には通電時に発生する循環電流を回避する役割
もあり、この点については後述する。
The outer peripheral portion P of the insulating partition plate 42 is in an electrically floating state, and is in a state in which electric charges are accumulated when electricity is supplied. In order to ensure safety, it is only necessary to approach the ground potential. Specifically, as shown in FIG. 4, if the metallization 51B is applied to the outer peripheral end of the insulating partition plate 42, and the distance L1 from the metal cylinder 43 to the outer peripheral end is made larger than the thickness t of the insulating partition plate 42, Good. At this time, the outer peripheral end P is swept away from the connection conductor 52 to which the power is applied and is shielded by the metal cylinder 43 at the ground potential and the metallization 51B, so that there is almost no charge storage. The insulating partition plate 42 also has a role of avoiding a circulating current generated at the time of energization, and this point will be described later.

【0021】遮断は、遮断部5の固定電極5aと可動電
極5bの開閉により行う。遮断部5の固定電極5aは、
断路部6及び接地開閉部7を収納した真空容器部41に
延びる接続導体52に固定されている。遮断部5の可動
電極5bは、可動導体5dとセラミック製の絶縁ロッド
101Aを介して可動ブレード5cと連結する。可動ブ
レード5cを操作ユニット30内の操作機構(図示しな
い)にて駆動し、電極の開閉を行う。可動ブレード5c
はベローズ48Aを介して端板45と接合しており、真
空度を保持しながら遮断部5の可動電極5bを動作でき
るようにしてある。
The interruption is performed by opening and closing the fixed electrode 5a and the movable electrode 5b of the interruption section 5. The fixed electrode 5a of the blocking unit 5
It is fixed to a connection conductor 52 extending to the vacuum container section 41 containing the disconnecting section 6 and the grounding opening / closing section 7. The movable electrode 5b of the blocking unit 5 is connected to the movable blade 5c via the movable conductor 5d and the insulating rod 101A made of ceramic. The movable blade 5c is driven by an operation mechanism (not shown) in the operation unit 30 to open and close the electrodes. Movable blade 5c
Is connected to the end plate 45 via the bellows 48A so that the movable electrode 5b of the blocking unit 5 can be operated while maintaining the degree of vacuum.

【0022】フレキシブル導体53Aは可動導体5dに
一方を固定され、他方は母線側導体9に接続されてい
る。フレキシブル導体53Aにより可動導体5dを介し
て母線側導体9から遮断部5への通電を可能にした。母
線側導体9はセラミック製の母線側ブッシング44を貫
通し、母線ユニット8の引出導体8Bに接続される。引
出導体8bはその周囲を被覆した絶縁層8Aに導電層C
を設け、導電層Cに接続した接地線E1にて接地してい
る。
One of the flexible conductors 53A is fixed to the movable conductor 5d, and the other is connected to the busbar-side conductor 9. Electric conduction from the busbar side conductor 9 to the cutoff section 5 is enabled by the flexible conductor 53A via the movable conductor 5d. The bus-side conductor 9 passes through the ceramic bus-side bushing 44 and is connected to the lead conductor 8B of the bus unit 8. The lead conductor 8b is provided on the insulating layer 8A covering the periphery thereof with a conductive layer C.
And grounded by a ground line E1 connected to the conductive layer C.

【0023】真空容器部41は、接地された金属筒であ
る真空容器60、負荷側ブッシング61、電圧測定用ブ
ッシング71、負荷側導体21、絶縁仕切板42、接続
導体52で構成される。真空容器部41の内部には断路
部6及び接地開閉部7を収納してある。
The vacuum vessel section 41 comprises a vacuum vessel 60 which is a grounded metal cylinder, a load-side bushing 61, a voltage measurement bushing 71, a load-side conductor 21, an insulating partition plate 42, and a connection conductor 52. The disconnecting section 6 and the ground opening / closing section 7 are housed inside the vacuum vessel section 41.

【0024】断路部6の固定電極6aは遮断部5を収納
した真空容器部40に延びる接続導体52に固定し、対
向する断路部6の可動導体6bはセラミック製の絶縁ロ
ッド101Bを介して可動ブレード6cと連結する。ま
た、断路部6の可動電極6bにはフレキシブル導体53
Bの一方が固定されており、他方は接続導体54に固定
してある。接続導体54は、セラミック製の電圧測定用
ブッシング71を貫通して電圧測定用コンデンサ72と
接続し、また接続導体54の途中で負荷側導体21が分
岐している。
The fixed electrode 6a of the disconnecting section 6 is fixed to a connecting conductor 52 extending to the vacuum container section 40 in which the blocking section 5 is housed, and the movable conductor 6b of the disconnecting section 6 which is opposed to the movable conductor 6 is movable via an insulating rod 101B made of ceramic. It is connected to the blade 6c. The flexible conductor 53 is provided on the movable electrode 6b of the disconnecting portion 6.
One of B is fixed, and the other is fixed to the connection conductor 54. The connection conductor 54 penetrates a ceramic voltage measurement bushing 71 and is connected to a voltage measurement capacitor 72. The load conductor 21 branches off in the connection conductor 54.

