JP2002006076A - System for predicting diffusion of radioactive substance - Google Patents

System for predicting diffusion of radioactive substance

Info

Publication number
JP2002006076A
JP2002006076A JP2000187504A JP2000187504A JP2002006076A JP 2002006076 A JP2002006076 A JP 2002006076A JP 2000187504 A JP2000187504 A JP 2000187504A JP 2000187504 A JP2000187504 A JP 2000187504A JP 2002006076 A JP2002006076 A JP 2002006076A
Authority
JP
Japan
Prior art keywords
calculation
radioactive material
diffusion
data
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000187504A
Other languages
Japanese (ja)
Other versions
JP3709330B2 (en
Inventor
Ryuji Kubota
龍治 久保田
Kengo Iwashige
健五 岩重
Toshio Kasano
利夫 笠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2000187504A priority Critical patent/JP3709330B2/en
Publication of JP2002006076A publication Critical patent/JP2002006076A/en
Application granted granted Critical
Publication of JP3709330B2 publication Critical patent/JP3709330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the predictability on the concentration and dose equivalent of radioactive substances. SOLUTION: In a system for predicting the diffusion of radioactive substances that estimates the concentration and dose equivalent of them at an arbitrary point by predicting the condition of the diffusion of radioactive substances released into the atmosphere, the sedimentation velocity of them is estimated on the basis of the particle diameters of them and the places where they deposit are calculated on the basis of the estimation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大気中に放出され
た放射性物質の濃度や線量を予測する放射性物質拡散予
測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radioactive substance diffusion prediction system for predicting the concentration and dose of radioactive substances released into the atmosphere.

【0002】[0002]

【従来の技術】原子力発電所等から大気中に放射性物質
が放出されるような万一の緊急時に、放出された放射性
物質の移流拡散の状況と予測線量当量を計算するシステ
ムとして、SPEEDI(System for Prediction of Environm
ental Emergency Dose Information)システムが知られ
ている。このSPEEDIシステムについては、「緊急時環境
放射線モニタリング指針」(原子力安全委員会,平成4
年)に記載されている。
2. Description of the Related Art SPEEDI (System) is a system for calculating the advection-diffusion status and predicted dose equivalent of released radioactive materials in the event of emergency, such as when radioactive materials are released into the atmosphere from a nuclear power plant. for Prediction of Environm
ental Emergency Dose Information) system is known. This SPEEDI system is described in the "Emergency Environmental Radiation Monitoring Guidelines" (Nuclear Safety Commission, 1994
Year).

【0003】SPEEDIシステムは、平常時には、各地方公
共団体のテレメータシステムの気象観測情報と気象庁の
アメダス情報を1時間毎に受信し、6時間先までの風向
・風速の統計的予測等を行う。
In normal times, the SPEEDI system receives weather observation information of the telemeter system of each local government and AMeDAS information of the Meteorological Agency every hour, and performs statistical prediction of wind direction and speed up to six hours ahead.

【0004】そして緊急時には、平常時に予測した気象
情報,地形情報及び放出源情報(ファックスで送信され
てくる施設名や発生時刻等)に基づいて、最長6時間先
までの風速場,大気中の放射性物質の濃度及び予測線量
当量を計算する。
In an emergency, based on weather information, terrain information, and emission source information (facsimile transmitted facility name, occurrence time, etc.) predicted in normal times, the wind speed field up to 6 hours ahead, Calculate the concentration of radioactive material and the estimated dose equivalent.

【0005】[0005]

【発明が解決しようとする課題】上述した従来技術で
は、放出された放射性物質の挙動は大気の挙動と全く同
一として計算が行われる。しかしながら、放出される放
射性物質には直径が10μm以上ある大粒径の物質が含
まれることもあり、このような大粒径の物質は大気と比
較して挙動が遅いために大気の流線から外れてしまう。
また、大粒径の物質は湿分中では粒径が成長するが、上
記従来技術では粒径の成長について考慮されていない。
そのため、上述の従来技術では放射性物質の濃度や線量
当量を正確に計算できない可能性がある。
In the above-described prior art, the calculation is performed on the assumption that the behavior of the released radioactive material is exactly the same as the behavior of the atmosphere. However, released radioactive substances may include large-diameter substances with a diameter of 10 μm or more. It will come off.
In addition, a substance having a large particle size grows in moisture, but the prior art does not consider the growth of the particle size.
Therefore, there is a possibility that the concentration and the dose equivalent of the radioactive substance cannot be accurately calculated by the above-described conventional technology.

【0006】更に上述の従来技術では、放出源を点源と
しているが、高温・高圧の熱流体の放出に伴う放射性雲
は直径が100m程度の半球の形状であり、この放出源
の相違によって放射性物質の濃度や線量当量の計算に誤
差が生じる可能性がある。
Further, in the above-mentioned prior art, the emission source is a point source. However, the radioactive cloud accompanying the release of a high-temperature and high-pressure thermal fluid has a hemispherical shape with a diameter of about 100 m. There may be errors in the calculation of substance concentrations and dose equivalents.

