JP2002001492A - Method and device for prepairing rapid solidification composite material - Google Patents

Method and device for prepairing rapid solidification composite material

Info

Publication number
JP2002001492A
JP2002001492A JP2000192030A JP2000192030A JP2002001492A JP 2002001492 A JP2002001492 A JP 2002001492A JP 2000192030 A JP2000192030 A JP 2000192030A JP 2000192030 A JP2000192030 A JP 2000192030A JP 2002001492 A JP2002001492 A JP 2002001492A
Authority
JP
Japan
Prior art keywords
composite material
amorphous
compositions
layered
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000192030A
Other languages
Japanese (ja)
Inventor
Takeshi Kawabata
武 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000192030A priority Critical patent/JP2002001492A/en
Publication of JP2002001492A publication Critical patent/JP2002001492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare an amorphous composite material having N (two or larger integer) pieces of compositions different from each other, or having concentric circular layer structure of mutually different mechanical, magnetic, electrical, chemical, thermal, electronic, and quantum characteristics. SOLUTION: In a melting and rapid solidification device in a gas atmosphere, raw materials are independently melted by use of crucibles having N (two or larger integers) pieces of independent melting chambers or by use of N pieces of independent crucibles and the molten materials are extracted from concentric circular outlets having a layered structure in the radial direction and mixed together during their fluid condition in the layered state to quench it in a rotating water tank. By making use of this device, an amorphous composite material with a circular section having N pieces of different compositions, or different material characteristics in the radial direction can be prepared.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、広い分野で使用
できる、2個あるいは3個の組成・特性からなる、アモ
ルファス、あるいは、超微細組織を有する、いわゆるナ
ノ組織、または、アモルファスとナノ組織を組み合わせ
た、円形2層あるいは3層以上のアモルファス複合材料
の作製方法およびその製作装置に関する。
[0001] The present invention relates to a so-called nanostructure having two or three compositions and properties and having an ultra-fine structure, or a so-called nanostructure or an amorphous and nanostructure which can be used in a wide range of fields. The present invention relates to a combined method for producing an amorphous composite material having two or three or more circular layers and an apparatus for producing the same.

【0002】[0002]

【従来の技術】 従来は、1個の組成のアモルファス、
あるいは、超微細組織の、いわゆる、ナノ組織材料が、
急冷凝固および熱処理により作製されていた。また、1
個以上の組成からなる層状複合材料の製作は、個々の組
成の、アモルファス、あるいは、超微細組織の、いわゆ
る、ナノ組織材料を、低温拡散接合、圧延、あるいは、
押し出し等により、作製していた。
2. Description of the Related Art Conventionally, one composition of amorphous,
Alternatively, the so-called nano-structured material of the ultra-fine structure,
It was made by rapid solidification and heat treatment. Also, 1
The production of a layered composite material composed of more than one composition is performed by low-temperature diffusion bonding, rolling, or the so-called nanostructured material of individual composition, amorphous, or ultrafine structure,
It was produced by extrusion or the like.

【0003】[0003]

【発明が解決しようとする課題】 急冷凝固装置の改良
により、これまでよりも安価に、しかも簡単に、2個あ
るいは3個以上の組成・特性からなる、アモルファス、
あるいは、超微細結晶組織を有する(アモルファスマト
リックス中に超微細結晶相粒子を分散させた組織も含
む)、いわゆるナノ組織、または、アモルファスとナノ
組織を組み合わせた、円形層状の組織を有する複合材料
を、作製することである。
Problems to be Solved by the Invention By improving the rapid solidification apparatus, it is possible to more easily and inexpensively and more easily form an amorphous,
Alternatively, a so-called nanostructure having an ultrafine crystal structure (including a structure in which ultrafine crystal phase particles are dispersed in an amorphous matrix) or a composite material having a circular layered structure combining amorphous and nanostructures is used. , To produce.