【0025】本実施例の真空スイッチギヤは、電流検出
用変流器200を真空容器部40の周囲に設けており、
過電流検出、更には電圧測定用コンデンサ72とあいま
って電力量検出などの機能を実現することが可能であ
る。接地開閉部7の固定電極7aは接続導体54に固定
し、接地開閉部7の可動電極7bは可動導体7dと接続
されている。可動導体7dは他の相スイッチギヤ、回路
スイッチギヤにおける接地開閉部7の可動導体7dと操
作ユニット30内で短絡した状態とし、かつ接地線Eに
て接地する。
In the vacuum switchgear of this embodiment, the current detecting current transformer 200 is provided around the vacuum vessel section 40.
It is possible to realize functions such as overcurrent detection and, in addition, a power amount detection in combination with the voltage measurement capacitor 72. The fixed electrode 7a of the grounding switch 7 is fixed to the connection conductor 54, and the movable electrode 7b of the grounding switch 7 is connected to the movable conductor 7d. The movable conductor 7d is short-circuited in the operation unit 30 with the movable conductor 7d of the ground switchgear 7 in another phase switchgear or circuit switchgear, and is grounded by the ground line E.

【0026】断路部6の可動ブレード6c及び接地開閉
部7の可動導体7dは、それぞれ真空容器に一方を接合
したベローズ48B,48Cと接続し、操作ユニット3
0内の操作機構により、真空度を維持しながら動作させ
ることができる。
The movable blade 6c of the disconnecting section 6 and the movable conductor 7d of the grounding opening / closing section 7 are connected to bellows 48B and 48C, one of which is connected to the vacuum vessel, and
With the operation mechanism within 0, the operation can be performed while maintaining the degree of vacuum.

【0027】母線ユニット8は、各相の母線8X,8
Y,8Zをエポキシなどの絶縁樹脂で絶縁層8Aをモー
ルドした構造となっており、その周囲は導電性塗料で塗
布した導電層Cを接地線E1にて接地し、接地電位に固
定する。母線ユニット8の絶縁層8A及びセラミック製
の母線側ブッシング44と絶縁栓62aの対向する外形
を円錐状とし、更にそのサイズは標準のケーブルヘッド
に取付けられる寸法にしてある。
The bus unit 8 includes buses 8X, 8 of each phase.
The insulating layers 8A and 8Z are formed by molding an insulating layer 8A with an insulating resin such as epoxy. A conductive layer C coated with a conductive paint is grounded by a ground line E1 around the periphery thereof, and is fixed at a ground potential. The outer shape of the insulating layer 8A of the busbar unit 8 and the facing bushing 44 made of ceramic and the insulating plug 62a are conical, and the size is set to a size that can be attached to a standard cable head.

【0028】次に、真空容器60の周囲のブッシング部
及びその周辺部材の取付方法について説明する。
Next, a method of attaching the bushing around the vacuum vessel 60 and its peripheral members will be described.

【0029】本発明の真空スイッチギヤはケーブル接続
を基本コンセプトとしており、真空容器60から延びる
母線側ブッシング44、負荷側ブッシング61、及び電
圧測定用ブッシング71はいずれも標準規格のケーブル
ヘッドと接続できる円錐構造としてある。母線側ブッシ
ング44を貫通する母線側導体9の先端にはネジ9aを
設けてあり、母線ユニット8から延びる引出導体8bを
挟持した状態で絶縁栓62aを締めつける。このとき、
母線側ブッシング44、母線ユニット8の絶縁層8A、
及び絶縁栓62aは、絶縁ゴム製のケーブルヘッド接続
部63aと密着接合し、この接触圧力で絶縁を維持す
る。負荷側ブッシング61は、ゴム製のケーブルヘッド
接続部63bと一体化した電源ケーブル11と、絶縁栓
62bにより接続される(ケーブルヘッド10)。接続
方法は、母線側と同様に絶縁栓62bを締め込む要領で
行う。
The basic concept of the vacuum switchgear of the present invention is to connect a cable, and the busbar bushing 44, the load bushing 61, and the voltage measurement bushing 71 extending from the vacuum vessel 60 can be connected to a standard cable head. There is a conical structure. A screw 9a is provided at the end of the bus-side conductor 9 that penetrates the bus-side bushing 44, and the insulating plug 62a is tightened with the lead-out conductor 8b extending from the bus unit 8 held therebetween. At this time,
Bus-side bushing 44, insulating layer 8A of bus unit 8,
The insulating plug 62a is in close contact with the cable head connecting portion 63a made of insulating rubber, and maintains insulation with this contact pressure. The load side bushing 61 is connected to the power cable 11 integrated with the rubber cable head connecting portion 63b by an insulating plug 62b (cable head 10). The connection is performed in a manner similar to that of the busbar side, in which the insulating plug 62b is tightened.

【0030】つまりケーブルヘッド接続部63aは絶縁
層8A及び母線側ブッシング44と絶縁栓62aを収納
する3個の収納部とを一体に形成している。これらの収
納部に絶縁層8A及び母線側ブッシング44を収納した
後に絶縁栓62aを収納する。絶縁栓62aを収納する
収納部に設けた貫通穴にネジ9aを挿入し、絶縁栓62
aに雌ネジ62Zを形成している。絶縁栓62aを回転
して雌ネジ62Zをネジ9aに固定する。
That is, the cable head connecting portion 63a integrally forms the insulating layer 8A, the busbar side bushing 44, and the three storing portions for storing the insulating plug 62a. After the insulating layer 8A and the busbar bushing 44 are stored in these storage sections, the insulating plug 62a is stored. A screw 9a is inserted into a through hole provided in a storage portion for storing the insulating plug 62a.
a is formed with a female screw 62Z. The female screw 62Z is fixed to the screw 9a by rotating the insulating plug 62a.

