JP2002001099A - Method and apparatus for plasma treatment - Google Patents

Method and apparatus for plasma treatment

Info

Publication number
JP2002001099A
JP2002001099A JP2000184176A JP2000184176A JP2002001099A JP 2002001099 A JP2002001099 A JP 2002001099A JP 2000184176 A JP2000184176 A JP 2000184176A JP 2000184176 A JP2000184176 A JP 2000184176A JP 2002001099 A JP2002001099 A JP 2002001099A
Authority
JP
Japan
Prior art keywords
substrate
plasma processing
cooling
temperature
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2000184176A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suemitsu
敏行 末光
Takashi Sueyoshi
貴志 末吉
Takahiro Kitai
崇博 北井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000184176A priority Critical patent/JP2002001099A/en
Publication of JP2002001099A publication Critical patent/JP2002001099A/en
Ceased legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for plasma treatment adapted so as to prevent thermal damage to a substrate during consecutive plasma treatments to prevent it from being deformed or from being adversely affected in its properties. SOLUTION: A rise in the temperature of the surface of a substrate 5 can be prevented by indirectly cooling the surface of the substrate 5 by providing a cooling holder 11 in the position opposite to the substrate 5 during consecutive plasma treatments and sealing a gas having a high heat conductivity in the space between the substrate 5 and the holder 11 spaced therefrom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空容器内で、タ
ーゲット材料の薄膜を基板上に形成するスパッタリング
装置などのプラズマ処理装置及び方法に関するものであ
る。
The present invention relates to a plasma processing apparatus and method, such as a sputtering apparatus, for forming a thin film of a target material on a substrate in a vacuum vessel.

【0002】[0002]

【従来の技術】例えば、スパッタリング装置ではターゲ
ットと基板を対向させて配置し、その間にプラズマ発生
用のガスを導入するとともに、ターゲットを配置したカ
ソード部に高周波または直流電圧を印加してプラズマを
発生させ、磁場によって加速されたイオンをターゲット
に衝突させ、ターゲットから材料を飛ばして基板に堆積
させるように構成されている。
2. Description of the Related Art For example, in a sputtering apparatus, a target and a substrate are arranged to face each other, a gas for plasma generation is introduced between them, and a high frequency or DC voltage is applied to a cathode portion on which the target is arranged to generate plasma. Then, ions accelerated by a magnetic field are made to collide with a target, and a material is skipped from the target and deposited on a substrate.

【0003】図3は、従来のスパッタリング装置の概要
構成を示したものである。図3において、21は真空容
器、22はカソード部で、電源23が接続されている。
24はカソード部22の上に配置された、蒸着物質であ
るターゲット、25はターゲット24に対向して配置さ
れた基板、26はガス導入部、27は排気口である。
FIG. 3 shows a schematic configuration of a conventional sputtering apparatus. In FIG. 3, 21 is a vacuum vessel, 22 is a cathode section, and a power supply 23 is connected.
Reference numeral 24 denotes a target, which is a deposition material, disposed on the cathode unit 22, reference numeral 25 denotes a substrate disposed opposite the target 24, reference numeral 26 denotes a gas introduction unit, and reference numeral 27 denotes an exhaust port.

【0004】このような構成において、ガス導入部26
よりアルゴン等のプラズマ発生用ガスを真空容器21内
に導入し、所定のスパッタ圧力になるよう排気口27か
ら排気を行う。この状態で、カソード部22に電源23
から高周波または直流電圧を印加すると、基板25とタ
ーゲット24の間にプラズマが発生し、プラズマ内のア
ルゴンイオンは磁場によって加速されてターゲット24
に衝突し、ターゲット物質が叩かれて真空中に飛び出
す。そして、ホルダー28上に取り付けられた基板25
にこの物質が付着し、薄膜を形成する。
In such a configuration, the gas introduction section 26
A plasma generating gas such as argon is introduced into the vacuum chamber 21 and exhausted from the exhaust port 27 so as to have a predetermined sputtering pressure. In this state, the power supply 23 is connected to the cathode section 22.
When a high frequency or DC voltage is applied from the substrate, a plasma is generated between the substrate 25 and the target 24, and argon ions in the plasma are accelerated by the magnetic field and
The target material is hit and jumps into the vacuum. Then, the substrate 25 mounted on the holder 28
This substance adheres to the surface to form a thin film.