【0004】[0004]

【課題を解決するための手段】 上記の目的を達成する
ために、本発明では、2個あるいは3個の組成の材料
を、2個あるいは3個以上の独立したセルを有する溶解
用材料容器(工業的には、溶解用の容器をルツボと呼
ぶ)、あるいは、2個あるいは3個以上の別々のルツボ
により溶解し、ルツボから溶融状材料をガス圧力(およ
び機械的ピストンの作動)により吐出させるときに、ル
ツボの吐出口付近、あるいは、吐出口から出た後の流動
中に、2個あるいは3個以上の組成の溶融状、あるい
は、半溶融状材料を合体させて、急冷用の回転水槽に導
き、急冷凝固させる。このようにして、円形層状の、ア
モルファス、超微細結晶を有する組織(アモルファスマ
トリックス中に超微細結晶相粒子を分散させた組織も含
む)いわゆるナノ組織、あるいは、これらの組み合わせ
である、アモルファス+ナノ組織からなる、複合材料が
作成可能となる。本発明は、ルツボおよび溶融材料の吐
出口の構造を改良することにより、前記[0003]の
課題が解決できた。
Means for Solving the Problems In order to achieve the above object, in the present invention, a material container having two or three compositions is used for dissolving a material container having two or three or more independent cells ( Industrially, a container for melting is called a crucible) or two or three or more separate crucibles are melted, and the molten material is discharged from the crucible by gas pressure (and actuation of a mechanical piston). A rotating water tank for quenching by combining two or three or more molten or semi-molten materials in the vicinity of the discharge port of the crucible or during flow after exiting the discharge port And quenched and solidified. In this way, a so-called nanostructure having a circular layered structure having amorphous and ultrafine crystals (including a structure in which ultrafine crystal phase particles are dispersed in an amorphous matrix), or a combination thereof, amorphous + nano A composite material composed of tissue can be created. The present invention has solved the above problem [0003] by improving the structures of the crucible and the discharge port of the molten material.

【0005】[0005]

【発明の実施の形態】 半径方向に2個あるいは3個以
上の、円形層状構造を持つ、アモルファス、あるいは、
超微細結晶組織を有する(アモルファスマトリックス中
に超微細結晶相粒子を分散させた組織も含む)、いわゆ
るナノ組織、または、アモルファスとナノ組織を組み合
わせた、複合材料を作成する場合において、第1に、汚
染されないよう2個あるいは3個以上の組成の材料を、
独立に溶解すること、第2に、溶融温度の異なる材料の
溶解の場合、高周波溶解炉と、レーザー加熱装置あるい
は赤外線加熱装置を組み合わせて、2個あるいは3個の
材料について溶解温度を独立にコントロールすること、
第3に、目的の組織をもつ複合材料を作成するために、
吐出口付近あるいは吐出口を出た後で、2個あるいは3
個以上の溶融あるいは半溶融材料が、流動中に、円形断
面の層状形状に合体できるように、吐出口の構造を作製
することが重要である。
BEST MODE FOR CARRYING OUT THE INVENTION Amorphous or two or more radially layered structures having a circular layered structure
In the case of producing a so-called nanostructure having an ultrafine crystal structure (including a structure in which ultrafine crystal phase particles are dispersed in an amorphous matrix) or a composite material combining amorphous and nanostructure, firstly, , Two or more components of the material to prevent contamination,
Independent melting, and secondly, in the case of melting materials with different melting temperatures, combining a high-frequency melting furnace with a laser heating device or infrared heating device to independently control the melting temperature of two or three materials To do,
Third, in order to create a composite material with the desired structure,
Two or three near the outlet or after exiting the outlet
It is important to create the structure of the discharge port so that more than one molten or semi-molten material can merge into a laminar shape with a circular cross section during flow.