【0007】本発明の目的は、放射性物質の濃度や線量
当量の予測精度をより向上させることにある。
An object of the present invention is to further improve the accuracy of predicting the concentration and dose equivalent of a radioactive substance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、大気中に放出された放射性物質の拡散
状況を予測して任意の地点における放射性物質の濃度及
び線量当量を予測する放射性物質拡散予測システムにお
いて、放射性物質の粒径に基づいて沈降する速度を評価
し、それに基づいて沈着場所を算出する。
In order to achieve the above object, according to the present invention, the concentration of radioactive material and the dose equivalent at an arbitrary point are predicted by predicting the state of diffusion of radioactive material released into the atmosphere. In the radioactive material diffusion prediction system, the rate of sedimentation is evaluated based on the particle size of the radioactive material, and the deposition site is calculated based on the rate.

【0009】具体的には、以下の計算アルゴリズムを用
いる。
Specifically, the following calculation algorithm is used.

【0010】粒子の沈降速度Upは、(数1)で表わさ
れるストークスの法則に従う球形粒子の終端速度Wpを
用いて与える。
The sedimentation velocity Up of a particle is given by using the terminal velocity Wp of a spherical particle in accordance with Stokes' law expressed by (Equation 1).

【0011】ここで、ρp ,dは粒子の密度及び直径、
ρg,μgは気体の密度及び粘性係数、gは重力加速度で
ある。
Where ρ p , d is the density and diameter of the particles,
ρ g and μ g are the density and viscosity coefficient of the gas, and g is the gravitational acceleration.

【0012】湿分中における粒子成長については、吸湿
性の粒子に対する湿度効果として、(数2)を適用す
る。
With respect to the particle growth in moisture, (Equation 2) is applied as the humidity effect on the hygroscopic particles.

【0013】ここで、de は平衡粒径、d0 は初期粒
径、ρ0 は粒子の密度、ρw は水の密度、iはvan't Ho
ff因子、Mw は水の分子量、Ms は粒子の分子量、RH
は相対湿度である。湿分中における粒子成長は相対湿度
95%以上で顕著に表れるため、計算においては大気中
に拡散した吸湿性の粒子が高湿度領域に入った際に粒径
の成長が考慮される。その際の粒径は(数2)より求め
られ、粒子と水の混合物の密度を用いて(数1)から沈
降速度が評価される。
Where de is the equilibrium particle size, d 0 is the initial particle size, ρ 0 is the particle density, ρ w is the water density, and i is van't Ho.
ff factor, M w is the molecular weight of the water, the molecular weight of the M s particle, RH
Is the relative humidity. Since the growth of particles in moisture is remarkable at a relative humidity of 95% or more, the calculation takes into account the growth of the particle size when the hygroscopic particles diffused into the atmosphere enter a high humidity region. The particle diameter at that time is obtained from (Equation 2), and the sedimentation velocity is evaluated from (Equation 1) using the density of the mixture of particles and water.

【0014】[0014]

【発明の実施の形態】本発明の好適な一実施例である放
射性物質拡散予測システムについて図面を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A radioactive material diffusion prediction system according to a preferred embodiment of the present invention will be described with reference to the drawings.

【0015】図1は、本実施例の放射性物質拡散予測シ
ステムの構成を示す。本実施例では、図1の破線の範囲
を1台のパソコンで実現し、外部からのデータはネット
ワークを介してオンラインでパソコンのデータベースに
取り込む。図1に示すように、平常時には、気象庁の2
日先までの20kmメッシュの気象予測データ(風向,
風速,気温,降水量、等)である気象庁GPV(Grid Poi
nt Value)データ15を午前9時と午後9時の1日2回
受信し、施設周辺気象予測計算モデル3にて500m以
下の詳細なメッシュで質量保存則を満たすように内挿し
て最大51時間先までの各メッシュの風向・風速の予測
計算の処理を行う。予測結果は予測気象結果20として
格納される。
FIG. 1 shows a configuration of a radioactive material diffusion prediction system according to this embodiment. In this embodiment, the range indicated by the broken line in FIG. 1 is realized by a single personal computer, and external data is fetched online into a database of the personal computer via a network. As shown in FIG.
Weather forecast data of 20km mesh up to the sun (wind direction,
Meteorological Agency GPV (Grid Poi) for wind speed, temperature, precipitation, etc.
nt Value) Receives data 15 twice a day at 9:00 am and 9:00 pm, and interpolates with a detailed mesh of 500 m or less using a detailed mesh of 500 m or less to satisfy the law of conservation of mass in the facility surrounding weather prediction calculation model 3 for a maximum of 51 hours. The prediction calculation of the wind direction / wind speed of each mesh is performed. The prediction result is stored as the predicted weather result 20.