【0031】また、電圧測定用ブッシング71は、電圧
測定用コンデンサ72をエポキシなどの絶縁樹脂でモー
ルドして構成した絶縁栓62cと接続する。接続方法
は、上記の母線側ブッシング44と負荷側ブッシング6
1における手法と同様に、ケーブルヘッド接続部63b
の2個の収納部に電圧測定用ブッシング71及び絶縁栓
62cを収納している。電圧測定用ブッシング71、ケ
ーブルヘッド接続部63bの表面の導電層Cを接地線E
にて接地電位に固定する。
The voltage measuring bushing 71 is connected to an insulating plug 62c formed by molding a voltage measuring capacitor 72 with an insulating resin such as epoxy. The connection method is based on the bus-side bushing 44 and the load-side bushing 6.
1, the cable head connection portion 63b
The voltage measurement bushing 71 and the insulating plug 62c are stored in the two storage portions. The conductive layer C on the surface of the voltage measurement bushing 71 and the cable head connection portion 63b is connected to the ground line E.
To fix to the ground potential.

【0032】尚、母線側ブッシング44、負荷側ブッシ
ング61、及び電圧測定用ブッシング71を同一のセラ
ミックで製作すれば、ケーブル引き出し方向、顧客要求
などに応じて、電源ケーブル11、母線ユニット8、電
圧測定用コンデンサ71をどこに接続するか検討すれば
よく、汎用性に富むスイッチギヤにできる。
If the bus-side bushing 44, the load-side bushing 61 and the voltage measurement bushing 71 are made of the same ceramic, the power cable 11, the bus-bar unit 8, the voltage It is only necessary to consider where to connect the measuring capacitor 71, and the switchgear can be made versatile.

【0033】次に、本発明のセラミックスペーサによる
放熱方法とその効果について説明する。
Next, a method of radiating heat using the ceramic spacer of the present invention and its effects will be described.

【0034】真空容器部41内の接続導体52と真空容
器60間に設けた絶縁スペーサ105A、接続導体54
と真空容器60間に設けた絶縁スペーサ105Bは、各
接続導体52,54の機械的支持と同時に、放熱手段と
して設けたものである。即ち、通電時の発熱が絶縁スペ
ーサ105A及び105Bを介して外部に放熱されるた
め、真空容器の端部に設けたケーブルヘッド部の局所加
熱を抑制でき、更に内部導体からの熱電子放出が減少し
て絶縁特性が向上する。尚、絶縁スペーサ105A,1
05Bは、金具107A,107Bを介して、接続導体
52,54及び真空容器60と接続する。金具107
A,107Bは高熱伝導率の銅で製作するのが最も良い
が、小型化を図る場合には絶縁耐力に優れるステンレス
を用いることもある。
An insulating spacer 105A and a connecting conductor 54 provided between the connecting conductor 52 in the vacuum container 41 and the vacuum container 60.
An insulating spacer 105B provided between the vacuum chamber 60 and the vacuum vessel 60 is provided as a heat radiating means simultaneously with the mechanical support of the connection conductors 52 and 54. That is, since heat generated during energization is radiated to the outside through the insulating spacers 105A and 105B, local heating of the cable head provided at the end of the vacuum vessel can be suppressed, and the emission of thermoelectrons from the internal conductor is reduced. As a result, the insulation characteristics are improved. Note that the insulating spacers 105A, 1
05B is connected to the connection conductors 52 and 54 and the vacuum vessel 60 via the fittings 107A and 107B. Hardware 107
A and 107B are best made of copper having a high thermal conductivity, but stainless steel having excellent dielectric strength may be used in order to reduce the size.

【0035】絶縁スペーサ105A,105Bは、断路
部6の近傍、接地開閉部7とフレキシブル導体53Bの
近傍に備えてある。絶縁スペーサ105A,105B
を、電気抵抗が特に高い部分、即ち、開閉電極の接触
面、フレキシブル導体53A,53Bの近傍に設けるこ
とにより、放熱効率が向上する。絶縁スペーサ105
A,105Bは、それぞれ断路部6の固定電極6a、接
地開閉部7の固定電極7aに対向して設けてある。これ
は断路部6或いは接地開閉部7が入状態のときに、電極
の接触力によって接続導体52,54に働く曲げ力に対
応するためである。
The insulating spacers 105A and 105B are provided near the disconnecting portion 6, near the grounding opening / closing portion 7 and the flexible conductor 53B. Insulating spacers 105A, 105B
Is provided in a portion having a particularly high electric resistance, that is, in the vicinity of the contact surfaces of the switching electrodes and the flexible conductors 53A and 53B, heat radiation efficiency is improved. Insulating spacer 105
A and 105B are provided to face the fixed electrode 6a of the disconnecting section 6 and the fixed electrode 7a of the grounding opening / closing section 7, respectively. This is to cope with the bending force acting on the connection conductors 52 and 54 by the contact force of the electrodes when the disconnecting portion 6 or the grounding opening / closing portion 7 is in the on state.