【0006】[0006]

【実施例】 実施例1:N=2、すなわち、2つの組成
からなる層状アモルファス複合材料の場合(実施例番号
1a、1b)。図1(a)正面図に示すように、耐熱性
に優れ、材料を入れて溶解しても、ほとんど汚染を生じ
ない、清浄な、材料溶解用容器11および蓋12、なら
びに、内側に第2容器13からなる、2個の第1材料室
21および第2材料室22を有する、ルツボがあり、ア
ーク溶解炉、または、その他の適切な方法で組成を制御
して作製された、アモルファス用素材1および2を挿入
し、蓋12により溶接その他の方法で気密性を持たせた
後、ガス雰囲気密閉容器中に置き、高周波加熱とレーザ
ー加熱を併用して、各材料を溶解した。材料が溶融した
後、溶融温度より、50〜100℃高い温度に速やかに
制御し、第1ガス流入口31および第2ガス流入口32
から、高圧アルゴンガスを流入させて、溶融した材料1
および材料2を、吐出口から吐出させ、吐出口を出たと
ころで、2つの溶融材料を、流動途中で合体させて、下
方に位置する、回転水槽を通過させて、急冷凝固するこ
とにより、半径方向に2層の層状構造を有する、円形断
面アモルファス複合材料を作製した。ルツボと回転水槽
の図を、図2に示す。作製された円形断面層状アモルフ
ァス複合材料は、下方に同じく位置する、自動巻き取り
装置を用いて、巻き取られた。吐出口の形状は、図3の
(a)の形状を使用した。接合は、機械的に強固で、接
合面も滑らかな形状であり、材料の混合も非常に薄い境
界層内に限られていた。
EXAMPLES Example 1: N = 2, that is, a case of a layered amorphous composite material having two compositions (Example numbers 1a and 1b). As shown in the front view of FIG. 1 (a), a clean material-dissolving container 11 and a lid 12, which are excellent in heat resistance and hardly cause contamination even when a material is put therein and melted, and a second material Amorphous material having a crucible having two first material chambers 21 and a second material chamber 22 composed of a container 13 and having a composition controlled by an arc melting furnace or other suitable method. 1 and 2 were inserted, and airtightness was made by welding or other methods using the lid 12, and then placed in a gas atmosphere sealed container, and each material was melted by using both high-frequency heating and laser heating. After the material is melted, it is quickly controlled to a temperature 50 to 100 ° C. higher than the melting temperature, and the first gas inlet 31 and the second gas inlet 32
, A high-pressure argon gas is allowed to flow into the molten material 1
And the material 2 is discharged from the discharge port, and when it exits the discharge port, the two molten materials are combined in the middle of the flow, passed through a rotating water tank located below, and rapidly cooled and solidified to form a radius. A circular cross-section amorphous composite material having a layered structure with two layers in each direction was prepared. A diagram of the crucible and the rotating water tank is shown in FIG. The produced circular cross-sectional layered amorphous composite material was wound using an automatic winding device, which is also located below. The shape of the discharge port used was the shape shown in FIG. The joints were mechanically strong, the joint surfaces were smooth, and the mixing of materials was limited to very thin boundary layers.