【0005】また、このターゲット物質を多種類連続で
基板25に付着させることにより多層の膜を形成するこ
とになる。
In addition, a multi-layered film is formed by attaching many kinds of the target materials to the substrate 25 continuously.

【0006】図4は連続成膜を行っていく時の基板表面
温度を示す図である。例えばポリカーボネートのような
樹脂材料に連続積層する場合、各層でのプラズマ処理に
よる温度が60度程度におさえられたプロセスであって
も、プラズマ処理の間隔が5秒程度以内であれば、前回
のプラズマ処理による温度が下がりきらず、次のプラズ
マ処理が行われるため、温度が積算され、最高温度が最
終的に60度を越えてしまう。
FIG. 4 is a view showing the substrate surface temperature when performing continuous film formation. For example, when continuously laminating on a resin material such as polycarbonate, even if the temperature of the plasma treatment in each layer is suppressed to about 60 ° C., if the plasma treatment interval is within about 5 seconds, the previous plasma Since the temperature due to the processing cannot be lowered and the next plasma processing is performed, the temperatures are integrated, and the maximum temperature eventually exceeds 60 degrees.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来のスパッタリング装置では、多種類連続でしかも高速
タクトが要求されるようなプロセスにおいて、基板にタ
ーゲット物質を付着させると基板表面の温度がどんどん
上昇し、基板への熱ダメージや変形などによる後工程へ
の影響等が発生し、安定した生産に限界があった。
However, in the above-mentioned conventional sputtering apparatus, when a target material is adhered to a substrate in a process in which many types of continuous and high-speed tact are required, the temperature of the substrate surface increases rapidly. As a result, thermal damage or deformation of the substrate affects subsequent processes, and the like, and there is a limit to stable production.

【0008】本発明は、上記従来の問題点に鑑み、基板
表面の温度上昇を抑えることができるプラズマ処理方法
及び装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a plasma processing method and apparatus capable of suppressing a rise in the temperature of the substrate surface.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、真空容器内に配置した基板の表面処理を
連続して積層を行うプラズマ処理方法及び装置におい
て、プラズマ処理で積層をする間に基板表面を冷却する
もので、これにより基板への熱ダメージや変形などによ
る後工程への影響を抑えることができる。
According to the present invention, there is provided a plasma processing method and apparatus for continuously laminating a surface of a substrate disposed in a vacuum vessel. During this process, the surface of the substrate is cooled, whereby the influence on the subsequent process due to thermal damage or deformation of the substrate can be suppressed.

【0010】基板の対面に基板との隙間を設けた冷却ホ
ルダーを有し、この隙間に熱伝導の高いガスを封入する
ことで基板表面を間接的に冷却することにより、成膜面
に非接触で実現することができる。
A cooling holder having a gap between the substrate and the substrate is provided on the opposite side of the substrate, and a gas having high thermal conductivity is sealed in the gap to indirectly cool the substrate surface so that the film is not in contact with the film forming surface. Can be realized.

【0011】また、基板の冷却温度を調整することによ
り、プロセスに最適な温度を選択することができる。
By adjusting the cooling temperature of the substrate, an optimum temperature for the process can be selected.

【0012】[0012]

【発明の実施の形態】以下、本発明のスパッタリング装
置の一実施形態について、図1、図2を参照しながら詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the sputtering apparatus of the present invention will be described below in detail with reference to FIGS.

【0013】図1は本発明の実施の形態におけるスパッ
タリング装置の概略構成を示す断面図である。図1にお
いて、1は真空容器、2はカソード部で、3はカソード
部2に接続されている電源、4はカソード部2の上に配
置された蒸着物質であるターゲットである。5はターゲ
ット4に対向して配置された基板、7は真空容器1の任
意の位置にある排気口である。8は基板5を取り付ける
基板ホルダー、9は基板ホルダー8を旋回させる旋回駆
動部、18は基板ホルダー8を前後に動かす駆動軸であ
る。冷却ステーション部の11は冷却ホルダーで10は
He等の熱伝導性の高いガスの導入路である。
FIG. 1 is a sectional view showing a schematic configuration of a sputtering apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a vacuum vessel, 2 denotes a cathode unit, 3 denotes a power supply connected to the cathode unit 2, and 4 denotes a target which is a deposition material disposed on the cathode unit 2. Reference numeral 5 denotes a substrate disposed to face the target 4, and reference numeral 7 denotes an exhaust port at an arbitrary position in the vacuum vessel 1. Reference numeral 8 denotes a substrate holder on which the substrate 5 is mounted, 9 denotes a turning drive unit that turns the substrate holder 8, and 18 denotes a drive shaft that moves the substrate holder 8 back and forth. The cooling station 11 is a cooling holder, and 10 is an introduction path for a gas having high thermal conductivity such as He.

