JP2002004467A - Double wall - Google Patents

Double wall

Info

Publication number
JP2002004467A
JP2002004467A JP2000189605A JP2000189605A JP2002004467A JP 2002004467 A JP2002004467 A JP 2002004467A JP 2000189605 A JP2000189605 A JP 2000189605A JP 2000189605 A JP2000189605 A JP 2000189605A JP 2002004467 A JP2002004467 A JP 2002004467A
Authority
JP
Japan
Prior art keywords
plate
double wall
sound
transmission loss
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000189605A
Other languages
Japanese (ja)
Inventor
Hiroshi Kubo
浩士 久保
Hiromi Obayashi
浩海 大林
Itsuro Tanaka
逸郎 田中
Toshihiro Terada
利坦 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Techno Research Corp
Original Assignee
Kawasaki Steel Corp
Kawatetsu Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, Kawatetsu Techno Research Corp filed Critical Kawasaki Steel Corp
Priority to JP2000189605A priority Critical patent/JP2002004467A/en
Publication of JP2002004467A publication Critical patent/JP2002004467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double wall having excellent sound isolating property and sound absorbing property (soundproofing) in a low-frequency range, particularly in the low-frequency range of 100 Hz or below. SOLUTION: At least a pair of columns 11 and 12 and a stud 21 are used as support materials in this double wall. A plate 3 of a single layer or multiple layers are stuck to a pair of columns 11 and 12 and the stud 21 to form one face of the wall on the same side face side P1 of the support materials, and a plate of a single layer or multiple layers preferably having a metal plate is stuck to form another face of the wall on the opposite side face side P2 of the support materials so that the plate 4 is fixed to a pair of column 11 and 12 and is kept in no contact with the stud 21. A fibered porous material having the bulk density of 10-48 kg/m3 is preferably inserted between the plate 3 and the plate 4 to form this double wall having excellent soundproofing in a low-frequency range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建物の壁、屋根な
どに用いられる二重壁、さらにガラス板などの板材を二
重構造とした二重窓に関し(以下、二重窓を含めて二重
壁と記す)、特に、防音性能に優れた二重壁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double window having a double structure of a double wall used for a building wall, a roof and the like, and a glass material such as a glass plate (hereinafter referred to as a double window including a double window). Heavy wall), and particularly to a double wall excellent in soundproofing performance.

【0002】[0002]

【従来の技術】木造住宅外壁の遮音工事例として、「建
築技術別冊vol.1 No.449 88〜89 (88')」に掲載された
工事例によれば、柱および間柱の同一側面側に外壁材、
アスファルトフェルトおよび合板の積層体を貼り付けて
壁の一面を形成し、これらの支持材の反対側面側におい
ては、石膏ボードを貼り付け、内部にグラスウールを介
在させた外壁構造を採用することによって、内外音圧レ
ベル差:40dB(500Hz) の遮音性能が得られている。
2. Description of the Related Art According to a construction example published in "Building Technology Supplement vol.1 No.449 88-89 (88 ')" as a sound insulation construction example of a wooden house outer wall, the same side of pillars and studs is used. Outer wall material,
By laminating a laminate of asphalt felt and plywood to form one surface of the wall, on the opposite side of these supports, paste a gypsum board and adopt an outer wall structure with glass wool interposed inside, The sound insulation performance of the inside and outside sound pressure level difference: 40dB (500Hz) is obtained.

【0003】一方、遮音性能は周波数により異なり、上
記した外壁構造の場合、125Hz においては内外音圧レベ
ル差が20dB程度に低下することが示されている。上記し
た周波数と内外音圧レベル差との関係から推定すると、
上記した外壁構造の場合、100Hz 以下の周波数において
は内外音圧レベル差は著しく低下するものと考えられる
が、その性能値は示されていない。
On the other hand, the sound insulation performance varies depending on the frequency. In the case of the above-described outer wall structure, it has been shown that the difference between the inside and outside sound pressure levels is reduced to about 20 dB at 125 Hz. Estimating from the relationship between the above frequency and the difference between the internal and external sound pressure levels,
In the case of the above-mentioned outer wall structure, it is considered that the difference between the inside and outside sound pressure levels is remarkably reduced at a frequency of 100 Hz or less, but its performance value is not shown.

【0004】このように、100Hz 以下の低周波数音域に
おける防音の必要性がありながら、その研究がほとんど
なされていないのが現状である。
[0004] As described above, while there is a need for soundproofing in a low-frequency sound range of 100 Hz or less, at present, there is little research on soundproofing.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、低周波数音域(以下、低周波
数域とも記す)、特には100 Hz以下の低周波数域におけ
る遮音、吸音(以下、防音とも記す)に優れた二重壁を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides sound insulation and sound absorption in a low frequency range (hereinafter also referred to as a low frequency range), particularly in a low frequency range of 100 Hz or less. It is an object to provide a double wall excellent in (hereinafter also referred to as soundproofing).

【0006】[0006]

【課題を解決するための手段】前記した低周波数域にお
ける防音の研究がほとんどなされなかった一因として、
低周波数域の防音性能を簡便かつ正確に測定することが
可能な測定方法が確立されていなかったことが挙げられ
る。本発明は、低周波数域の防音性能を簡便かつ正確に
測定することが可能な測定装置を確立したことが契機と
なっている。
One of the reasons that the research on soundproofing in the low frequency range was scarcely made was as follows.
Measurement methods capable of simply and accurately measuring soundproofing performance in a low frequency range have not been established. The present invention has been triggered by the establishment of a measuring device capable of simply and accurately measuring soundproofing performance in a low frequency range.

【0007】すなわち、本発明者らは、低周波数域にお
ける防音性能の測定の重要性を認識し鋭意検討した結
果、建材試料の防音性能を適切に評価することが可能な
後記実施例に示す音響管を提供した(特開2000−121427
号公報)。本発明者らは、上記した測定装置(音響管)
を用いて鋭意実験、検討を重ねた結果、低周波数域の防
音に関する種々の知見を得、本発明に至った。
That is, the present inventors have recognized the importance of measuring soundproofing performance in a low frequency range, and as a result of diligent studies, have found that the soundproofing performance of a building material sample can be appropriately evaluated as described in the examples below. Provided a tube (JP-A-2000-121427)
No.). The present inventors use the above-described measuring device (acoustic tube)
As a result of intensive experiments and investigations using, various findings regarding soundproofing in a low frequency range were obtained, and the present invention was reached.

【0008】すなわち、本発明は、少なくとも1対の柱
11、12および間柱21を支持材とする二重壁であって、こ
れらの支持材の同一側面側P1において、単層または複層
の板材3を前記1対の柱11、12および間柱21に貼り付け
て壁の一面を形成し、これらの支持材の反対側面側P2
おいては、単層または複層の板材4を、該板材4が前記
1対の柱11、12に固着され間柱21には接触しないように
貼り付けて壁の他の一面を形成したことを特徴とする低
周波数音域における防音性に優れた二重壁である。
That is, the present invention provides at least one pair of pillars.
1 1, 1 2 and the studs 2 1 a double wall to support, in the same side surface P 1 of the support material, posts 1 1 of the plate 3 of a single layer or multiple layers the pair, 1 2 and adhered to studs 2 1 forms one side of the wall, in the opposite side surface P 2 of these support materials, the sheet 4 of a single layer or multiple layer, the pillar 1 of the plate member 4 is the pair 1, 1 is the stud 2 1 is fixed to 2 is double-walled with excellent sound insulation in a low frequency range, characterized in that the formation of the other surface of wall paste to avoid contact.