【0016】一方、放射性物質が大気中に大量に放出さ
れるような緊急時には、平常時において500m以下の
詳細なメッシュで予測された気象情報,地形図データ
9,放射線モニタ等で計測された施設内放射線モニタデ
ータ18,モニタリングポスト等で計測された施設周辺
放射線モニタデータ19に基づいて、最長51時間先ま
での風速場,大気中放射性物質の濃度及び予測線量当量
の計算を行う他、気象庁のAMeDASデータを用いて過去の
再現計算も行う。
On the other hand, in an emergency when a large amount of radioactive material is released into the atmosphere, weather information predicted by a detailed mesh of 500 m or less in normal times, topographic map data 9, facilities measured by a radiation monitor, etc. Based on the internal radiation monitor data 18, the radiation monitor data around the facility measured by monitoring posts, etc., the wind speed field, the concentration of radioactive materials in the atmosphere and the predicted dose equivalent up to 51 hours ahead are calculated. A past reproduction calculation is also performed using AMeDAS data.

【0017】以下、緊急時における動作について説明す
る。
The operation in an emergency will be described below.

【0018】緊急時には、まず風速場計算モデル4にお
いて風向及び風速を計算する。この計算は予測計算と再
現計算から成る。予測計算では、3次元計算領域全体を
計算用セル(直方体の小要素)に分解し、予測気象結果
20と地形図データ9を用いて山や丘のような地形の高
低を考慮した上で質量保存則を満たすように、各セルの
最大51時間先までの風向・風速計算を行う。一方、再
現計算では、40分前の気象が送信される気象庁AMeDAS
データ2(地上の風向,風速,降雨等で約20kmに1
ヶ所)を1時間毎に受信し、またドップラーソーダや排
気筒の風速・風向計で計測された高所の風向・風速や露
場で計測された地上の風向・風速等の施設内気象観測デ
ータ16及び施設周辺で計測された地上の風向・風速で
ある施設周辺気象観測データ1を受信し、これを地形メ
ッシュ上の位置(緯度,経度)と高度に合致する点での
風向・風速として取り込んで境界条件とすることで、対
象とする領域全体の質量保存則を満たすようにして過去
の風向・風速場を再現する。予測及び再現された結果
は、それぞれ3次元予測風速場10及び3次元再現風速
場17として保存される。
In an emergency, the wind direction and wind speed are calculated by the wind speed field calculation model 4 first. This calculation consists of a prediction calculation and a reproduction calculation. In the prediction calculation, the entire three-dimensional calculation area is decomposed into calculation cells (small elements of a rectangular parallelepiped), and the mass is calculated using the predicted weather result 20 and the topographic map data 9 in consideration of the height of a terrain such as a mountain or a hill. The wind direction and the wind speed are calculated up to 51 hours ahead of each cell so as to satisfy the conservation rule. On the other hand, in the reproduction calculation, the Meteorological Agency AMeDAS where the weather 40 minutes ago is transmitted
Data 2 (1 per 20 km due to wind direction, wind speed, rainfall, etc. on the ground)
Locations) every hour, and in-facility meteorological data such as wind direction and wind speed at high altitudes measured by Doppler soda and exhaust stacks, and wind direction and wind speed on the ground measured at the dew field 16 and the weather data 1 around the facility, which is the wind direction and wind speed on the ground measured around the facility, are received and taken as the wind direction and wind speed at a point that matches the position (latitude, longitude) and altitude on the terrain mesh. By using as boundary conditions, the past wind direction / velocity field is reproduced so as to satisfy the law of conservation of mass of the entire target area. The predicted and reproduced results are stored as a three-dimensional predicted wind speed field 10 and a three-dimensional reproduced wind speed field 17, respectively.