【0014】なお、ターゲット4は、ターゲット押え1
2により水冷プレート13を介してカソード部2に取り
付けられており、冷却水14により冷却される。真空容
器1はアースされており、カソード部2とは絶縁材16
により絶縁されている。15はアースシールド、17は
マグネットである。
Note that the target 4 is the target presser 1
2 is attached to the cathode section 2 via a water cooling plate 13 and is cooled by cooling water 14. The vacuum vessel 1 is grounded, and the cathode part 2 is
Insulated by 15 is an earth shield, 17 is a magnet.

【0015】次に本実施形態における動作について説明
する。まず、真空容器1内を所定の真空度に排気した
後、真空容器1内にガス導入部6よりアルゴンガス等の
プラズマ発生ガスを導入し、排気口7より所定のスパッ
タ圧力にて排気を行う。
Next, the operation of this embodiment will be described. First, after the inside of the vacuum vessel 1 is evacuated to a predetermined degree of vacuum, a plasma generating gas such as an argon gas is introduced into the vacuum vessel 1 from the gas introduction unit 6 and the gas is exhausted from the exhaust port 7 at a predetermined sputtering pressure. .

【0016】この状態で、カソード部2に電源3から高
周波または直流電圧を印加すると、基板5とターゲット
4との間にプラズマが発生し、プラズマ内のアルゴンイ
オンは磁場によって加速されてターゲット4に衝突し、
ターゲット物質が叩かれて真空中に飛び出す。そして、
基板ホルダー8上に取り付けられている基板5にターゲ
ット物質を付着させ、薄膜を形成する。
In this state, when a high frequency or DC voltage is applied to the cathode unit 2 from the power supply 3, plasma is generated between the substrate 5 and the target 4, and argon ions in the plasma are accelerated by the magnetic field and applied to the target 4. Collide,
The target material is hit and jumps into the vacuum. And
A target material is adhered to the substrate 5 mounted on the substrate holder 8 to form a thin film.

【0017】所定の膜を形成した後、旋回駆動部9によ
り次の冷却ステーションに移動させ、基板ホルダー8を
18の駆動部により前に動かし、ガス導入路10からH
e等のガスを基板5と冷却ホルダー11の間に導入し、
間接的に基板表面を冷却する。
After a predetermined film is formed, the substrate is moved to the next cooling station by the swivel drive unit 9, the substrate holder 8 is moved forward by the drive unit 18,
gas such as e is introduced between the substrate 5 and the cooling holder 11,
Indirectly cooling the substrate surface.

【0018】上記内容を繰り返すことにより、連続で多
層膜を形成していく。
By repeating the above contents, a multilayer film is formed continuously.

【0019】図2は連続成膜を行っていく間に、基板冷
却ステーションを設けた時の基板表面温度を示す図であ
る。例えばポリカーボネートのような樹脂材料に連続積
層する場合、各層でのプラズマ処理による温度が60度
程度におさえられたプロセスで、プラズマ処理の間隔が
5秒程度以内であっても、前回のプラズマ処理による温
度を下げることで、次のプラズマ処理が行われても、基
板冷却ステーションにて温度影響をキャンセルさせるこ
とができるため、温度が積算されず、最高温度を60度
に抑制する事ができる。基板の最高温度は、基板への熱
ダメージや変形などを考慮して設定している。
FIG. 2 is a diagram showing the substrate surface temperature when a substrate cooling station is provided during continuous film formation. For example, when continuously laminated on a resin material such as polycarbonate, in a process in which the temperature due to the plasma processing in each layer is suppressed to about 60 ° C., even if the interval between the plasma processing is within about 5 seconds, By lowering the temperature, even if the next plasma processing is performed, the temperature effect can be canceled in the substrate cooling station, so that the temperature is not integrated and the maximum temperature can be suppressed to 60 degrees. The maximum temperature of the substrate is set in consideration of thermal damage and deformation of the substrate.