【0009】前記した本発明においては、前記板材4が
単層または複層の金属板を有することが好ましい(本発
明の第1の好適態様)。また、前記した本発明の第1の
好適態様においては、前記金属板が亜鉛系めっき鋼板で
あることが好ましい(本発明の第2の好適態様)。ま
た、前記した本発明、本発明の第1の好適態様、第2の
好適態様においては、前記板材3が合板と窯業系屋根材
との積層体からなることが好ましい(本発明の第3の好
適態様〜第5の好適態様)。
In the above-mentioned present invention, it is preferable that the plate member 4 has a single-layer or multi-layer metal plate (a first preferred embodiment of the present invention). In the first preferred embodiment of the present invention described above, the metal plate is preferably a zinc-based plated steel sheet (a second preferred embodiment of the present invention). Further, in the present invention, the first preferred embodiment and the second preferred embodiment of the present invention, it is preferable that the plate member 3 is formed of a laminate of plywood and a ceramic roofing material (the third embodiment of the present invention). Preferred Embodiment to Fifth Preferred Embodiment).

【0010】また、前記した本発明、本発明の第1の好
適態様〜第5の好適態様においては、前記板材3と板材
4との間に嵩密度:10〜48kg/m3 の繊維系多孔質材、よ
り好ましくは嵩密度:12〜48kg/m3 の繊維系多孔質材を
介在させることが好ましい(本発明の第6の好適態様〜
第11の好適態様)。また、前記した本発明においては、
前記板材3および板材4の両者がガラス板であることが
好ましい(本発明の第12の好適態様)。
In the above-mentioned first and fifth preferred embodiments of the present invention, the fibrous porous material having a bulk density of 10 to 48 kg / m 3 between the plate material 3 and the plate material 4 is provided. It is preferable to interpose a porous material having a bulk density of 12 to 48 kg / m 3 (preferably the sixth preferred embodiment of the present invention).
Eleventh preferred embodiment). In the above-described present invention,
It is preferable that both the plate members 3 and 4 are glass plates (a twelfth preferred embodiment of the present invention).

【0011】なお、前記した本発明、本発明の第1の好
適態様〜第12の好適態様における間柱21とは、建築分野
におけるいわゆる間柱(まばしら)に限定されるもので
はなく、前記した柱11と柱12の間に配設される柱全般を
示す。
[0011] The present invention described above, the stud 2 1 in the first preferred embodiment to twelfth preferred embodiment of the present invention is not limited to the so-called studs (stud) in the building sector, the shows a pillar in general to be disposed between the pillar 1 1 and the bar 1 2.

【0012】[0012]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明者らは、前記したように、本発明者らが開
発した測定装置(音響管)を用い実験、検討を重ねた結
果、低周波数域の防音に関する種々の知見を得、本発明
に至った。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. As described above, the present inventors have conducted various experiments and studies using the measuring device (acoustic tube) developed by the present inventors, and as a result, obtained various knowledge on soundproofing in a low frequency range, and reached the present invention. Was.

【0013】すなわち、上記した音響管を用いて板状材
料の音響透過損失(以下、透過損失とも記す)を実験的
に詳細に調査した結果、周波数の変化による透過損失の
変化は下記のとおりであった。すなわち、周波数が100
Hzから小さくなるに従い透過損失が次第に小さくなる様
子が観察され、次いでその材料に固有の周波数において
透過損失が極小値を示した後、さらに周波数が小さくな
るに従い逆に透過損失が次第に大きくなる様子が観察さ
れた。
That is, as a result of experimentally investigating the sound transmission loss (hereinafter also referred to as transmission loss) of a plate-like material in detail using the above-described sound tube, the change in the transmission loss due to the change in frequency is as follows. there were. That is, if the frequency is 100
It is observed that the transmission loss gradually decreases as the frequency decreases from Hz, and then the transmission loss shows a minimum value at a frequency specific to the material, and then the transmission loss gradually increases as the frequency further decreases. Was observed.

【0014】上記した現象は材料の物理的特性であるた
め回避することはできないが、低周波数域の防音材料と
して見た場合、透過損失の極小値が数dBになることもあ
り、防音性の観点から上記した材料の物理的特性による
制約を解決する必要がある。そこで、本発明者らはさら
に種々の材料、壁構造について防音性能を調査した結
果、下記知見(1) 、(2) を見出した。
The above phenomenon cannot be avoided because it is a physical property of the material. However, when viewed as a soundproofing material in a low frequency range, the minimum value of the transmission loss may be several dB, and the soundproofing property may be reduced. From the viewpoint, it is necessary to solve the above-mentioned restrictions due to the physical properties of the material. Then, the present inventors further investigated the soundproof performance of various materials and wall structures, and found the following findings (1) and (2).

【0015】(1) 材料の面密度が大きいほど透過損失の
極小値を示す周波数が小さくなる。 (2) 材料の剛性が大きいほど透過損失の極小値を示す周
波数が大きく、極小値も大きくなる。 しかしながら、材料の選択のみでは十分な防音性能を得
ることが困難なことは明らかであった。
(1) As the areal density of the material increases, the frequency at which the transmission loss has a minimum value decreases. (2) As the rigidity of the material increases, the frequency at which the transmission loss shows a minimum value increases, and the minimum value also increases. However, it was clear that it was difficult to obtain sufficient soundproofing performance only by selecting the material.

【0016】そこで、本発明者らは実験から得た上記知
見に基づき、さらに種々検討を重ねた結果、本発明の壁
構造を採用することによって低周波数域における防音性
能に優れた壁構造を得ることが可能であることを実験で
見出し、本発明を完成した。本発明の基本は、音響透過
損失(:透過損失)の極小値を示す周波数に違いのある
材料を組み合わせることにより各材料の欠点を互いに補
って、総体としての防音性能を向上させることにある。
The present inventors have conducted various studies based on the above findings obtained from experiments. As a result, the adoption of the wall structure of the present invention provides a wall structure having excellent soundproofing performance in a low frequency range. It was found through experiments that this was possible, and the present invention was completed. The basis of the present invention is to improve the soundproofing performance as a whole by combining materials having different frequencies showing the minimum value of the sound transmission loss (: transmission loss), thereby compensating for the disadvantages of each material.

【0017】上記した透過損失の極小値を示す周波数に
違いのある材料として、板材の支持間隔を違えた壁を組
合せることが必要である。図1に、本発明の二重壁の一
例を、水平断面図によって示す。なお、図1において、
11、12、13は柱、21、22は間柱、3、4は板材、P1は柱
11、12、13、間柱21、22である支持材の同一側面側、P2
は柱11、12、13、間柱21、22である支持材の反対側面側
を示す。
As a material having a difference in the frequency showing the minimum value of the transmission loss, it is necessary to combine walls having different support intervals of the plate material. FIG. 1 shows an example of the double wall of the present invention by a horizontal sectional view. In FIG. 1,
1 1 , 1 2 , 1 3 are columns, 2 1 , 2 2 are studs, 3 and 4 are plate materials, P 1 is columns
1 1 , 1 2 , 1 3 , studs 2 1 , 2 2 on the same side of the support, P 2
Shows a column 1 1, 1 2, 1 3, studs 2 1, 2 2 and is opposite the side of the support member.