【0007】実施例2:N>2、すなわち、3つ以上の
組成からなる層状アモルファス複合材料の場合(実施例
番号2a)。図3(b)に示すような吐出口を用いて、
半径方向に3層からなる薄板形状のアモルファス複合材
料を作成した。A、BおよびC成分の組成は、割合を変
えた。この場合の接合状態も、実施例1に準じる良い結
果が得られた。
Example 2: N> 2, that is, a case of a layered amorphous composite material having three or more compositions (Example No. 2a). Using an ejection port as shown in FIG.
A thin plate-shaped amorphous composite material having three layers in the radial direction was prepared. The proportions of the components A, B and C were varied. In this case, a good result similar to that of Example 1 was obtained in the bonding state.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【発明の効果】本発明は,[0006]および[000
7]に説明したように、独立した2個あるいは3個以上
の室(セル)を持つ材料溶解用容器(ルツボ)、あるい
は、独立した2個あるいは3個以上の材料溶解用容器
(ルツボ)に、2個あるいは3個以上の組成の異なる材
料を封入し、独立に溶解し、吐出口から出た位置で、流
動中の、溶融材料を層状に合体させ、急冷凝固させるこ
とにより、半径方向に、円形層状の組織構造を有する、
アモルファス複合材料を作成できた。作成中の温度をう
まく制御することにより、または、作成後に適切な熱処
理を加えることにより、アモルファスをマトリックスと
し、結晶組織からなる超微細粒子が分散した、いわゆ
る、ナノ組織の層と、アモルファス相のみからなる層が
混在した、多層アモルファス複合材料が得られた。この
複合材料は、機械的、磁気的、電気的、化学的、熱的、
電子的、および、量子的に特性の異なる材料層を組み合
わせることが可能で、用途は、極めて広い範囲にわた
る。
According to the present invention, [0006] and [000]
As described in [7], a material melting container (crucible) having two or three or more independent chambers (cells), or two or three or more independent material melting containers (crucibles) is used. By enclosing two or three or more different materials with different compositions, dissolving them independently, merging the flowing molten material into a layer at the position emerging from the discharge port, and quenching and solidifying it, thereby radially Having a circular layered tissue structure,
Amorphous composite material could be made. By properly controlling the temperature during the preparation or by applying an appropriate heat treatment after the preparation, a layer of so-called nano-structure in which amorphous is used as a matrix and ultra-fine particles consisting of a crystalline structure are dispersed, and only the amorphous phase A multi-layer amorphous composite material in which layers consisting of the following were mixed was obtained. This composite material has mechanical, magnetic, electrical, chemical, thermal,
It is possible to combine material layers having different characteristics electronically and quantumally, and the application is extremely wide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】外側と内側に2つの材料室を持ち、上部に2つ
のガス流入口と下部に円形の吐出口を有する材料溶解用
容器(ルツボ)を示す。(a)は正面図、および、
(b)は上面図である。
FIG. 1 shows a material melting vessel (crucible) having two material chambers on the outside and inside, two gas inlets on the top, and a circular outlet on the bottom. (A) is a front view, and
(B) is a top view.

【図2】ルツボが回転水槽に溶解した材料を吐出する位
置に配置された図を示す。図示した装置全体が(この図
には示されていないが)、ガス雰囲気密閉容器内に位置
しており、材料は溶解中、流動中を含めて、ガス雰囲気
中に置かれる。したがって、不純物の混入の極めて少な
いアモルファス複合材料を得ることが可能である。
(a)は正面図、および、(b)は側面図である。溶融
温度が異なる材料を溶解する場合には、組み込まれてい
る、レーザー加熱装置、あるいは、赤外線加熱装置によ
り独立に各溶融材料の温度は制御される。
FIG. 2 shows a view in which a crucible is arranged at a position for discharging a material dissolved in a rotating water tank. The entire apparatus shown (not shown in this figure) is located in a gas atmosphere enclosure and the material is placed in a gas atmosphere, including during melting and flowing. Therefore, it is possible to obtain an amorphous composite material in which impurities are very little mixed.
(A) is a front view and (b) is a side view. When melting materials having different melting temperatures, the temperature of each molten material is independently controlled by a built-in laser heating device or an infrared heating device.

【図3】材料溶解用容器(ルツボ)の吐出口の形状を示
す。(a)は、半径方向に2層の同心円形断面を有する
吐出口、(b)は、半径方向に3層となるように配置さ
れた、同じく同心円形状の吐出口である。
FIG. 3 shows a shape of a discharge port of a material melting container (crucible). (A) is a discharge port having two layers of concentric circular cross sections in the radial direction, and (b) is a discharge port of the same concentric shape arranged so as to have three layers in the radial direction.

【符号の説明】[Explanation of symbols]