【0036】絶縁スペーサ105A,105Bと対向す
る真空容器60には放熱板106A,106Bを設置し
た。これは、真空容器60の外表面が局所的に加熱され
るのを防ぐため、更には内部の放熱効率を上げるためで
ある。大気による自然冷却によって十分放熱される場合
には、これらの放熱板は必要ない。遮断部5の電極接触
面で生じる発熱は、絶縁仕切板42を介して放熱する。
従って、真空容器60内の温度が下がり真空スイッチギ
ヤを小型化できる。
Heat sinks 106A and 106B are provided in the vacuum vessel 60 facing the insulating spacers 105A and 105B. This is to prevent the outer surface of the vacuum vessel 60 from being locally heated, and further to increase the internal heat radiation efficiency. If the heat is sufficiently released by natural cooling by the atmosphere, these heat sinks are not necessary. The heat generated at the electrode contact surface of the blocking unit 5 is radiated through the insulating partition plate 42.
Therefore, the temperature inside the vacuum vessel 60 is reduced, and the size of the vacuum switchgear can be reduced.

【0037】絶縁スペーサ105A,105B、及び絶
縁仕切板42は、放熱のために高熱伝導率であることが
必要で、かつ真空炉中の真空容器60の封止に耐え得る
高融点材料(1000度以上)でなければならない。従
って、セラミックを用いるのが適当で、添加材としてア
ルミナ、ベリリア、マグネシアなどが優れる。各セラミ
ックの熱伝導率は、アルミナセラミック36.0W/m
K、ベリリアセラミック272W/mK、マグネシア4
8.4W/mKで、例えばステンレス304の熱伝導率
(16.0W/mK)に比べて大きく放熱手段として有
効であることがわかる。また、その他の高熱伝導率材料
としてシリコンカーバイトSiCや酸化ベリリウムBe
7などを利用してもよい。
The insulating spacers 105A and 105B and the insulating partition plate 42 need to have a high thermal conductivity for heat radiation and have a high melting point material (1000 ° C.) that can withstand the sealing of the vacuum vessel 60 in a vacuum furnace. Above). Therefore, it is appropriate to use ceramics, and alumina, beryllia, magnesia and the like are excellent as additives. The thermal conductivity of each ceramic was 36.0 W / m2 of alumina ceramic.
K, beryllia ceramic 272W / mK, magnesia 4
At 8.4 W / mK, the thermal conductivity of the stainless steel 304 is larger than that of, for example, 16.0 W / mK. Other high thermal conductivity materials such as silicon carbide SiC and beryllium oxide Be
O 7 or the like may be used.

【0038】このように高熱伝導率のセラミックから成
る絶縁スペーサ105A,105B、及び絶縁仕切板4
2を使用することにより、遮断部2、断路部6、接地開
閉器7の開閉時の熱発生源は、接続導体52,54を介
して絶縁スペーサ105A,105B、及び絶縁仕切板
42に伝達され、絶縁スペーサ105A,105B、及
び絶縁仕切板42から真空容器外に放熱され、真空容器
内の温度を下げることができる。
As described above, the insulating spacers 105A and 105B made of ceramic having high thermal conductivity and the insulating partition plate 4 are provided.
2, the heat source at the time of opening / closing of the cutoff unit 2, the disconnecting unit 6, and the grounding switch 7 is transmitted to the insulating spacers 105A and 105B and the insulating partition plate 42 via the connection conductors 52 and 54. The heat is radiated from the insulating spacers 105A and 105B and the insulating partition plate 42 to the outside of the vacuum vessel, and the temperature inside the vacuum vessel can be reduced.

【0039】真空容器60にステンレス304を使用し
ている場合、絶縁スペーサ105A,105B、及び絶
縁仕切板42の熱伝導率はステンレス304の熱伝導率
より良いセラミックを用いる。そうすれば、例えば真空
炉内で接続導体52,54に固定電極6a,7aをロー
付けする場合、真空容器の表面は真空炉内の輻射熱によ
り真空容器内に比べて、高温状態にあるが、真空容器内
はあまり温度が高くないから、ロー付けするのに時間が
長くかかる。
When stainless steel 304 is used for the vacuum container 60, ceramics having better thermal conductivity than the stainless steel 304 is used for the insulating spacers 105 A and 105 B and the insulating partition plate 42. Then, for example, when the fixed electrodes 6a, 7a are brazed to the connection conductors 52, 54 in a vacuum furnace, the surface of the vacuum vessel is at a higher temperature than in the vacuum vessel due to radiant heat in the vacuum furnace. Since the temperature inside the vacuum vessel is not so high, it takes a long time to braze.

【0040】しかし、本発明のように絶縁スペーサ10
5A,105B、及び絶縁仕切板42の熱伝導率はステ
ンレス304の熱伝導率より良いセラミックを用いたの
で、真空炉内の輻射熱が絶縁スペーサ105A,105
B、及び絶縁仕切板42を伝導して、接続導体52,5
4と固定電極6a,7aの間のロー付け個所の温度を高
め、ロー付け時間を早くすることができる。
However, as in the present invention, the insulating spacer 10
Since the thermal conductivity of 5A, 105B and the insulating partition plate 42 is better than the thermal conductivity of stainless steel 304, the radiant heat in the vacuum furnace is reduced by the insulating spacers 105A, 105.
B and the insulating partition plate 42 to conduct the connection conductors 52 and 5.
The temperature at the brazing point between the electrode 4 and the fixed electrodes 6a, 7a can be increased, and the brazing time can be shortened.