【0019】次に、濃度計算モデル5にて濃度計算が行
われる。濃度計算モデル5では、アルファ線,ベータ
線,ガンマ線等の施設内放射線モニタデータ18とI−
131,Kr−85,Pu−240等の核種組成比率デ
ータ21から単位時間当りの放出源総量と組成から成る
放出条件を導出し、これを経度,緯度,高度から決まる
放出点として3次元予測風速場10である最大51時間
先までの風速場の結果を用い、風による移流と大気の乱
れによる放射性物質の拡散を数千個の個々の仮想粒子の
動きに置き換えて計算する。この結果から計算用セルご
とに、放射性物質の最大51時間先までの大気中平均濃
度と地表蓄積量の予測計算を行う。その結果はそれぞれ
空間濃度分布7及び沈着量8として保存される。また、
濃度計算モデル5では、気象庁AMeDASデータ2による風
速場の計算結果である3次元再現風速場17を用いて再
現計算も行う。ここで、沈着量の計算は前述の(数2)
で示した成長した粒径を用いて、降水量に応じた物質の
沈降や(数1)を用いた重力による沈降を計算する。こ
の計算結果として地図上に空間濃度分布や沈着量分布を
等値線図やコンター図として出力する。なお、施設周辺
放射線モニタデータ19と核種組成比率データ21から
も単位時間当りの放出源総量と組成から成る放出条件を
導出して、この放出条件を放出点として上述と同様に計
算してもよい。このように、本実施例では、核種組成比
率データ21と施設内放射線モニタデータ18や施設周
辺放射線モニタデータ19とに基づいて、核種がもつエ
ネルギとモニタ値を比較することで、総量を推定して計
算することができる。
Next, the density calculation is performed by the density calculation model 5. In the density calculation model 5, the radiation monitor data 18 of the facility such as alpha rays, beta rays, and gamma rays and I-
From the nuclide composition ratio data 21 such as 131, Kr-85, Pu-240, etc., an emission condition composed of the total amount and composition of emission sources per unit time is derived, and this is set as an emission point determined by longitude, latitude and altitude. Using the results of the wind speed field up to 51 hours ahead, which is the field 10, the advection due to the wind and the diffusion of radioactive material due to the turbulence of the atmosphere are replaced with the movement of thousands of individual virtual particles. From this result, for each calculation cell, a prediction calculation of the average concentration of the radioactive material in the atmosphere up to 51 hours ahead and the accumulated amount on the ground surface is performed. The results are stored as a spatial density distribution 7 and a deposition amount 8, respectively. Also,
In the concentration calculation model 5, reproduction calculation is also performed using a three-dimensional reproduction wind speed field 17 which is a calculation result of the wind speed field based on the Meteorological Agency AMeDAS data 2. Here, the calculation of the amount of deposition is as described above (Equation 2).
The sedimentation of a substance corresponding to the amount of precipitation and the sedimentation caused by gravity using (Equation 1) are calculated using the grown particle diameter indicated by. As a result of the calculation, the spatial density distribution and the deposition amount distribution are output as an iso-contour diagram and a contour diagram on a map. In addition, the emission condition consisting of the total amount and composition of emission sources per unit time may be derived from the radiation monitor data 19 around the facility and the nuclide composition ratio data 21, and the emission condition may be calculated in the same manner as described above using the emission condition as an emission point. . As described above, in this embodiment, the total amount is estimated by comparing the energy of the nuclide with the monitor value based on the nuclide composition ratio data 21 and the in-facility radiation monitor data 18 and the perimeter radiation monitor data 19. Can be calculated.

【0020】次に、本実施例では、線量計算モデル6に
て線量を計算する。濃度計算の結果をもとに、核種の半
減期やエネルギ等のデータである核種物理定数データ2
2を用いて地上における最大51時間先までの吸収線量
率,外部被曝による実効線量当量,吸入による甲状腺線
量当量などの予測計算を行うと共に、再現計算も行う。
得られた結果は、外部被曝線量12及び内部被曝線量1
3として保存されると共に、地図上に外部被曝線量や内
部被曝線量の等値線図やコンター図として出力される。
なお、線量計算モデル6においては、各計算用セルの内
部で放射性物質の平均濃度を均一と仮定し、核種組成比
率データ21を考慮し、評価地点で最大30核種による
線量率などの予測計算を行う。
Next, in this embodiment, the dose is calculated by the dose calculation model 6. Based on the result of the concentration calculation, nuclide physical constant data 2 which is data on nuclide half-life, energy, etc.
2 is used to perform a prediction calculation of an absorbed dose rate up to 51 hours ahead on the ground, an effective dose equivalent due to external exposure, a thyroid dose equivalent due to inhalation, and a reproduction calculation.
The results obtained were: external dose 12 and internal dose 1
3 and is output as a contour map or contour diagram of the external exposure dose and the internal exposure dose on a map.
In addition, in the dose calculation model 6, it is assumed that the average concentration of the radioactive material is uniform inside each calculation cell, and in consideration of the nuclide composition ratio data 21, the prediction calculation such as the dose rate of up to 30 nuclides is performed at the evaluation point. Do.

【0021】図2は図1の濃度計算モデル5における計
算の流れを示す。まず、図1の風速場計算モデル4の計
算結果である3次元予測風速場10又は3次元再現風速
場17と地形図データ9を用いて、図2の大気拡散解析
用空気メッシュ生成S11で3次元空間のメッシュを生
成する。
FIG. 2 shows the flow of calculation in the density calculation model 5 of FIG. First, using the three-dimensional predicted wind field 10 or the three-dimensional reproduced wind field 17 and the topographic map data 9 which are the calculation results of the wind field calculation model 4 in FIG. Generate a mesh in dimensional space.