11:材料溶解用容器 12:蓋 13:第2容器 21:第1材料室 22:第2材料室 31:第1ガス流入口 32:第2ガス流入口 101:円形層状材料 121:回転水槽 11: Container for dissolving material 12: Lid 13: Second container 21: First material chamber 22: Second material chamber 31: First gas inlet 32: Second gas inlet 101: Circular layered material 121: Rotating water tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2個の組成からなる素材を、隔壁で隔て
られた、2個の独立した室を有する材料容器(ルツ
ボ)、または、2個の独立した材料容器(ルツボ)に入
れ、2個の組成の材料を、同時に、しかも、独立して溶
解し、高圧力のガス圧力、あるいは、機械的ピストン
(ガス圧力と機械的ピストンの併用も含む)の作動によ
り、溶解材料を加圧して、吐出口から吐出させる。2個
の組成の溶解材料は、完全に溶融状態、あるいは、半溶
融状態で、材料容器の吐出口近く、あるいは、吐出口を
出た直後に、急冷凝固直前に、合体させ、回転水槽12
1に導入して、急冷凝固することにより、半径方向に2
個の組成からなる、円形層状アモルファス複合材料、お
よび、急冷凝固および熱処理による、超微細結晶組織を
有する(アモルファスマトリックス中に超微細結晶相粒
子を分散させた組織も含む)、いわゆる、円形層状ナノ
組織複合材料、および、これらを更に組み合わせた、円
形層状の[アモルファス+ナノ組織]複合材料が作製さ
れる。この作製装置は、不活性ガス雰囲気中で、溶解・
急冷凝固作業ができるように密閉容器中に設置されてお
り、高周波溶解炉、レーザー加熱装置、および、赤外線
加熱装置を組み合わせて、溶解温度を、材料ごとに、精
密に制御できるようになっている。
1. A material composed of two compositions is placed in a material container (crucible) having two independent chambers separated by a partition wall or in two independent material containers (crucible). The material of each composition is melted simultaneously and independently, and the melted material is pressurized by high pressure gas or actuation of a mechanical piston (including a combination of gas pressure and mechanical piston). And discharge from the discharge port. The molten materials of the two compositions are combined in a completely molten state or a semi-molten state, near the outlet of the material container, or immediately after leaving the outlet, immediately before rapid cooling and solidification.
Introduced in 1 and rapidly solidified, 2
Circular layered amorphous composite composed of individual compositions, and a so-called circular layered nanostructure having an ultrafine crystal structure (including a structure in which ultrafine crystal phase particles are dispersed in an amorphous matrix) by rapid solidification and heat treatment. A tissue composite material and a further combination thereof are produced in the form of a circular layered [amorphous + nanostructure] composite material. This manufacturing apparatus is used for melting and melting in an inert gas atmosphere.
It is installed in a closed container so that rapid solidification work can be performed, and the melting temperature can be precisely controlled for each material by combining a high frequency melting furnace, laser heating device, and infrared heating device .
【請求項2】 3個以上の組成からなる素材を、隔壁で
隔てられた、3個以上の独立した室を有する材料容器
(ルツボ)、または、3個以上の独立した材料容器(ル
ツボ)に入れ、3個以上の組成の材料を、同時に、しか
も、独立して溶解し、材料容器の吐出口近く、あるい
は、吐出口を出た直後に、急冷凝固直前に、3個以上の
組成の材料を合体させ、急冷することにより作製され
た、半径方向に3個以上の組成からなる、円形層状アモ
ルファス複合材料、および、急冷凝固および熱処理によ
る、超微細結晶組織を有する(アモルファスマトリック
ス中に超微細結晶相粒子を分散させた組織も含む)、い
わゆる、円形層状ナノ組織複合材料、および、これらを
更に組み合わせた、円形層状の[アモルファス+ナノ組
織]複合材料の作製方法、ならびに、加圧装置、不活性
ガス雰囲気高周波溶解炉、レーザー加熱装置、および、
赤外線加熱装置を組み合わせて、圧力と溶解温度を、材
料ごとに、精密に制御して、円形層状アモルファス複合
材料を作成する、作製装置。
2. A material container (crucible) having three or more components and having three or more independent chambers separated by partition walls, or a material container (crucible) having three or more independent materials separated by partition walls. The materials of three or more compositions are melted simultaneously and independently at the same time, and near the discharge port of the material container or immediately after leaving the discharge port, immediately before rapid solidification, and the material of three or more compositions is melted. Has a layered amorphous composite material composed of three or more compositions in the radial direction, which is produced by combining and quenching, and an ultrafine crystal structure by rapid solidification and heat treatment (the ultrafine Including a structure in which crystal phase particles are dispersed), a so-called circular layered nanostructured composite material, and a method of producing a circular layered [amorphous + nanostructured] composite material by further combining them. And, a pressure device, an inert gas atmosphere high frequency melting furnace, a laser heating device, and
A manufacturing device that combines an infrared heating device to precisely control the pressure and melting temperature of each material to produce a circular layered amorphous composite material.
JP2000192030A 2000-06-27 2000-06-27 Method and device for prepairing rapid solidification composite material Pending JP2002001492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000192030A JP2002001492A (en) 2000-06-27 2000-06-27 Method and device for prepairing rapid solidification composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192030A JP2002001492A (en) 2000-06-27 2000-06-27 Method and device for prepairing rapid solidification composite material