【0020】また、温度調節部19により、冷却ホルダ
ー11の冷却温度を調整することにより、基板5の材料
の特性に合わせ、プロセスにとって最適な温度を選択す
ることができ、条件を容易に設定することが可能とな
る。
Further, by adjusting the cooling temperature of the cooling holder 11 by the temperature adjusting section 19, an optimum temperature for the process can be selected according to the characteristics of the material of the substrate 5, and the conditions can be easily set. It becomes possible.

【0021】さらに、基板材質としてポリカーボネート
やセラミックのような熱伝導が低い材質であれば、基板
裏面からの冷却より、基板表面から直接冷却する方がよ
り効果的である。
Further, if the substrate is made of a material having low heat conductivity, such as polycarbonate or ceramic, it is more effective to cool directly from the substrate surface than to cool from the back surface of the substrate.

【0022】以上のように構成された本実施の形態によ
れば、プラズマ処理で連続積層をする間に基板表面を冷
却することにより、基板への熱ダメージや変形などによ
る後工程への影響を抑えることができるプラズマ処理方
法及び装置を実現することができる。
According to the present embodiment configured as described above, by cooling the substrate surface during continuous lamination by plasma processing, the influence on the subsequent process due to thermal damage or deformation to the substrate can be reduced. A plasma processing method and apparatus that can be suppressed can be realized.

【0023】なお、上記の実施の形態では、スパッタリ
ング装置について説明したが、高速タクトでプラズマ処
理を連続して行うプロセスや、基板をプラズマ処理後、
冷却を必要とする各種プラズマ処理装置に対して、本発
明を有効に適用することができる。
In the above embodiment, the sputtering apparatus has been described. However, a process in which plasma processing is continuously performed at a high speed tact, or a method in which a substrate is subjected to plasma processing,
The present invention can be effectively applied to various plasma processing apparatuses that require cooling.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、真
空容器内に配置した基板の表面処理を連続して積層を行
うプラズマ処理方法及び装置において、プラズマ処理で
連続積層をする処理間に基板表面を冷却するもので、こ
れにより基板への熱ダメージや変形などによる後工程へ
の影響を抑えることができる。
As described above, according to the present invention, in a plasma processing method and apparatus for continuously laminating the surface treatment of a substrate placed in a vacuum vessel, the plasma processing method and the apparatus can be used to perform continuous lamination by plasma processing. This cools the surface of the substrate, thereby suppressing the influence on the subsequent process due to thermal damage or deformation of the substrate.

【0025】基板の対面に基板との隙間を設けた冷却ホ
ルダーを有し、この隙間に熱伝導の高いガスを封入する
ことで基板表面を間接的に冷却することにより、成膜表
面に非接触で実現することができる。
A cooling holder having a gap between the substrate and the substrate is provided on the opposite side of the substrate, and a gas having high thermal conductivity is filled in the gap to indirectly cool the surface of the substrate so that the surface of the film is not contacted. Can be realized.

【0026】また、基板の冷却温度を調整することによ
り、プロセスに最適な温度を容易に選択することができ
る。
Further, by adjusting the cooling temperature of the substrate, the optimum temperature for the process can be easily selected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態におけるスパッタリング装
置の概略構成を示す縦断正面図
FIG. 1 is a vertical sectional front view showing a schematic configuration of a sputtering apparatus according to an embodiment of the present invention.

【図2】本発明の実施の形態における成膜時の基板表面
の温度を示す図
FIG. 2 is a diagram showing a temperature of a substrate surface during film formation in an embodiment of the present invention.

【図3】従来例におけるスパッタリング装置の概略構成
を示す断面図
FIG. 3 is a cross-sectional view showing a schematic configuration of a conventional sputtering apparatus.

【図4】従来例における成膜時の基板表面の温度を示す
FIG. 4 is a diagram showing a temperature of a substrate surface during film formation in a conventional example.