【0022】次に、放出源から放出される物質の初期化
S12を行う。この初期化では、よう素,希ガスの他,
粒子状核種の放出も想定される場合には、粒子状核種の
データベース31から、放出が予想される核種の密度,
粒径を選択する。放射性物質は排気筒又は建屋から直接
放出される形態があり、これはファックス等で伝送され
てくる情報を見て、ユーザが以下の通り手入力する。放
出される箇所が排気筒である場合には、フィルタを通過
した後の核種が放出されるので、粒径は1μmとする
が、建屋から直接放出される場合には、核種はそのまま
放出されるので、核種の物理的な粒径を選択する。ま
た、配管破断のような形態がファックス等で伝送されて
くる場合には、高温,高圧の熱流体も同時に放出される
ので、この熱流体が断熱膨張して熱平衡状態で決まる半
球形状の放射性雲の直径を用いた体積源をデータベース
32から選択する。更に、放射線源がきのこ雲形状の場
合は、それを体積源データベース32から選択する。こ
れらの体積源については、その形状の表面及び内部に均
一に仮想粒子を配置して、これを時刻t=0として初期
化する。この初期化を終了後、図2の流れに沿って計算
する。まず、粒子番号n=1について、時刻tの粒子n
=1の位置における風速・風速変動等を内挿し、風速変
動,気象条件に依存する拡散速度を計算する。次に、降
雨や霧等の影響を考慮して、(数2)による物質の成長
を計算し、次に(数1)により沈降速度を計算する。以
上より、時刻がΔt進んだ時の粒子n=1の位置を(数
3)より求める。
Next, initialization S12 of the substance emitted from the emission source is performed. In this initialization, in addition to iodine and rare gas,
If the release of particulate nuclides is also assumed, the density of nuclides that are expected to be released from the database 31 of particulate nuclides,
Select the particle size. There is a form in which the radioactive material is directly emitted from the exhaust stack or the building, and this is manually input by a user as described below by looking at information transmitted by facsimile or the like. If the emission site is the exhaust stack, the nuclide after passing through the filter is emitted, so the particle size is 1 μm. So choose the physical particle size of the nuclide. When a form such as a pipe break is transmitted by facsimile or the like, a high-temperature, high-pressure heat fluid is also released at the same time, and the heat fluid is adiabatic expanded and a hemispherical radioactive cloud determined by a thermal equilibrium state. Is selected from the database 32 using the diameter of. Further, when the radiation source has a mushroom cloud shape, it is selected from the volume source database 32. With respect to these volume sources, virtual particles are uniformly arranged on the surface and inside of the shape, and initialized at time t = 0. After the initialization is completed, calculation is performed according to the flow of FIG. First, for the particle number n = 1, the particle n at time t
The wind speed and the wind speed fluctuation at the position of = 1 are interpolated, and the diffusion speed depending on the wind speed fluctuation and weather conditions is calculated. Next, taking into account the effects of rainfall, fog, etc., the growth of the substance is calculated by (Equation 2), and then the sedimentation velocity is calculated by (Equation 1). From the above, the position of the particle n = 1 when the time advances by Δt is obtained from (Equation 3).

【0023】 X(t+Δt)=X(t)+Δt(Uw+Ud+Up) …(数3) なお、(数3)においてUw は風速、Ud は乱流変動又
は大気安定度、Up は沈降速度である。次にn=2につ
いて同様に計算を行い、nが数千個まで計算を繰り返
す。そして、時刻tにおける濃度分布の計算が終了した
後、これをファイルに出力し、次に時刻Δt後のt+Δ
tでの計算を行うというように、逐次計算を進める。そ
して、求めたい時間までの最終的な計算結果として、核
種毎の空間濃度や沈着量を地図上の分布図として出力す
る。本実施例では、気象データは気象庁AMeDASデータ2
の他、気象庁GPV(Grid Point Value)データ15を
用いるので、約2日先までの予測計算ができる。更に、
施設内気象観測データ16や施設周辺気象観測データ1
を用いるので気象計算の精度が向上する。そして、計算
結果をCRT画面に表示する。このCRT画面には、空
間濃度,地表沈着量を表示すると共に、地図上にも表示
する。また、同時に体積源の形状も地図上に表示する。
X (t + Δt) = X (t) + Δt (U w + U d + Up ) (Equation 3) In Equation (3), U w is wind speed, U d is turbulent flow fluctuation or atmospheric stability, and U p is the sedimentation velocity. Next, the same calculation is performed for n = 2, and the calculation is repeated until n is several thousand. Then, after the calculation of the density distribution at time t is completed, this is output to a file, and then t + Δ after time Δt
The calculation is performed sequentially, such as performing the calculation at t. Then, as a final calculation result up to the desired time, the spatial concentration and deposition amount of each nuclide are output as a distribution map on a map. In this embodiment, the meteorological data is the Meteorological Agency AMeDAS data 2
In addition, since the Meteorological Agency GPV (Grid Point Value) data 15 is used, a prediction calculation up to about two days ahead can be performed. Furthermore,
In-facility weather observation data 16 and perimeter weather observation data 1
, The accuracy of weather calculation is improved. Then, the calculation result is displayed on the CRT screen. This CRT screen displays the spatial density and the amount of surface deposition, as well as on a map. At the same time, the shape of the volume source is also displayed on the map.