【0041】一方、絶縁仕切板42は、放熱だけでな
く、以下に述べる循環電流の抑制効果を有する。集合型
スイッチギヤ100は、真空容器内の例えば母線側導体
9、遮断部5、断路部6、接地開閉器7、接続導体5
2,54、負荷側導体21に電流が流れると、通電電流
の発生磁界による誘導電流が図5に示すように、真空容
器60の表面、母線ユニット8の絶縁層8Aの導電層C
に設けた接地線E1から地中を介して負荷側ブッシング
61の絶縁層の導電層Cに設けた接地線E2に流れ、更
に接地線E2から導電層Cを介して真空容器60の表面
に流れる所謂循環電流Iが流れる。真空容器60を例え
ば抵抗率の高いステンレス部材で製作すると、この循環
電流Iによって容器表面で発熱し、内部の絶縁特性が劣
化したり、更に電力損失となったり、或いは絶縁スペー
サ105A,105B、及び絶縁仕切板42の熱伝導率
の良いセラミックを使用して放熱する効果が失われる。
On the other hand, the insulating partition plate 42 has not only the heat dissipation but also the effect of suppressing the circulating current described below. The collective switchgear 100 includes, for example, a busbar-side conductor 9, a cutoff section 5, a disconnection section 6, a ground switch 7, and a connection conductor 5 in a vacuum vessel.
2, 54, when a current flows through the load-side conductor 21, the induced current due to the magnetic field generated by the conduction current is applied to the conductive layer C of the insulating layer 8A of the busbar unit 8, as shown in FIG.
Flows from the ground line E1 provided through the ground to the ground line E2 provided on the conductive layer C of the insulating layer of the load side bushing 61, and further flows from the ground line E2 to the surface of the vacuum vessel 60 via the conductive layer C. A so-called circulating current I flows. When the vacuum container 60 is made of, for example, a stainless steel member having a high resistivity, heat is generated on the surface of the container by the circulating current I, thereby deteriorating the internal insulating characteristics, further causing power loss, or causing the insulating spacers 105A, 105B, and The effect of dissipating heat by using ceramics having good thermal conductivity of the insulating partition plate 42 is lost.

【0042】そこで、本発明では真空容器60を2個の
真空容器部40,41に分割して、真空容器部40と真
空容器部41の間に絶縁仕切板42を配置して、循環電
流Iの流れを阻止して、真空容器60で発熱を生じない
ようにしたので、更に真空容器60内の温度が下がり真
空スイッチギヤを小型化できる。
Therefore, in the present invention, the vacuum vessel 60 is divided into two vacuum vessel sections 40 and 41, and an insulating partition plate 42 is arranged between the vacuum vessel section 40 and the vacuum vessel section 41, so that the circulating current I Flow is prevented so that heat is not generated in the vacuum vessel 60, so that the temperature inside the vacuum vessel 60 is further reduced, and the size of the vacuum switchgear can be reduced.

【0043】また図3に示すように負荷側ブッシング6
1、電圧測定用ブッシング71、母線側ブッシング44
等の導電層Cの一部であるフランジ部には導電層Cを設
けていない絶縁部Fを有する。この絶縁部Fにより循環
電流Iの流れを阻止している。絶縁部Fを設ける場合に
は絶縁仕切板42を省略しても良い。特にフランジ部を
絶縁部Fにすれば、作業時に作業員が直ぐに絶縁個所が
分かって、作業がしやすいと共に、フランジ部の突起部
に導電層Cを設ると、作業中に作業員の工具がセラミッ
クと気ずかずに接触して破損する可能性があるので、本
発明ではフランジ部を絶縁部Fとした。またフランジ部
に絶縁部Fを設けない場合、接地線と真空容器60との
間の導電層Cの一部に循環電流Iの流れを阻止するよう
に別途絶縁手段を設けても良い。
Further, as shown in FIG.
1, bushing 71 for voltage measurement, bushing 44 on the busbar side
The flange portion which is a part of the conductive layer C has an insulating portion F in which the conductive layer C is not provided. The insulating portion F prevents the flow of the circulating current I. When the insulating portion F is provided, the insulating partition plate 42 may be omitted. In particular, if the flange portion is made of the insulating portion F, the worker can easily find the insulating portion at the time of work, and work is easy, and if the conductive layer C is provided on the protrusion of the flange portion, the tool of the worker during the work can be obtained. However, there is a possibility that the flange will contact the ceramic without being noticed and be damaged. If the insulating portion F is not provided on the flange portion, a separate insulating means may be provided on a part of the conductive layer C between the ground wire and the vacuum vessel 60 so as to prevent the flow of the circulating current I.