Publications (1)

Publication Number Publication Date
JP2002001492A true JP2002001492A (en) 2002-01-08

Family

ID=18691216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192030A Pending JP2002001492A (en) 2000-06-27 2000-06-27 Method and device for prepairing rapid solidification composite material

Country Status (1)

Country Link
JP (1) JP2002001492A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025020A (en) * 2006-06-20 2008-02-07 Tohoku Univ Manufacturing method of amorphous alloy bulk or composite alloy bulk composed of amorphous alloy and conventional crystal metal
CN113857463A (en) * 2021-09-06 2021-12-31 盐城市联鑫钢铁有限公司 Composite stainless steel pouring process and device
US11584673B2 (en) 2017-07-31 2023-02-21 Corning Incorporated Laminate article having a non-glass core and glass envelope and methods thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025020A (en) * 2006-06-20 2008-02-07 Tohoku Univ Manufacturing method of amorphous alloy bulk or composite alloy bulk composed of amorphous alloy and conventional crystal metal
US11584673B2 (en) 2017-07-31 2023-02-21 Corning Incorporated Laminate article having a non-glass core and glass envelope and methods thereof
CN113857463A (en) * 2021-09-06 2021-12-31 盐城市联鑫钢铁有限公司 Composite stainless steel pouring process and device

Similar Documents

Publication Publication Date Title
US20210394268A1 (en) 4d printing method and application of titanium-nickel shape memory alloy
Bai et al. Dual interfacial characterization and property in multi-material selective laser melting of 316L stainless steel and C52400 copper alloy
CN102181809B (en) Large-size metallic glass composite material with tensile ductility and preparation method thereof
RU2569857C2 (en) Method of unidirectional solidification of castings and related to this device
CN102032783B (en) Cold crucible induction melting and ingot pulling method for melting titanium or titanium alloy
US20090047439A1 (en) Method and apparatus for manufacturing porous articles
JP5522033B2 (en) Transparent phosphor and method for producing the same
CN113245562B (en) Equipment for preparing metal test piece and structural part by high-energy beam
US20180056435A1 (en) Multi-scale manufacturing of carbon nanotube composites
JPH11502570A (en) Aluminum, alloy metal, matrix composite reinforced with fine particle ceramic
CN105821265B (en) A kind of heavy in section heavy wall alloy profile and its production technology
JP2006500219A (en) Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same
CN114226750A (en) Shell structure-imitated alloy laser additive manufacturing method
JP2002001492A (en) Method and device for prepairing rapid solidification composite material
Finkel et al. Researches and developments on production of Ni-W alloy based substrates for second generation high-temperature superconductors
WO2001068936A1 (en) Method for producing composite material and composite material produced thereby
KR101118615B1 (en) Manufacturing apparatus of mixed powders for depositing nano particles on surface of micro particles and mixed powders manufactured by apparatus thereof
JP2002003981A (en) Manufacturing apparatus for laminar composite material by rapid solidification
AU614006B2 (en) Method for producing reinforced block material of metal or the like
US20050118051A1 (en) Porous material and method for producing porous material
SK5694A3 (en) Process and device for production of metal strip or composite body
CN108070800A (en) A kind of Ti base non-crystalline alloy compound materials with new microstructure and preparation method thereof
JPS6169932A (en) Method for amorphous promotion of metallic compounds by chemical reaction using lattice fault
Sun Microstructure evolution of bulk metallic glasses via laser processing
JPS58188552A (en) Producing device of material solidified by quenching

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207