【0024】また、本実施例では、風向と風速が急変す
る場合に、1時間前と1時間後の風向と風速を用いて評
価した移流拡散の結果は急激に変化し、実気象と著しく
異なる結果となることが予想されるので、1時間毎の気
象情報をそのまま使用しないで、以下のような内挿を行
う。具体的には、気象情報は1時間毎であることから、
1時間毎の風向・風速のベクトル量U60(t1 )と次の
1時間後のベクトル量U60(t1 +60)を用いて、
(数4)のような重み付を行い、時間についての内挿を
行う。
Further, in this embodiment, when the wind direction and the wind speed change suddenly, the result of the advection diffusion evaluated using the wind direction and the wind speed one hour before and one hour later changes abruptly and is significantly different from the actual weather. Since the result is expected, the following interpolation is performed without using the hourly weather information as it is. Specifically, since the weather information is every hour,
Using the vector amount U 60 (t 1 ) of the wind direction and the wind speed every hour and the vector amount U 60 (t 1 +60) one hour later,
Weighting as in (Equation 4) is performed, and time interpolation is performed.

【0025】ここで、t=10分,20分,…,50分
である。
Here, t = 10 minutes, 20 minutes,..., 50 minutes.

【0026】更に、本発明では、10物質以上が同時に
放出される場合にも対応できるようにした。具体的に
は、放出される物質の移流拡散では、破断口から放出さ
れる箇所に応じて、その破断した配管,容器の物質の組
成比は決っている。そこで、30の物質から成る単位量
を同時に計算して、放出された物質の風下側でのガンマ
線等の測定値と比較して、組成比はそのままでそのガン
マ線等の値が単位量の何倍に相当するかを計算すること
で放出源総量を推定できるようにした。
Further, the present invention can cope with a case where ten or more substances are simultaneously released. Specifically, in the advection diffusion of the substance to be released, the composition ratio of the substance of the broken pipe and the container is determined according to the location to be released from the break. Therefore, the unit amount consisting of 30 substances is simultaneously calculated and compared with the measured value of gamma ray etc. on the lee side of the released substance, and the value of the gamma ray etc. is many times the unit amount while the composition ratio remains unchanged. It was made possible to estimate the total amount of emission sources by calculating whether or not it corresponds to

【0027】以上説明した本実施例によれば、直径が1
0μm以上の大粒径の物質の拡散を計算できるので、こ
のような大粒径の物質が放出点近傍に沈着し、拡散の影
響が遠方に及ばないことが評価できる。
According to the embodiment described above, the diameter is 1
Since the diffusion of a substance having a large particle diameter of 0 μm or more can be calculated, it can be evaluated that the substance having such a large particle diameter is deposited near the emission point and the influence of the diffusion does not reach far.

【0028】更に、100μm程度の雨が降る場合に
は、放出された物質が放出点近傍に沈着することから、
拡散の影響が遠方に及ばないことが評価できる。
Further, in the case of rain of about 100 μm, since the released substance is deposited near the release point,
It can be evaluated that the effect of diffusion does not extend far.

【0029】また、粒子の成長は相対湿度が95%以上
で顕著に表れる。一方、熱流体が断熱膨張した半球状の
放射性雲は相対湿度がほぼ100%であることから、粒
径が成長し、放出点近傍に沈着するので、拡散の影響が
遠方に及ばないことが評価できる。
The growth of the particles is remarkable when the relative humidity is 95% or more. On the other hand, a semi-spherical radioactive cloud in which a thermal fluid is adiabatically expanded has a relative humidity of almost 100%, so the particle size grows and deposits near the emission point, so the effect of diffusion does not reach far. it can.

【0030】[0030]

【発明の効果】本発明によれば、放射性物質の濃度や線
量当量の予測精度をより向上させることができる。
According to the present invention, it is possible to further improve the accuracy of predicting the concentration of radioactive substances and the dose equivalent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な一実施例である放射性物質拡散
予測システムの構成図である。
FIG. 1 is a configuration diagram of a radioactive material diffusion prediction system according to a preferred embodiment of the present invention.

【図2】図1の濃度計算モデル5の計算手順を示す図で
ある。
FIG. 2 is a diagram showing a calculation procedure of a density calculation model 5 of FIG.

【符号の説明】[Explanation of symbols]