【0018】すなわち、図1に例示されるように、本発
明においては、少なくとも1対の柱11、12および間柱21
を支持材とする二重壁において、これらの支持材の同一
側面側P1において、単層または複層の板材3を前記1対
の柱11、12および間柱21に貼り付けて壁の一面を形成
し、これらの支持材の反対側面側P2においては、単層ま
たは複層の板材4を、該板材4が前記1対の柱11、12
固着(:固定)され間柱21には接触しないように貼り付
けて壁の他の一面を形成する構成とした。
[0018] That is, as illustrated in Figure 1, in the present invention, at least one pair of posts 1 1, 1 2 and studs 2 1
In double wall to support the at the same side surface P 1 of the support material, affixed to plate 3 of a single layer or multiple layers in column 1 1, 1 2 and studs 2 1 of said pair wall one side is formed of, in the opposite side surface P 2 of these support materials, the sheet 4 of a single layer or multiple layer, the pillar 1 1 of the plate member 4 is the pair 1 2 fixation (: fixed) to the studs 2 1 has a structure that forms the other surface of wall paste to avoid contact.

【0019】本発明の二重壁においては、面の支持間隔
の広い壁面は低周波数域の吸音性に優れることが分かっ
た。なお、上記した二重壁の変形例として、板材3、板
材4の支持間隔を違えただけで十分な防音性能が得られ
る場合、板材4を棒状材で補強することも可能である。
In the double wall of the present invention, it has been found that a wall surface having a wide support interval between the surfaces is excellent in sound absorption in a low frequency range. In addition, as a modified example of the above-described double wall, when sufficient soundproofing performance can be obtained only by changing the support interval between the plate members 3 and 4, the plate member 4 can be reinforced with a bar-shaped member.

【0020】本発明においては、板材の種類により、支
持間隔を違えただけでは不十分な場合、さらに板材の面
密度を違えることが好ましい。この場合は、図1に示す
支持間隔が広く壁の剛性が小さい反対側面側P2に金属板
を貼って面密度をさらに大きくするのが有利である。金
属板としては、単層もしくは複層の金属板を用いること
ができ、金属板としては特に制限はないが、鉛板、亜鉛
系めっき鋼板を用いることが好ましく、さらには亜鉛系
めっき鋼板を用いることがより好ましい。
In the present invention, when it is not sufficient to just change the supporting interval depending on the type of the plate, it is preferable to further change the surface density of the plate. In this case, it is advantageous to further increase the surface density put a metal plate on the opposite side surface side P 2 rigidity of the support spacing is wide wall is small as shown in FIG. As the metal plate, a single-layer or multi-layer metal plate can be used, and the metal plate is not particularly limited, but it is preferable to use a lead plate, a zinc-plated steel plate, and further use a zinc-plated steel plate Is more preferable.

【0021】これは、鉛板を用いることによって、透過
損失の極小値を示す周波数が低下する効果が得られ、さ
らに、亜鉛系めっき鋼板を用いることによって、上記し
た効果に加えて、耐食性が向上し、また経済性に優れる
ためである。亜鉛系めっき鋼板としては、亜鉛めっき鋼
板、Zn−Niめっき鋼板、Zn−Alめっき鋼板などを用いる
ことができる。
This is because the use of a lead plate has the effect of lowering the frequency at which the transmission loss has a minimum value, and the use of a galvanized steel sheet has the effect of improving corrosion resistance in addition to the above-mentioned effects. It is also because it is economical. As the zinc-based coated steel sheet, a zinc-coated steel sheet, a Zn-Ni-plated steel sheet, a Zn-Al-plated steel sheet, or the like can be used.

【0022】また、板材4が金属板で構成される場合、
金属板の振動を減衰させることによって、さらに防音性
能が向上する。このため、金属板に、さらに、ロックウ
ール、グラスウールのような繊維系多孔質材、石膏ボー
ドあるいはゴムシートを積層するのが有利である。ま
た、本発明においては、前記1対の柱11、12および間柱
21に貼り付けて壁の一面を形成する複層の板材3として
は、合板と窯業系屋根材との積層体からなる板材を用い
ることが好ましい。
When the plate 4 is made of a metal plate,
By damping the vibration of the metal plate, the soundproof performance is further improved. For this reason, it is advantageous to further laminate a fibrous porous material such as rock wool or glass wool, a gypsum board or a rubber sheet on the metal plate. In the present invention, the pillar 1 of the one-to-one, 1 2 and studs
The plate 3 double layer adhered to 2 1 to form the one side wall, it is preferable to use a plate material made of a laminate of a plywood and ceramic-based roofing materials.

【0023】これは、板材3として合板と窯業系屋根材
との積層体からなる板材を用いることによって、外壁と
して用いることができるという効果が得られ、しかも、
金属板に比較して剛性の小さい窯業系屋根材の剛性を合
板および間柱によって補強できるためである。さらに、
板材4として金属板で構成される板材を用いる場合も、
相対する板材3としては、合板と窯業系屋根材との積層
体からなる板材を用いることが好ましい。
This has the effect of being able to be used as an outer wall by using a plate made of a laminate of a plywood and a ceramic roofing material as the plate 3.
This is because the rigidity of the ceramic roofing material, which is less rigid than a metal plate, can be reinforced by plywood and studs. further,
In the case where a plate made of a metal plate is used as the plate 4,
As the facing plate member 3, it is preferable to use a plate member made of a laminate of plywood and a ceramic roofing material.

【0024】これは、板材4として金属板で構成される
板材を用いると共に、相対する板材3として合板と窯業
系屋根材との積層体からなる板材を用いることによっ
て、前記した両者の効果が併せて得られるためである。
上記した窯業系屋根材としては、石綿スレート平板、コ
ロニアル屋根材などが例示される。
This is because, by using a plate made of a metal plate as the plate 4 and using a plate made of a laminate of a plywood and a ceramic roofing material as the opposing plate 3, both effects described above are combined. It is because it is obtained.
As the above-mentioned ceramic roofing material, asbestos slate flat plate, colonial roofing material and the like are exemplified.

【0025】さらに、上記したいずれの二重壁において
も、グラスウール、ロックウールなどの繊維系多孔質材
を、板材3と板材4との間に介在させることが、防音性
能を高める上でより好ましい。上記した繊維系多孔質材
としては、嵩密度が10〜48kg/m3 の繊維系多孔質材が好
適であり、さらには嵩密度が12〜48kg/m3 の繊維系多孔
質材がより好適である。
In any of the above-mentioned double walls, it is more preferable to interpose a fibrous porous material such as glass wool or rock wool between the plate material 3 and the plate material 4 in order to enhance the soundproofing performance. . As the above-mentioned fibrous porous material, a fibrous porous material having a bulk density of 10 to 48 kg / m 3 is preferable, and a fibrous porous material having a bulk density of 12 to 48 kg / m 3 is more preferable. It is.

【0026】これは、繊維系多孔質材の嵩密度が10kg/m
3 未満の場合、総体としての透過損失の極小値が小とな
り、48kg/m3 を超える場合も、総体としての透過損失の
極小値が小となるためである。また、本発明の二重壁と
しては、板材3および板材4として、ガラス板を用いた
二重壁も好適である。
This is because the bulk density of the fibrous porous material is 10 kg / m
If it is less than 3, the minimum value of the transmission loss as a whole becomes small, and if it exceeds 48 kg / m 3 , the minimum value of the transmission loss as a whole becomes small. As the double wall of the present invention, a double wall using a glass plate as the plate member 3 and the plate member 4 is also preferable.

【0027】これは、上記二重壁によれば、防音効果に
優れた窓を提供することが可能なためである。以上、本
発明について述べたが、本発明の二重壁は、低周波数域
の防音壁として極めて好適に利用できる。
This is because the double wall makes it possible to provide a window having an excellent soundproofing effect. Although the present invention has been described above, the double wall of the present invention can be very suitably used as a soundproof wall in a low frequency range.