【0044】このように絶縁仕切板42又は絶縁部Fに
よって循環電流Iの流れを電気的に絶縁すれば、循環電
流は流れなくなり、上述の問題を回避できる。また前述
のように真空容器部40,41を2つに分割し、各真空
容器部40及び41に遮断部5及び断路部6を配置し
て、各真空容器部40,41の誘導電流を接地線Eにて
接地に流し、作業者が各真空容器部40,41に触れて
も感電しないように作業者の安全を確保した。この場
合、真空容器60に絶縁仕切板42を設ける場合には、
真空容器60に2個所の接地線Eを介して接地し、循環
電流I2,I3が2経路に流れる。この循環電流I2,
I3は導電層Cの絶縁部Fにて阻止されるので、真空容
器60で発熱を生じない。
If the flow of the circulating current I is electrically insulated by the insulating partition plate 42 or the insulating portion F in this manner, the circulating current does not flow, and the above-described problem can be avoided. Further, as described above, the vacuum vessel sections 40 and 41 are divided into two, and the cutoff section 5 and the disconnection section 6 are arranged in each of the vacuum vessel sections 40 and 41, and the induced current of each of the vacuum vessel sections 40 and 41 is grounded. The line E was grounded, and the safety of the worker was ensured so that even if the worker touched each of the vacuum vessel sections 40 and 41, no electric shock would be caused. In this case, when providing the insulating partition plate 42 in the vacuum container 60,
The vacuum vessel 60 is grounded via two ground lines E, and circulating currents I2 and I3 flow in two paths. This circulating current I2,
Since I3 is blocked by the insulating portion F of the conductive layer C, no heat is generated in the vacuum vessel 60.

【0045】尚、通電電流が大きく、電流の時間変化率
di/dtが高い場合には、循環電流Iが流れる経路の
インダクタンスLと電流の時間変化率di/dtとの積
で与えられる誘起電圧Ldi/dtが絶縁仕切板42に
印加されて放電することも考えられる。この場合、真空
容器部40及び真空容器部41は電気的に接続せざるを
得ないが、母線ユニット8の表面の導電性部に電気抵抗
率の高い導電層Cを使用するか、或いは塗装厚みを薄く
して、循環電流Iを少なくなるように制限しても良い。
When the current is large and the current time change rate di / dt is high, the induced voltage given by the product of the inductance L of the path through which the circulating current I flows and the current time change rate di / dt. It is conceivable that Ldi / dt is applied to the insulating partition plate 42 to cause a discharge. In this case, the vacuum vessel section 40 and the vacuum vessel section 41 must be electrically connected, but a conductive layer C having a high electric resistivity is used for the conductive section on the surface of the busbar unit 8, or the coating thickness is reduced. May be limited to reduce the circulating current I.

【0046】図6の相スイッチギヤ2は、3相の真空容
器60の各々には内部に配置された導体101に上述と
同様な遮断部5、断路部6、接地開閉部7を接続されて
いる。導体101の各々は母線ユニット8の母線8X,
8Y,8Zに接続している。母線8X,8Y,8Zは絶
縁層8Aで被覆されている。絶縁層8Aは図3の上述と
同じように絶縁層8Aの導電層Cに接続した接地線Eを
接地している。負荷側導体101はケーブルヘッド10
を介して負荷(図示せず)に接続している。
In the phase switch gear 2 shown in FIG. 6, a breaking part 5, a disconnecting part 6, and a grounding opening / closing part 7 similar to those described above are connected to a conductor 101 disposed inside each of the three-phase vacuum vessels 60. I have. Each of the conductors 101 is a bus 8X of the bus unit 8,
8Y and 8Z. The busbars 8X, 8Y, 8Z are covered with an insulating layer 8A. The insulating layer 8A grounds the ground line E connected to the conductive layer C of the insulating layer 8A in the same manner as described above with reference to FIG. The load side conductor 101 is the cable head 10
To a load (not shown).

【0047】循環電流Iが一方側の真空容器60の接地
線E2より他方側の接地線E3に流れ、接地線E3より
他方側真空容器60を介して母線側の導電層Cに流れ
る。本発明では真空容器60を分割した真空容器50と
真空容器部41の間に絶縁仕切板42を配置し、循環電
流Iの流れを阻止し、真空容器の温度を下げて、真空ス
イッチギヤの小型化を図っている。また接地線E1又は
E2からも接地線Eに循環電流が流れるが、絶縁部Fで
循環電流の流れを阻止する。
The circulating current I flows from the ground line E2 of the vacuum vessel 60 on one side to the ground line E3 on the other side, and flows from the ground line E3 to the conductive layer C on the busbar side via the vacuum vessel 60 on the other side. In the present invention, an insulating partition plate 42 is arranged between the vacuum vessel 50 and the vacuum vessel section 41 which divide the vacuum vessel 60 to prevent the flow of the circulating current I, reduce the temperature of the vacuum vessel, and reduce the size of the vacuum switchgear. It is trying to make it. A circulating current also flows from the ground line E1 or E2 to the ground line E, but the insulating portion F prevents the circulating current from flowing.

【0048】図7は真空容器60内に導体101を配置
して、導体101に遮断部5、断路部6、接地開閉部7
を接続していない以外、図3の実施例と同じであるの
で、詳細な説明は省略する。真空容器60内と導体10
1の間に絶縁スペーサ105Aを配置すると共に、絶縁
スペーサ105Aと対向する真空容器外側に放熱板10
6Aを取り付け、真空容器内の熱を放熱し、真空容器内
の温度を下げて、真空容器の小型化を図っている。また
真空容器60を分割した真空容器と真空容器の間に絶縁
仕切板42を配置し、循環電流Iの流れを阻止し、更に
真空容器内の温度を下げて、真空容器の小型化を図って
いる。
FIG. 7 shows a state in which the conductor 101 is disposed in the vacuum vessel 60 and the conductor 101 is provided with the interrupter 5, the disconnector 6, and the grounding switch 7.
3 is the same as the embodiment of FIG. 3 except that it is not connected, so that the detailed description is omitted. Inside the vacuum vessel 60 and the conductor 10
1, an insulating spacer 105A is arranged between the first and second heat dissipating plates, and a heat radiating plate 10
6A is attached, the heat inside the vacuum vessel is radiated, and the temperature inside the vacuum vessel is reduced, thereby reducing the size of the vacuum vessel. In addition, an insulating partition plate 42 is arranged between the vacuum vessel divided into the vacuum vessel 60 and the vacuum vessel to prevent the flow of the circulating current I, further reduce the temperature in the vacuum vessel, and reduce the size of the vacuum vessel. I have.