1…施設周辺気象観測データ、2…気象庁AMeDASデー
タ、3…施設周辺気象予測計算モデル、4…風速場計算
モデル、5…濃度計算モデル、6…線量計算モデル、7
…空間濃度分布、8…沈着量、9…地形図データ、10
…3次元予測風速場、11…分布図出力、12…外部被
曝線量、13…内部被曝線量、14…分布図出力、15
…気象庁GPVデータ、16…施設内気象観測データ、
17…3次元再現風速場、18…施設内放射線モニタデ
ータ、19…施設周辺放射線モニタデータ、20…予測
気象結果、21…核種組成比率データ、22…核種物理
定数データ。
1 ... Meteorological observation data around the facility, 2 ... Meteorological Agency AMeDAS data, 3 ... Model for predicting weather around the facility, 4 ... Wind speed field calculation model, 5 ... Concentration calculation model, 6 ... Dose calculation model, 7
... spatial density distribution, 8 ... deposition amount, 9 ... topographic map data, 10
... three-dimensional predicted wind speed field, 11 ... distribution map output, 12 ... external exposure dose, 13 ... internal exposure dose, 14 ... distribution map output, 15
… Meteorological Agency GPV data, 16… Meteorological observation data in facilities,
17: three-dimensional reproduced wind field, 18: radiation monitor data in the facility, 19: radiation monitor data around the facility, 20: predicted weather result, 21: nuclide composition ratio data, 22: nuclide physical constant data.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩重 健五 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 笠野 利夫 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 Fターム(参考) 2G075 BA12 CA50 DA08 DA10 FA20 FB15 FB18 FC11 GA21 GA36 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kengo Iwashige 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power and Electricity Research Laboratory, Hitachi, Ltd. (72) Inventor Toshio Kasano Hitachi, Ibaraki F-term (reference) in Hitachi Engineering Co., Ltd. 2-1-1 Sachicho 2G075 BA12 CA50 DA08 DA10 FA20 FB15 FB18 FC11 GA21 GA36

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】大気中に放出された放射性物質の拡散状況
を予測して任意の地点における放射性物質の濃度及び線
量当量を予測する放射性物質拡散予測システムにおい
て、 放射性物質の粒径に基づいて沈降する速度を評価し、そ
れに基づいて沈着場所を算出することを特徴とする放射
性物質拡散予測システム。
1. A radioactive material diffusion prediction system for predicting the radioactive material released into the atmosphere and predicting the concentration and dose equivalent of the radioactive material at an arbitrary point, wherein the sedimentation is based on the particle size of the radioactive material. A radiological diffusion prediction system, which evaluates the speed at which a radioactive material spreads and calculates a deposition site based on the speed.
【請求項2】放射性物質の放出源として半球状の放射性
雲形状或いはきのこ雲形状を選択し、選択された形状に
基づいて放射性物質の拡散状況を予測することを特徴と
する放射性物質拡散予測システム。
2. A radioactive material diffusion prediction system, wherein a hemispherical radioactive cloud shape or a mushroom cloud shape is selected as a radioactive material emission source, and a diffusion state of the radioactive material is predicted based on the selected shape.
JP2000187504A 2000-06-19 2000-06-19 Radioactive material diffusion prediction system Expired - Lifetime JP3709330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187504A JP3709330B2 (en) 2000-06-19 2000-06-19 Radioactive material diffusion prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187504A JP3709330B2 (en) 2000-06-19 2000-06-19 Radioactive material diffusion prediction system

Publications (2)

Publication Number Publication Date
JP2002006076A true JP2002006076A (en) 2002-01-09
JP3709330B2 JP3709330B2 (en) 2005-10-26

Family

ID=18687473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187504A Expired - Lifetime JP3709330B2 (en) 2000-06-19 2000-06-19 Radioactive material diffusion prediction system

Country Status (1)

Country Link
JP (1) JP3709330B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109317A (en) * 2007-10-30 2009-05-21 Nippon Telegr & Teleph Corp <Ntt> Dust occurrence simulation system and dust occurrence simulation program
JP2013175054A (en) * 2012-02-24 2013-09-05 Toshiba Corp Density distribution analysis device and density distribution analysis method
JP2013185828A (en) * 2012-03-05 2013-09-19 Mitsubishi Heavy Ind Ltd Containment vessel maintenance equipment and method for containment vessel maintenance
JP2014145700A (en) * 2013-01-30 2014-08-14 Japan Atomic Energy Agency Method for measuring deposition quantity of radioactive cesium in vicinity of nuclear power facility
JP2015031636A (en) * 2013-08-05 2015-02-16 新日鐵住金株式会社 Estimation method of dust fall amount, apparatus, program and storage medium
JP2015190866A (en) * 2014-03-28 2015-11-02 株式会社東芝 weather prediction error analysis system and weather prediction error method
JP2017194274A (en) * 2016-04-18 2017-10-26 日立Geニュークリア・エナジー株式会社 Disposal process management device and disposal process management method
CN112990643A (en) * 2020-12-15 2021-06-18 中国辐射防护研究院 Design method of dosage calculation system under accident condition
CN113704991A (en) * 2021-08-24 2021-11-26 清华大学 Online coupling prediction method and system for wet settlement in radionuclide cloud and under radionuclide cloud
CN117370772A (en) * 2023-12-08 2024-01-09 北京英视睿达科技股份有限公司 PM2.5 diffusion analysis method and system based on urban street topography classification
CN118133579A (en) * 2024-05-07 2024-06-04 中国人民解放军国防科技大学 Grid simulation method and device for nuclear diffusion phenomenon, computer equipment and memory