【0028】[0028]

【実施例】以下、本発明を実施例に基づいてさらに具体
的に説明する。本実施例においては、図2に示す本発明
者らが開発した音響透過損失測定装置を用いて実験を行
った。先ず、上記した図2に示す音響透過損失測定装
置、および二重壁の試験方法について説明する。
EXAMPLES The present invention will be described below more specifically based on examples. In this example, an experiment was conducted using the sound transmission loss measuring device developed by the present inventors shown in FIG. First, the sound transmission loss measuring device and the double-wall test method shown in FIG. 2 will be described.

【0029】(音響透過損失測定装置:)図2(a) は音
響透過損失測定装置の水平断面図を示し、図2(b) は音
響透過損失測定装置の側断面図を示す。また、図2にお
いて、10は音響管、11は管体、11a は管体11の一端、12
はスピーカー、13は建材試料、14a 〜14d はマイクロホ
ン、15は演算装置、15a は音圧反射係数演算部、15b は
透過損失演算部、16は吸音材、17は表示装置を示す。
(Sound Transmission Loss Measuring Apparatus) FIG. 2A is a horizontal sectional view of the sound transmission loss measuring apparatus, and FIG. 2B is a side sectional view of the sound transmission loss measuring apparatus. In FIG. 2, 10 is an acoustic tube, 11 is a tube, 11a is one end of the tube 11, 12
Denotes a speaker, 13 denotes a building material sample, 14a to 14d a microphone, 15 denotes a calculation device, 15a denotes a sound pressure reflection coefficient calculation unit, 15b denotes a transmission loss calculation unit, 16 denotes a sound absorbing material, and 17 denotes a display device.

【0030】図2に示す音響透過損失測定装置において
は、管体11の一端11a が閉鎖された管内断面矩形の管体
11の他端部に、音源であるスピーカー12が取り付けら
れ、その管体11の中央部に、建材試料13が設置される。
管体11には、建材試料13の設置位置を挟んで上流側(ス
ピーカー12側)に、2つのマイクロホン取付け穴が開口
すると共に、下流側にも2つのマイクロホン取付け穴が
開口していて、その4つのマイクロホン取付け穴に、そ
れぞれマイクロホン14a 〜14d が挿着されている。
In the sound transmission loss measuring device shown in FIG. 2, a tube 11 having a rectangular inside cross section with one end 11a of the tube 11 closed.
A speaker 12 as a sound source is attached to the other end of the tube 11, and a building material sample 13 is placed in the center of the tube 11.
In the tube 11, two microphone mounting holes are opened on the upstream side (speaker 12 side) with respect to the installation position of the building material sample 13, and two microphone mounting holes are also opened on the downstream side. Microphones 14a to 14d are inserted into the four microphone mounting holes, respectively.

【0031】各マイクロホン14a 〜14d は、音圧信号を
演算装置15に供給可能となっている。また、管体11内に
おける、管体11の一端11aと建材試料13の設置位置との
間である、管体11内における管体11の一端11a側に、グ
ラスウールなどからなる吸音材16が配置されている。
Each of the microphones 14a to 14d can supply a sound pressure signal to the arithmetic unit 15. Further, a sound absorbing material 16 made of glass wool or the like is arranged on one end 11a side of the tube 11 in the tube 11, between the one end 11a of the tube 11 and the installation position of the building material sample 13 in the tube 11. Have been.

【0032】吸音材16は、図2に示すように、その建材
試料側が、平面視で、管体11の一端11a 側に頂点を向け
た二等辺三角形状に切り欠かれた形状に成形されること
で、建材試料13側に尖り部を向けた左右対称の一対のく
さび形状に構成されている。また、演算装置15は、音圧
反射係数演算部15a および透過損失演算部15b を備え
る。
As shown in FIG. 2, the sound absorbing material 16 is formed such that the building material sample side is cut into an isosceles triangular shape with its vertex facing the one end 11a side of the tubular body 11 in plan view. Thus, a pair of left and right symmetrical wedges with the pointed portion facing the building material sample 13 side are configured. The arithmetic unit 15 includes a sound pressure reflection coefficient arithmetic unit 15a and a transmission loss arithmetic unit 15b.

【0033】音圧反射係数演算部15a は、上流側の2つ
のマイクロホン14a 、14b からの音圧信号を入力し、そ
の入力信号に高速フーリエ変換(FFT)を施して伝達
関数を求め、「J.Acoust.Soc.Am.68(3),Sept.1980,pp.9
07-913」に記載されているような公知の演算法によっ
て、上流側での音圧反射係数R1を求める。同様にして、
下流側の2つのマイクロホン14c 、14d からの音圧信号
に基づき、下流側での音圧反射係数R2を求める。
The sound pressure reflection coefficient calculating section 15a receives sound pressure signals from the two microphones 14a and 14b on the upstream side, performs a fast Fourier transform (FFT) on the input signals, and obtains a transfer function. .Acoust.Soc.Am.68 (3), Sept.1980, pp.9
The sound pressure reflection coefficient R 1 on the upstream side is obtained by a known calculation method as described in “07-913”. Similarly,
Two microphones 14c on the downstream side, based on the sound pressure signal from 14d, determine the sound pressure reflection coefficient R 2 of the downstream side.

【0034】透過損失演算部15b は、建材試料13を挟ん
だ二つのマイクロホン14b 、14c からの音圧信号に高速
フーリエ変換を施して両者のマイクロホン14b 、14c の
間の伝達関数H12 を求めると共に、上記音圧反射係数演
算部15a から2つの音圧反射係数R1、R2を入力し、下記
式(1) に基づき透過率を演算し、その透過率から音響透
過損失を演算する。
The transmission loss calculating unit 15b, two microphones 14b sandwiching the building material sample 13, both the microphone 14b is subjected to fast Fourier transform on the sound pressure signal from 14c, together with obtaining the transfer function H 12 between 14c The two sound pressure reflection coefficients R 1 and R 2 are input from the sound pressure reflection coefficient calculation unit 15a, the transmittance is calculated based on the following equation (1), and the sound transmission loss is calculated from the transmittance.

【0035】 |H12 ・(1+R1)/((1+R2)|2 ………(1) なお、上記式(1) 中、H12 は、建材試料13を挟む音圧測
定位置間(マイクロホン設置位置間)の伝達関数であ
り、各位置における音の対応する周波数の音圧の比を表
す。また、上記式(1) 中、R1、R2は、各音圧測定位置
(マイクロホン設置位置)における音圧反射係数であ
り、各位置での入射波(あるいは透過波)の音圧の大き
さに対する反射波の音圧の比を表す。
| H 12 · (1 + R 1 ) / ((1 + R 2 ) | 2 (1) In the above formula (1), H 12 is a distance between the sound pressure measurement positions (microphones) sandwiching the building material sample 13. This is a transfer function between the installation positions, and represents the ratio of the sound pressure at the corresponding frequency of the sound at each position.In the above equation (1), R 1 and R 2 are the sound pressure measurement positions (microphone installation positions). And the sound pressure reflection coefficient at the position, and represents the ratio of the sound pressure of the reflected wave to the magnitude of the sound pressure of the incident wave (or transmitted wave) at each position.

【0036】演算装置15は、演算した透過損失値を表示
装置17に伝送可能となっている。上記構成の音響管10に
よれば、吸音材16によって、管体11の一端11a からの反
射波がゼロに近づくことで、測定した音圧反射係数R2
ゼロに近づく。この結果、その反射波による建材試料13
の面での反射による測定誤差(透過波が大きく測定され
ること)が抑えられ、より実際の値に近い建材試料13の
音響透過損失を測定することができる。
The arithmetic unit 15 can transmit the calculated transmission loss value to the display unit 17. According to the acoustic pipe 10 having the above structure, the sound absorbing material 16, the reflected wave from the one end 11a of the tube 11 that approaches zero, the sound pressure reflection coefficient R 2 measured approaches zero. As a result, the building material sample 13
The measurement error due to the reflection on the surface (a large transmitted wave is measured) is suppressed, and the sound transmission loss of the building material sample 13 closer to the actual value can be measured.