【0049】[0049]

【発明の効果】以上のように、本発明によれば、真空容
器の温度を下げて、真空スイッチギヤ又は導体を収納し
た真空容器を小型化することができる。
As described above, according to the present invention, the temperature of the vacuum vessel can be reduced, and the size of the vacuum vessel containing the vacuum switchgear or the conductor can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例であるスイッチギヤの回路図。FIG. 1 is a circuit diagram of a switchgear according to an embodiment of the present invention.

【図2】本発明の実施例であるスイッチギヤの正面図。FIG. 2 is a front view of a switchgear according to the embodiment of the present invention.

【図3】本発明の実施例である相スイッチギヤの断面
図。
FIG. 3 is a sectional view of a phase switchgear according to an embodiment of the present invention.

【図4】本発明の実施例であるスイッチギヤの絶縁仕切
板42近傍の断面図。
FIG. 4 is a sectional view of the vicinity of an insulating partition plate 42 of the switchgear according to the embodiment of the present invention.

【図5】図3の循環電流の説明する模式図。FIG. 5 is a schematic diagram illustrating a circulating current in FIG. 3;

【図6】図3のスイッチギヤを左側から見た正面図。FIG. 6 is a front view of the switchgear of FIG. 3 as viewed from the left side.

【図7】本発明の他の実施例である導体を収納した真空
容器の模式図。
FIG. 7 is a schematic view of a vacuum container containing a conductor according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2,3…回路スイッチギヤ、2X,2Y,2Z…相
スイッチギヤ、5…遮断部、5a…固定電極、5b…可
動電極、6…断路部、6a…固定電極、6b…可動電
極、7…接地開閉部、7a…固定電極、7b…可動電
極、8…母線ユニット、9…負荷側導体、10…ケーブ
ルヘッド、30…操作機構、40,41…真空容器部、
42…絶縁仕切板、53…フレキシブル導体、60…真
空容器、105A,105B…絶縁スペーサ、106
A,106B…放熱板、100…集合型スイッチギヤ、
C…導電層、F…絶縁部。
1, 2, 3 ... circuit switch gear, 2X, 2Y, 2Z ... phase switch gear, 5 ... cutoff part, 5a ... fixed electrode, 5b ... movable electrode, 6 ... disconnection part, 6a ... fixed electrode, 6b ... movable electrode, Reference numeral 7: grounding switch, 7a: fixed electrode, 7b: movable electrode, 8: busbar unit, 9: load-side conductor, 10: cable head, 30: operating mechanism, 40, 41: vacuum vessel part,
42: insulating partition plate, 53: flexible conductor, 60: vacuum container, 105A, 105B: insulating spacer, 106
A, 106B: heat sink, 100: collective switchgear,
C: conductive layer, F: insulating part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三代 拓也 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分事業所内 (72)発明者 喜久川 修一 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分事業所内 (72)発明者 谷水 徹 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分事業所内 Fターム(参考) 5G017 CC02 FF06 5G026 EB06 EB08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuya Midai 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside Kokubu Office, Hitachi, Ltd. (72) Inventor Shuichi Kikugawa 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi Kokubu Office Hitachi, Ltd. (72) Inventor Toru Tanimizu 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture F-term (reference) 5G017 CC02 FF06 5G026 EB06 EB08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱発生源に接続された導体を容器内に配
置し、該導体に伝達される熱を容器外に放出するように
セラミック部材からなる放熱用絶縁スペーサで前記導体
を支持したことを特徴とする真空容器。
1. A conductor connected to a heat generating source is disposed in a container, and the conductor is supported by a heat-radiating insulating spacer made of a ceramic member so as to release heat transferred to the conductor to the outside of the container. A vacuum vessel characterized by the above.
【請求項2】 接地された真空容器内に配置された導体
を一部真空容器外に引出し、該容器から導体の引出され
た部分の周囲に絶縁層を設けと共に、該絶縁層を被覆す
る導電層を接地し、かつ上記引出導体に通電する電流に
より発生する磁界による誘導電流が、上記真空容器の表
面と導電層及び上記接地間を介して循環して流れる循環
電流を阻止する阻止手段を設けたことを特徴とする真空
容器。
2. A conductor disposed in a grounded vacuum vessel is partially drawn out of the vacuum vessel, an insulating layer is provided around a portion where the conductor is drawn out of the vessel, and a conductive layer covering the insulating layer is provided. A blocking means is provided for grounding the layer, and for preventing a circulating current flowing by circulating an induced current due to a magnetic field generated by a current flowing through the lead conductor between the surface of the vacuum vessel and the conductive layer and the ground. A vacuum vessel, characterized in that:
【請求項3】 前記導体は、真空容器内に配置された固
定電極と、この固定電極と開閉する可動電極とが対向配
置して形成され、この導体と前記固定電極と可動電極と
の対向面と反対側より真空容器外に引出された引出導体
にて真空スイッチを構成することを特徴とする請求項2
に記載の真空容器。
3. The conductor is formed such that a fixed electrode disposed in a vacuum vessel and a movable electrode that opens and closes the fixed electrode face each other, and an opposing surface of the conductor, the fixed electrode, and the movable electrode. The vacuum switch is constituted by a lead conductor drawn out of the vacuum vessel from the opposite side of the vacuum switch.
The vacuum container according to item 1.
【請求項4】 上記阻止手段として、上記真空容器又は
導電層の一部に循環電流を阻止する絶縁手段を設けるこ
とを特徴とする請求項2に記載の真空容器。
4. The vacuum vessel according to claim 2, wherein an insulating means for preventing a circulating current is provided in a part of the vacuum vessel or the conductive layer as the blocking means.
【請求項5】 上記絶縁手段として、上記真空容器を分
割し、分割した前記一方側の真空容器と他方側の真空容
器との間に、上記導体を貫通する貫通穴を内部に有する
絶縁板を上記導体と接するように配置することを特徴と
する請求項4に記載の真空容器。
5. As the insulating means, an insulating plate having a through hole penetrating the conductor is provided between the divided one vacuum vessel and the other vacuum vessel by dividing the vacuum vessel. The vacuum vessel according to claim 4, wherein the vacuum vessel is arranged so as to be in contact with the conductor.
【請求項6】 上記分割された一方側の真空容器内に遮
断部を、他方側の真空容器内に断路部及び接地開閉器部
を設け、上記導体が上記絶縁板の貫通穴を貫通して前記
遮断部と前記断路部とに電気的に接続していることを特
徴とする請求項5に記載の真空容器。
6. A breaking part is provided in one of the divided vacuum vessels, a disconnecting part and a grounding switch part are provided in the other vacuum vessel, and the conductor passes through a through hole of the insulating plate. The vacuum vessel according to claim 5, wherein the vacuum vessel is electrically connected to the breaking section and the disconnecting section.
【請求項7】 上記放熱用絶縁スペーサは、真空容器内
に配置した導体に設けれらている対向配置された少なく
とも一対の固定電極と可動電極の、前記固定電極が設け
られている側とは反対側の導体に設けられていることを
特徴とする請求項1に記載の真空容器。
7. The heat-dissipating insulating spacer is provided on at least a pair of opposed fixed electrodes and a movable electrode provided on a conductor arranged in a vacuum vessel and a side on which the fixed electrode is provided. The vacuum vessel according to claim 1, wherein the vacuum vessel is provided on an opposite conductor.
【請求項8】 上記放熱用絶縁スペーサと対向する真空
容器の外側に放熱板を設けることを特徴とする請求項1
又7に記載の真空容器。
8. A radiator plate is provided outside the vacuum vessel facing the insulating spacer for radiating heat.
8. The vacuum container according to 7.
JP2000197882A 2000-06-27 2000-06-27 Vacuum chamber Pending JP2002008500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197882A JP2002008500A (en) 2000-06-27 2000-06-27 Vacuum chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197882A JP2002008500A (en) 2000-06-27 2000-06-27 Vacuum chamber