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109317A (en) * 2007-10-30 2009-05-21 Nippon Telegr & Teleph Corp <Ntt> Dust occurrence simulation system and dust occurrence simulation program
JP4500340B2 (en) * 2007-10-30 2010-07-14 日本電信電話株式会社 Dust generation simulation system and dust generation simulation program
JP2013175054A (en) * 2012-02-24 2013-09-05 Toshiba Corp Density distribution analysis device and density distribution analysis method
JP2013185828A (en) * 2012-03-05 2013-09-19 Mitsubishi Heavy Ind Ltd Containment vessel maintenance equipment and method for containment vessel maintenance
JP2014145700A (en) * 2013-01-30 2014-08-14 Japan Atomic Energy Agency Method for measuring deposition quantity of radioactive cesium in vicinity of nuclear power facility
JP2015031636A (en) * 2013-08-05 2015-02-16 新日鐵住金株式会社 Estimation method of dust fall amount, apparatus, program and storage medium
JP2015190866A (en) * 2014-03-28 2015-11-02 株式会社東芝 weather prediction error analysis system and weather prediction error method
JP2017194274A (en) * 2016-04-18 2017-10-26 日立Geニュークリア・エナジー株式会社 Disposal process management device and disposal process management method
CN112990643A (en) * 2020-12-15 2021-06-18 中国辐射防护研究院 Design method of dosage calculation system under accident condition
CN112990643B (en) * 2020-12-15 2022-03-22 中国辐射防护研究院 Design method of dosage calculation system under accident condition
CN113704991A (en) * 2021-08-24 2021-11-26 清华大学 Online coupling prediction method and system for wet settlement in radionuclide cloud and under radionuclide cloud
CN113704991B (en) * 2021-08-24 2024-03-22 清华大学 Radionuclide in-cloud and under-cloud wet sedimentation online coupling prediction method and system
CN117370772A (en) * 2023-12-08 2024-01-09 北京英视睿达科技股份有限公司 PM2.5 diffusion analysis method and system based on urban street topography classification
CN117370772B (en) * 2023-12-08 2024-04-16 北京英视睿达科技股份有限公司 PM2.5 diffusion analysis method and system based on urban street topography classification
CN118133579A (en) * 2024-05-07 2024-06-04 中国人民解放军国防科技大学 Grid simulation method and device for nuclear diffusion phenomenon, computer equipment and memory

Also Published As

Publication number Publication date
JP3709330B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
Maryon et al. The UK nuclear accident model
Armienti et al. A numerical model for simulation of tephra transport and deposition: Applications to May 18, 1980, Mount St. Helens eruption
Xue et al. The Advanced Regional Prediction System (ARPS)–A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications
DeCaria et al. A cloud‐scale model study of lightning‐generated NO x in an individual thunderstorm during STERAO‐A
JP3709330B2 (en) Radioactive material diffusion prediction system
Spiridonov et al. Prediction of extreme convective rainfall intensities using a free-running 3-D sub-km-scale cloud model initialized from WRF km-scale NWP forecasts
Soong et al. Simulation of a heavy wintertime precipitation event in California
Terada et al. Improvement of Worldwide Version of System for Prediction of Environmental Emergency Dose Information (WSPEEDI),(I) New combination of models, atmospheric dynamic model MM5 and particle random walk model GEARN-new
Kimura et al. Numerical simulation of global scale dispersion of radioactive pollutants from the accident at the Chernobyl nuclear power plant
Daoud et al. On the synoptic-scale Lagrangian autocorrelation function
Peterson et al. Measurements of nitrogen oxides and a simple model of NO y fate in the remote North Atlantic marine atmosphere
Maryon et al. Diffusion in a Lagrangian multiple particle model: a sensitivity study
Perkey Formulation of mesoscale numerical models
Telenta et al. Application of the operational synoptic model for pollution forecasting in accidental situations
Huang et al. The influence of dust aerosols on solar radiation and near-surface temperature during a severe duststorm transport episode
Johnson et al. A study of the movement of radioactive material released during the Windscale fire in October 1957 using ERA40 data
Park et al. Simulation of flow and turbulence in the Phoenix area using a modified urbanized mesoscale model
Veltishchev et al. Experiments on numerical modeling of intense convection
Shapovalov et al. Numerical modeling of distribution of air pollutants in near zone taking into account local meteorological conditions
Chun et al. Development of Mid-to Long-range Atmospheric Diffusion Modeling System for Emergency Responses
Van Dorpe et al. Atmospheric transport modeling with 3D Lagrangian dispersion codes compared with sf6 tracer experiments at regional scale
Dung et al. Simulation of atmospheric radiocesium (¹³⁷Cs) from Fukushima nuclear accident using FLEXPART-WRF driven by ERA5 reanalysis data
Dharmavaram et al. A simple methodology for the determination of back trajectories
Olsson Evolution of balanced flow in a simulated mesoscale convective complex
Li Deep Convective Transport and Wet Scavenging in Different Convective Regimes During the DC3 Field Campaign

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Ref document number: 3709330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

EXPY Cancellation because of completion of term