【0037】しかも、吸音材16の形状を吸音くさび形状
にすることで、有効に管体11の一端11a からの反射波を
抑えることができる。すなわち、図2に示す音響管10を
用いることで、125 Hz以下の低音域での周波数への対応
が容易となり、しかも、垂直入射吸音率測定と相まっ
て、実際値に近い音響透過損失の測定が可能である。
Further, by making the shape of the sound absorbing material 16 into a sound absorbing wedge shape, the reflected wave from the one end 11a of the tube 11 can be effectively suppressed. In other words, by using the acoustic tube 10 shown in FIG. 2, it is easy to cope with frequencies in the low sound range of 125 Hz or less, and in addition to the measurement of the normal incidence sound absorption coefficient, the measurement of the sound transmission loss close to the actual value can be performed. It is possible.

【0038】(二重壁の試験方法:)本実施例において
は、図2に示す音響透過損失測定装置において、建材試
料13として、下記2種類の建材試料A、B(二重壁)を
用いて実験を行った。 〔建材試料A:〕木枠内の中央部に間柱を取り付けた四
角形木枠および間柱それぞれの両面側に板材を貼り付け
た二重壁(比較例) 〔建材試料B:〕上記四角形木枠および間柱の片面側お
よび上記四角形木枠の他の片面側に板材を貼り付けた二
重壁(実施例1〜5) 図3に、音響管内の四角形木枠および木枠内の間柱の配
置状況を、斜視図によって示す。
(Test Method for Double Wall: In this embodiment, the following two types of building material samples A and B (double wall) were used as the building material sample 13 in the sound transmission loss measuring apparatus shown in FIG. Experiments. [Building material sample A:] A square wooden frame with a stud attached to the center of the wooden frame and a double wall with plate materials attached to both sides of each of the studs (Comparative example) [Building material sample B:] A double wall in which a plate is attached to one side of the stud and the other side of the square wooden frame (Examples 1 to 5). FIG. 3 shows the arrangement of the square wooden frame in the acoustic tube and the stud in the wooden frame. , Shown in perspective view.

【0039】なお、図3において、20は四角形木枠(以
下木枠とも記す)、21は四角形木枠内の間柱、P10 は木
枠20および間柱21の同一側面側(以下、同一側面側P10
とも記す)、P20 は木枠20および間柱21の反対側面側
(以下、反対側面側P20 とも記す)、H、Wは音響管横
断面の内寸法、w1、t1は四角形木枠(:木枠)の木材の
横断面寸法、w2、t2は間柱の横断面寸法を示す。
[0039] In FIG. 3, 20 (also referred to as a less crates) square crate, 21 studs in a square crate, P 10 is the same side of the wooden frame 20 and studs 21 (hereinafter, the same side surface P 10
And also referred to), P 20 is the side opposite the side of the wooden frame 20 and studs 21 (hereinafter, referred to as the opposite side surface side P 20), H, W is the inner dimension of the acoustic tube cross-section, w 1, t 1 is square crate (: Wooden frame), the cross-sectional dimensions of the timber, w 2 and t 2 indicate the cross-sectional dimensions of the stud.

【0040】すなわち、横断面内寸法がH:1m×W:1m
の音響管10に内接する四角形木枠(:木枠)20および木
枠内の間柱21の同一側面側P10 および反対側面側P20
両者において木枠20および間柱21の両者に板材を貼り付
けた二重壁(比較例)、または、上記同一側面側P10
おいて木枠20および間柱21の両者に板材を貼り付け、上
記反対側面側P20 において木枠20のみに板材を貼り付け
た二重壁(実施例1〜5)について、前記した方法で音
響透過損失の測定を行った。
That is, the dimension in the cross section is H: 1 m × W: 1 m
Square crates inscribing the acoustic tube 10: Applying a plate material to both the crates 20 and studs 21 in both of the same side surface P 10 and the opposite side surface side P 20 studs 21 (crates) 20 and crates with double walls (comparative example), or paste the plate to both the crates 20 and studs 21 in the same side surface P 10, pasted plate only wooden frame 20 in the opposite side surface side P 20 The sound transmission loss of the double wall (Examples 1 to 5) was measured by the method described above.

【0041】(比較例)図4に、本比較例で用いた二重
壁の構造を、図3におけるA−A方向側断面図によって
示す。なお、図4において、3、4は板材、20は木枠、
21は間柱、25は合板、26はフレキシブルボード(石綿セ
メント板)、27はグラスウール、28は石膏ボード、29は
釘を示す。
(Comparative Example) FIG. 4 shows a double-walled structure used in this comparative example by a cross-sectional view along the line AA in FIG. In FIG. 4, 3 and 4 are plate materials, 20 is a wooden frame,
21 is a stud, 25 is a plywood, 26 is a flexible board (asbestos cement board), 27 is a glass wool, 28 is a gypsum board, and 29 is a nail.

【0042】すなわち、図3における横断面寸法:w1
50mm×t1=105mm の木材で作製した木枠20の中央に、同
一横断面寸法(w2=50mm×t2=105mm )の木材である間
柱21を1本立て、木枠20および間柱21の同一側面側P10
(:同一側面側P10 )において、木枠20および間柱21の
両者に、厚さ:9mmの合板25と厚さ:12mmのフレキシブ
ルボード26を釘29で貼り付けた。
That is, the cross-sectional dimension in FIG. 3: w 1 =
In the center of a wooden frame 20 made of wood of 50 mm × t 1 = 105 mm, one stud 21 made of wood having the same cross-sectional dimensions (w 2 = 50 mm × t 2 = 105 mm) is erected. the same side side P 10
In: (same side surface P 10), to both of the crate 20 and studs 21, thickness: 9 mm plywood 25 and thickness: the flexible board 26 of 12mm stuck with nails 29.

【0043】また、木枠20の枠内に、嵩密度:12kg/
m3 、厚さ50mmのグラスウール27を介在させ、木枠20お
よび間柱21の反対側面側P20 (:反対側面側P20 )にお
いて、木枠20および間柱21の両者に、厚さ12mmの石膏ボ
ード28を釘29で貼り付けた。次に、上記で得られた二重
壁について、周波数20〜100 Hzにおける音響透過損失を
測定した。
Further, the bulk density of the wooden frame 20 is 12 kg /
m 3, by interposing a glass wool 27 having a thickness of 50 mm, the opposite side face P 20 of the crate 20 and studs 21: In (opposite side surface side P 20), to both of the crate 20 and studs 21, having a thickness of 12mm gypsum The board 28 was attached with a nail 29. Next, the sound transmission loss at a frequency of 20 to 100 Hz was measured for the double wall obtained above.

【0044】図5に、測定結果を示す。図5に示される
ように、上記構造の二重壁の周波数20〜100 Hzにおける
音響透過損失の極小値は12dBであった。 (実施例1)図6に、本実施例で用いた二重壁の構造
を、図3におけるA−A方向側断面図によって示す。
FIG. 5 shows the measurement results. As shown in FIG. 5, the minimum value of the sound transmission loss at a frequency of 20 to 100 Hz of the double wall having the above structure was 12 dB. (Embodiment 1) FIG. 6 shows a sectional view taken along the line AA in FIG. 3 of the double wall structure used in this embodiment.