Publications (1)

Publication Number Publication Date
JP2002008500A true JP2002008500A (en) 2002-01-11

Family

ID=18696145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197882A Pending JP2002008500A (en) 2000-06-27 2000-06-27 Vacuum chamber

Country Status (1)

Country Link
JP (1) JP2002008500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309944A (en) * 2005-04-26 2006-11-09 Hitachi Ltd Vacuum switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309944A (en) * 2005-04-26 2006-11-09 Hitachi Ltd Vacuum switch

Similar Documents

Publication Publication Date Title
US6259051B1 (en) Vacuum switch and a vacuum switchgear using the same
US7244903B2 (en) Vacuum switchgear
TWI445269B (en) A switch unit and a switching device equipped with a switch unit
WO2000021107A1 (en) Vacuum switch and vacuum switch gear using the vacuum switch
JP2002008500A (en) Vacuum chamber
JP7212341B2 (en) Power switchgear, power transmission and distribution system, power generation system, load system, and control method for power switchgear
EP2494668B1 (en) Heat transfer assembly for electrical installation
CN217848784U (en) Miniaturized large-capacity 12kV air insulation cabinet with built-in vacuum circuit breaker
EP3817164A1 (en) A thermal link
US1735179A (en) Electrical apparatus
EP4290547A1 (en) Dielectric shielding heat sink
JPH1189027A (en) Switch gear
Masmeier et al. Improvement of thermal performance of medium voltage circuit breakers by the implementation of heat pipes
JP3402135B2 (en) Vacuum switch and vacuum switchgear
CN110350437B (en) Gas insulated switchgear and insulating spacer therefor
JP2004281302A (en) Gas-insulated circuit breaker and gas-insulated switchgear
JPS62141909A (en) Gas insulated switchgear
JP2007202233A (en) Gas-insulated switchgear
CN114203479A (en) Circuit breaker structure
JP3775010B2 (en) Switchgear
JPH1189026A (en) Switch gear
JPH11113117A (en) Switchgear
EP2549500A1 (en) Gas-insulated switch gear, especially SF6-insulated panels or switchboards
JP2005073461A (en) Power conversion device
JPH1141726A (en) Switch gear

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927