【0045】なお、図6における符号は、前記した図4
と同様の内容を示す。すなわち、本実施例における二重
壁においては、図3における木枠20の木材の横断面寸法
をw1=50mm×t1=105mm 、間柱21の横断面寸法をw2=50
mm×t2=80mmとし、いずれもが比較例と同じ合板25およ
びフレキシブルボード26の積層体を、同一側面側P10
おいて木枠20および間柱21の両者に釘で貼り付けた。
It should be noted that the reference numerals in FIG.
Indicates the same content as. That is, in the double wall according to the present embodiment, the cross-sectional dimension of the wood of the wooden frame 20 in FIG. 3 is w 1 = 50 mm × t 1 = 105 mm, and the cross-sectional dimension of the stud 21 is w 2 = 50.
and mm × t 2 = 80mm, both have a stack of the same plywood 25 and the flexible board 26 and Comparative Example was the same side surface side P 10 affixed nails to both the crates 20 and studs 21.

【0046】また、木枠20の枠内に、比較例で用いたと
同じグラスウール27を介在させ、反対側面側P20 におい
て木枠20に比較例と同じ石膏ボード28を釘29で貼り付け
た。上記した構造の二重壁においては、石膏ボード28は
間柱21に何ら接触しない。次に、上記で得られた二重壁
について、周波数20〜100 Hzにおける音響透過損失を測
定した。
[0046] Further, in the frame of the crate 20, by interposing the same glass wool 27 as used in Comparative Example, the same gypsum board 28 and Comparative Example wood frame 20 on the opposite side surface side P 20 was affixed by a nail 29. In the double wall of the structure described above, the gypsum board 28 does not contact the stud 21 at all. Next, the sound transmission loss at a frequency of 20 to 100 Hz was measured for the double wall obtained above.

【0047】この結果、本実施例の二重壁の周波数20〜
100 Hzにおける音響透過損失の極小値は17dBであった。 (実施例2)図7に、本実施例で用いた二重壁の構造
を、図3におけるA−A方向側断面図によって示す。
As a result, the frequency of the double wall of this embodiment is 20 to
The minimum value of the sound transmission loss at 100 Hz was 17 dB. (Embodiment 2) FIG. 7 shows the structure of the double wall used in this embodiment by a sectional view taken along the line AA in FIG.

【0048】なお、図7において、30は積層鉛板、31は
ロックウールを示し、その他の符号は前記した図4と同
様の内容を示す。すなわち、本実施例における二重壁に
おいては、前記した実施例1において、石膏ボード28に
代えて、厚さ: 0.5mmの鉛板を3枚積層し、さらにその
積層鉛板30の上に嵩密度: 200kg/m3 、厚さ:25mmのロ
ックウール31と厚さ:5mmの合板25を順に積層した。
In FIG. 7, reference numeral 30 denotes a laminated lead plate, reference numeral 31 denotes rock wool, and other reference numerals denote the same contents as those in FIG. That is, in the double wall according to the present embodiment, three lead plates having a thickness of 0.5 mm are laminated in place of the gypsum board 28 in the first embodiment, and Rock wool 31 having a density of 200 kg / m 3 and a thickness of 25 mm and a plywood 25 having a thickness of 5 mm were sequentially laminated.

【0049】次に、上記で得られた二重壁について、周
波数20〜100 Hzにおける音響透過損失を測定した。この
結果、本実施例の二重壁の周波数20〜100 Hzにおける音
響透過損失の極小値は25dBであった。 (実施例3)図8に、本実施例で用いた二重壁の構造
を、図3におけるA−A方向側断面図によって示す。
Next, the sound transmission loss at a frequency of 20 to 100 Hz was measured for the double wall obtained above. As a result, the minimum value of the sound transmission loss at the frequency of 20 to 100 Hz of the double wall of the present example was 25 dB. (Embodiment 3) FIG. 8 shows a sectional view taken along the line AA in FIG. 3 showing the structure of the double wall used in this embodiment.

【0050】なお、図8において、32は積層亜鉛鉄
板(:積層亜鉛めっき鋼板)を示し、その他の符号は前
記した図4と同様の内容を示す。すなわち、本実施例に
おける二重壁においては、前記した実施例2において積
層鉛板30に代えて、厚さ: 1.6mmおよび厚さ: 0.6mmの
亜鉛鉄板(:亜鉛めっき鋼板)を積層して貼りつけ、さ
らにその積層亜鉛鉄板(:積層亜鉛めっき鋼板)32の上
に厚さ:12mmの石膏ボード28を積層した。
In FIG. 8, reference numeral 32 denotes a laminated galvanized steel sheet (: laminated galvanized steel sheet), and other reference numerals denote the same contents as in FIG. That is, in the double wall according to the present embodiment, instead of the laminated lead plate 30 in the above-described embodiment 2, a zinc iron plate (: galvanized steel plate) having a thickness of 1.6 mm and a thickness of 0.6 mm is laminated. The gypsum board 28 having a thickness of 12 mm was laminated on the laminated galvanized steel sheet (: laminated galvanized steel sheet) 32.

【0051】次に、上記で得られた二重壁について、周
波数20〜100 Hzにおける音響透過損失を測定した。図9
に、測定結果を示す。図9に示されるように、上記構造
の二重壁の周波数20〜100 Hzにおける音響透過損失の極
小値は25dBであった。
Next, sound transmission loss at a frequency of 20 to 100 Hz was measured for the double wall obtained above. FIG.
Shows the measurement results. As shown in FIG. 9, the minimum value of the sound transmission loss at a frequency of 20 to 100 Hz of the double wall having the above structure was 25 dB.

【0052】(実施例4)図10に、本実施例で用いた二
重壁の構造を、図3におけるA−A方向側断面図によっ
て示す。なお、図10において、33は窯業系屋根材(:ク
ボタコロニアル屋根材)を示し、その他の符号は図8と
同様の内容を示す。
(Embodiment 4) FIG. 10 shows a double-walled structure used in this embodiment in a sectional view taken along the line AA in FIG. In FIG. 10, reference numeral 33 denotes a ceramic roofing material (: Kubota colonial roofing material), and other reference numerals indicate the same contents as in FIG.

【0053】すなわち、本実施例における二重壁におい
ては、木枠20の木材の横断面寸法をw1=50mm×t1=400m
m 、間柱21の横断面寸法をw2=50mm×t2=100mm とし、
実施例3において、フレキシブルボード26の代わりに厚
さ5mmの窯業系屋根材33を貼りつけ、合板25と亜鉛鉄板
(:積層亜鉛めっき鋼板32)との間隔を 400mmとした。
That is, in the double wall according to the present embodiment, the cross-sectional dimension of the wood of the wooden frame 20 is defined as w 1 = 50 mm × t 1 = 400 m.
m, the cross-sectional dimension of the stud 21 is set to w 2 = 50 mm × t 2 = 100 mm,
In Example 3, a ceramic roofing material 33 having a thickness of 5 mm was stuck instead of the flexible board 26, and the distance between the plywood 25 and the galvanized steel sheet (the laminated galvanized steel sheet 32) was set to 400 mm.

【0054】次に、上記で得られた二重壁について、周
波数20〜100 Hzにおける音響透過損失を測定した。この
結果、本実施例の二重壁の周波数20〜100 Hzにおける音
響透過損失の極小値は25dBであった。 (実施例5)図11に、本実施例で用いた二重壁の構造
を、図3におけるA−A方向側断面図によって示す。
Next, the sound transmission loss at a frequency of 20 to 100 Hz was measured for the double wall obtained above. As a result, the minimum value of the sound transmission loss at the frequency of 20 to 100 Hz of the double wall of the present example was 25 dB. (Embodiment 5) FIG. 11 shows a sectional view taken along the line AA in FIG. 3 showing the structure of the double wall used in this embodiment.

【0055】なお、図11において、341 、342 はガラス
板を示し、その他の符号は前記した図4と同様の内容を
示す。すなわち、本実施例における二重壁においては、
木枠20の木材の横断面寸法をw1=50mm×t1=100mm 、間
柱21の横断面寸法をw2=50mm×t2=80mmとし、厚さ:12
mmのガラス板341 を同一側面側P10 において木枠20およ
び間柱21の両者に接触させ、このガラス板341 を木枠20
と図示しない木材との間に挟み込むようにして固着し、
厚さ:8mmのガラス板342 を反対側面側P20 において木
枠20のみに接触させて、木枠20と図示しない木材との間
に挟み込むようにして固着した。
[0055] In FIG. 11, 34 1, 34 2 denotes a glass plate, and other reference numerals indicate the same contents as FIG. 4 described above. That is, in the double wall in the present embodiment,
The cross-sectional dimension of the wood of the wooden frame 20 is w 1 = 50 mm × t 1 = 100 mm, the cross-sectional dimension of the stud 21 is w 2 = 50 mm × t 2 = 80 mm, and the thickness is 12
In the same side surface side P 10 a glass plate 34 1 mm is brought into contact with both the crates 20 and studs 21, crates 20 the glass plate 34 1
And wood (not shown)
Thickness: a glass plate 34 2 of 8mm in contact only wooden frame 20 on the opposite side surface side P 20, and fixed so as to be sandwiched between the timber (not shown) with the wooden frame 20.

【0056】次に、上記で得られた二重壁について、周
波数20〜100 Hzにおける音響透過損失を測定した。この
結果、本実施例の二重壁の周波数20〜100 Hzにおける音
響透過損失の極小値は20dBであった。表1に、上記比較
例、実施例で得られた実験結果をまとめて示す。
Next, with respect to the double wall obtained above, the sound transmission loss at a frequency of 20 to 100 Hz was measured. As a result, the minimum value of the sound transmission loss at the frequency of 20 to 100 Hz of the double wall of the present example was 20 dB. Table 1 summarizes the experimental results obtained in the above comparative examples and examples.

【0057】表1に示されるように、本発明によれば、
低周波数域、特には100 Hz以下の低周波数域における遮
音、吸音(:防音)に優れた二重壁を提供することが可
能となった。
As shown in Table 1, according to the present invention,
It has become possible to provide a double wall excellent in sound insulation and sound absorption (: soundproofing) in a low frequency range, particularly in a low frequency range of 100 Hz or less.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【発明の効果】本発明によれば、低周波数域における遮
音、吸音(:防音)に優れた二重壁を提供することが可
能となり、本発明の二重壁を建築物の壁、窓、屋根など
に適用することによって、良好な居住環境、生活空間を
確保することができる。
According to the present invention, it is possible to provide a double wall excellent in sound insulation and sound absorption (: soundproofing) in a low frequency range. By applying to a roof or the like, a favorable living environment and living space can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二重壁の一例を示す水平断面図であ
る。
FIG. 1 is a horizontal sectional view showing an example of a double wall according to the present invention.

【図2】音響透過損失測定装置の水平断面図(a) および
側断面図(b) である。
FIG. 2 is a horizontal sectional view (a) and a side sectional view (b) of the sound transmission loss measuring device.

【図3】音響管内の四角形木枠および間柱の配置状況を
示す斜視図である。
FIG. 3 is a perspective view showing an arrangement state of a square wooden frame and a stud in an acoustic tube.

【図4】比較例の二重壁の構造を示す側断面図である。FIG. 4 is a side sectional view showing a double wall structure of a comparative example.

【図5】比較例の二重壁の音響透過損失測定結果を示す
グラフである。
FIG. 5 is a graph showing sound transmission loss measurement results of a double wall of a comparative example.

【図6】実施例の二重壁の構造を示す側断面図である。FIG. 6 is a side sectional view showing a structure of a double wall according to the embodiment.

【図7】実施例の二重壁の構造を示す側断面図である。FIG. 7 is a side sectional view showing a structure of a double wall according to the embodiment.

【図8】実施例の二重壁の構造を示す側断面図である。FIG. 8 is a side sectional view showing a structure of a double wall according to the embodiment.

【図9】実施例の二重壁の音響透過損失測定結果を示す
グラフである。
FIG. 9 is a graph showing the results of measuring sound transmission loss of a double wall according to an example.

【図10】実施例の二重壁の構造を示す側断面図であ
る。
FIG. 10 is a side sectional view showing the structure of the double wall of the embodiment.

【図11】実施例の二重壁の構造を示す側断面図であ
る。
FIG. 11 is a side sectional view showing the structure of a double wall according to the embodiment.

【符号の説明】[Explanation of symbols]

11、12、13 柱 21、22 間柱 3、4 板材 10 音響管 11 管体 11a 管体の一端 12 スピーカー 13 建材試料 14a 〜14d マイクロホン 15 演算装置 15a 音圧反射係数演算部 15b 透過損失演算部 16 吸音材 17 表示装置 20 四角形木枠(:木枠) 21 四角形木枠内の間柱 25 合板 26 フレキシブルボード 27 グラスウール 28 石膏ボード 29 釘 30 積層鉛板 31 ロックウール 32 積層亜鉛鉄板(:積層亜鉛めっき鋼板) 33 窯業系屋根材 341 、342 ガラス板 H、W 音響管横断面の内寸法 P1 柱、間柱である支持材の同一側面側(:同一側面側
P1) P2 柱、間柱である支持材の反対側面側(:反対側面側
P2) P10 木枠および間柱の同一側面側(:同一側面側P10 ) P20 木枠および間柱の反対側面側(:反対側面側P20 ) w1、t1 四角形木枠(:木枠)の木材の横断面寸法 w2、t2 間柱の横断面寸法
1 1 , 1 2 , 1 3 pillars 2 1 , 2 2 studs 3, 4 plate 10 acoustic tube 11 tube 11 a one end of tube 12 speaker 13 building material sample 14 a to 14 d microphone 15 computing device 15 a sound pressure reflection coefficient computing unit 15 b Transmission loss calculator 16 Sound absorbing material 17 Display device 20 Rectangular wooden frame (: wooden frame) 21 Studs in rectangular wooden frame 25 Plywood 26 Flexible board 27 Glass wool 28 Plaster board 29 Nails 30 Laminated lead plate 31 Rock wool 32 Laminated zinc iron plate ( : Laminated galvanized steel sheet 33 Ceramic roofing material 34 1 , 34 2 Glass plate H, W Inner dimensions of acoustic tube cross section P 1 Same side of support material as pillar and stud (: Same side side)
P 1 ) P 2 pillar, the opposite side of the support material that is a stud (: the opposite side
P 2 ) P 10 wooden frame and studs on the same side (: same side P 10 ) P 20 wooden frame and studs on the opposite side (: opposite side P 20 ) w 1 , t 1 square wooden frame (: wood sectional dimension w 2 wood frame), t 2 cross-sectional dimension of the studs

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大林 浩海 兵庫県神戸市中央区北本町通1丁目1番28 号 川崎製鉄株式会社内 (72)発明者 田中 逸郎 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 (72)発明者 寺田 利坦 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 Fターム(参考) 2E001 DF02 DF04 DF07 FA03 FA16 FA32 GA12 GA29 GA42 GA43 GA63 HA02 HA11 HA32 HA33 HB02 HB06 HC01 HC02 HE01 MA01 MA11 MA13 2E162 BA05 BB08 CA02 CA03 CA31 CA33 CA35 CB02 CB03 CB12 CC03 CE01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiromi Obayashi 1-1-28 Kitahonmachi-dori, Chuo-ku, Kobe City, Hyogo Prefecture Inside Kawasaki Steel Corporation (72) Inventor Itsuro Tanaka 2-chome Uchisaiwaicho, Chiyoda-ku, Tokyo No. 3 Kawasaki Steel Corporation (72) Inventor Toshitan Terada 2-3-2 Uchisaiwaicho, Chiyoda-ku, Tokyo F-term in Kawasaki Steel Corporation (Reference) 2E001 DF02 DF04 DF07 FA03 FA16 FA32 GA12 GA29 GA42 GA43 GA63 HA02 HA11 HA32 HA33 HB02 HB06 HC01 HC02 HE01 MA01 MA11 MA13 2E162 BA05 BB08 CA02 CA03 CA31 CA33 CA35 CB02 CB03 CB12 CC03 CE01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1対の柱(11 、12) および間
柱(21)を支持材とする二重壁であって、これらの支持材
の同一側面側(P1)において、単層または複層の板材(3)
を前記1対の柱(11 、12) および間柱(21)に貼り付けて
壁の一面を形成し、これらの支持材の反対側面側(P2)に
おいては、単層または複層の板材(4)を、該板材(4) が
前記1対の柱(11 、12) に固着され間柱(21)には接触し
ないように貼り付けて壁の他の一面を形成したことを特
徴とする低周波数音域における防音性に優れた二重壁。
1. A double wall having at least one pair of columns (1 1 , 1 2 ) and studs (2 1 ) as a supporting material, and a single wall on the same side (P 1 ) of these supporting materials. Layered or multi-layered board (3)
Are attached to the pair of pillars (1 1 , 1 2 ) and the studs (2 1 ) to form one surface of the wall. On the opposite side (P 2 ) of these support members, a single layer or a multilayer Plate material (4) was attached to the pair of pillars (1 1 , 1 2 ) so that the plate material (4) was fixed to the pair of pillars (1 1 , 1 2 ) and did not contact the stud (2 1 ) to form the other surface of the wall. A double wall with excellent soundproofing in the low-frequency range.
【請求項2】 前記板材(4) が、単層または複層の金属
板を有することを特徴とする請求項1記載の二重壁。
2. The double wall according to claim 1, wherein the plate (4) comprises a single-layer or multi-layer metal plate.
【請求項3】 前記金属板が亜鉛系めっき鋼板であるこ
とを特徴とする請求項2記載の二重壁。
3. The double wall according to claim 2, wherein the metal plate is a galvanized steel plate.
【請求項4】 前記板材(3) が合板と窯業系屋根材との
積層体からなることを特徴とする請求項1〜3いずれか
に記載の二重壁。
4. The double wall according to claim 1, wherein the plate (3) is made of a laminate of plywood and a ceramic roofing material.
【請求項5】 前記板材(3) と板材(4) との間に嵩密
度:10〜48kg/m3 の繊維系多孔質材を介在させたことを
特徴とする請求項1〜4いずれかに記載の二重壁。
5. A fiber-based porous material having a bulk density of 10 to 48 kg / m 3 is interposed between the plate material (3) and the plate material (4). Double wall according to.
【請求項6】 前記板材(3) および板材(4) の両者がガ
ラス板であることを特徴とする請求項1記載の二重壁。
6. The double wall according to claim 1, wherein both the plate (3) and the plate (4) are glass plates.
JP2000189605A 2000-06-23 2000-06-23 Double wall Pending JP2002004467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189605A JP2002004467A (en) 2000-06-23 2000-06-23 Double wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189605A JP2002004467A (en) 2000-06-23 2000-06-23 Double wall

Publications (1)

Publication Number Publication Date
JP2002004467A true JP2002004467A (en) 2002-01-09

Family

ID=18689212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189605A Pending JP2002004467A (en) 2000-06-23 2000-06-23 Double wall

Country Status (1)

Country Link
JP (1) JP2002004467A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171007U (en) * 1974-11-30 1976-06-04
JPS5632718U (en) * 1979-08-22 1981-03-31
JPS63108906U (en) * 1986-12-29 1988-07-13
JPH0243443A (en) * 1988-08-03 1990-02-14 Sho Kimura Woody floor structure
JPH1018482A (en) * 1996-07-03 1998-01-20 Mitoshi Ishii Partition used for storehouse and vertical and horizontal grating member therefor
JPH10121610A (en) * 1996-10-16 1998-05-12 Shimizu Corp Spacer for channel steel
JPH11131630A (en) * 1997-10-28 1999-05-18 Sekisui Chem Co Ltd Fire resistive structure body
JP2000008510A (en) * 1998-06-02 2000-01-11 Tae Bong Kim Honeycomb foamed aluminum soundproof wall panel
JP2000144984A (en) * 1998-11-03 2000-05-26 Bosse Design G Fuer Innovative Office Interiors Mbh & Co Kg Partition wall arrangement for office

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171007U (en) * 1974-11-30 1976-06-04
JPS5632718U (en) * 1979-08-22 1981-03-31
JPS63108906U (en) * 1986-12-29 1988-07-13
JPH0243443A (en) * 1988-08-03 1990-02-14 Sho Kimura Woody floor structure
JPH1018482A (en) * 1996-07-03 1998-01-20 Mitoshi Ishii Partition used for storehouse and vertical and horizontal grating member therefor
JPH10121610A (en) * 1996-10-16 1998-05-12 Shimizu Corp Spacer for channel steel
JPH11131630A (en) * 1997-10-28 1999-05-18 Sekisui Chem Co Ltd Fire resistive structure body
JP2000008510A (en) * 1998-06-02 2000-01-11 Tae Bong Kim Honeycomb foamed aluminum soundproof wall panel
JP2000144984A (en) * 1998-11-03 2000-05-26 Bosse Design G Fuer Innovative Office Interiors Mbh & Co Kg Partition wall arrangement for office

Similar Documents

Publication Publication Date Title
US7395898B2 (en) Sound attenuating structures
US7921965B1 (en) Soundproof assembly and methods for manufacturing same
JP2009257086A (en) Acoustical soundproofing material and method for manufacturing the same
Davy The improvement of a simple theoretical model for the prediction of the sound insulation of double leaf walls
CN104968870A (en) Soundproofing panel
Yairi et al. Sound radiation from a double-leaf elastic plate with a point force excitation: effect of an interior panel on the structure-borne sound radiation
Toyoda et al. Reduction of acoustic radiation by perforated board and honeycomb layer systems
CN213509385U (en) Wood floor glass wool board heat preservation sound insulation system
JP2002004467A (en) Double wall
WO2016166907A1 (en) Soundproof structure for collective housing
CN102400504A (en) Modularized lightweight sound-proof wall and mounting method thereof
Bravo et al. Influence of air layers and damping layers between gypsum boards on sound transmission
Guigou-Carter et al. Modelling of sound transmission through lightweight elements with stiffeners
Garg et al. Airborne sound insulation of sandwich partition panels and masonry constructions for noise control
JPH0428322Y2 (en)
US20090260310A1 (en) Method and system for providing an insulative wall structure
KR101897467B1 (en) High performance absorbing type sound proofing panel for applying damping sheet and half wave resonance member
Yairi et al. Effect of acoustical damping with a porous absorptive layer in the cavity to reduce the structure-borne sound radiation from a double-leaf structure
Schoenwald et al. Application of elastic interlayers at junctions in massive timber buildings
JP3201317U (en) Soundproof structure of apartment house
JPH0720248Y2 (en) Sound insulation structure of buildings
CN214498178U (en) Sound insulation board for rhythm classroom
Yue et al. Improvement in airborne sound insulation of cross-laminated timber (CLT) walls
CN218948625U (en) Fireproof sound-insulation heat-insulation board
Hu et al. Key parameters for impact and airborne noise control in wood buildings

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124