【符号の説明】[Explanation of symbols]

1 真空容器 5 基板 8 基板ホルダー 11 冷却ホルダー DESCRIPTION OF SYMBOLS 1 Vacuum container 5 Substrate 8 Substrate holder 11 Cooling holder

フロントページの続き (72)発明者 北井 崇博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G075 AA24 BC02 BD14 CA03 CA47 CA65 DA02 EA05 EB01 EB42 EC21 ED09 4K029 BB02 CA05 DA00 DC16 EA08 JA02 Continued on the front page (72) Inventor Takahiro Kitai 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. (reference) 4G075 AA24 BC02 BD14 CA03 CA47 CA65 DA02 EA05 EB01 EB42 EC21 ED09 4K029 BB02 CA05 DA00 DC16 EA08 JA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内でプラズマを発生させ、前記
真空容器内に配置した基板の表面処理を連続して積層を
行うプラズマ処理方法において、プラズマ処理で積層を
する間に前記基板表面を冷却することを特徴とするプラ
ズマ処理方法。
1. A plasma processing method for generating plasma in a vacuum vessel and continuously laminating surface treatment of a substrate disposed in the vacuum vessel, wherein the substrate surface is cooled during lamination by plasma processing. A plasma processing method.
【請求項2】 前記基板の対面に前記基板との隙間を設
けた冷却ホルダーを有し、この隙間にガス導入路から熱
伝導の高いガスを封入することで前記基板表面を間接的
に冷却することを特徴とする請求項1記載のプラズマ処
理方法。
2. A cooling holder having a gap with the substrate provided on the opposite surface of the substrate, and indirectly cooling the surface of the substrate by filling a gas having a high thermal conductivity from a gas introduction path into the gap. The plasma processing method according to claim 1, wherein:
【請求項3】 前記冷却は、次回のプラズマ処理で上昇
する前記基板の最高温度が、所定値以下となるように行
うことを特徴とする請求項1、2のいずれかに記載のプ
ラズマ処理方法。
3. The plasma processing method according to claim 1, wherein the cooling is performed such that a maximum temperature of the substrate that rises in the next plasma processing is equal to or lower than a predetermined value. .
【請求項4】 前記基板の冷却温度を調整することを特
徴とする請求項1〜3のいずれかに記載のプラズマ処理
方法。
4. The plasma processing method according to claim 1, wherein a cooling temperature of the substrate is adjusted.
【請求項5】 真空容器内でプラズマを発生させ、前記
真空容器内に配置した基板の表面処理を連続して積層を
行うプラズマ処理装置において、前記基板の表面処理を
行う面の対面に前記基板との隙間を設けた冷却ホルダー
と、この隙間に熱伝導の高いガスを封入したことを特徴
とするプラズマ処理装置。
5. A plasma processing apparatus for generating plasma in a vacuum vessel and continuously laminating the surface treatment of a substrate placed in the vacuum vessel, wherein the substrate is provided with a surface opposite to a surface on which the surface treatment is performed. A plasma processing apparatus characterized in that a cooling holder provided with a gap between the cooling chamber and a gas having high thermal conductivity is sealed in the gap.
【請求項6】 前記基板の冷却温度を調整する温度調節
部を設けたことを特徴とする請求項5に記載のプラズマ
処理装置。
6. The plasma processing apparatus according to claim 5, further comprising a temperature controller for adjusting a cooling temperature of the substrate.
JP2000184176A 2000-06-20 2000-06-20 Method and apparatus for plasma treatment Ceased JP2002001099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184176A JP2002001099A (en) 2000-06-20 2000-06-20 Method and apparatus for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184176A JP2002001099A (en) 2000-06-20 2000-06-20 Method and apparatus for plasma treatment

Publications (1)

Publication Number Publication Date
JP2002001099A true JP2002001099A (en) 2002-01-08

Family

ID=18684651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184176A Ceased JP2002001099A (en) 2000-06-20 2000-06-20 Method and apparatus for plasma treatment

Country Status (1)

Country Link
JP (1) JP2002001099A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455430B1 (en) * 2002-03-29 2004-11-06 주식회사 엘지이아이 Cooling apparatus for surface treatment device of heat exchanger and manufacturing method thereof
JP2008192618A (en) * 2007-02-06 2008-08-21 Se Plasma Inc Plasma generating device in which an inhalation port is formed around projected plasma exhalation port
KR101019097B1 (en) 2010-08-17 2011-03-15 주식회사 석원 Moving thin film deposition system
WO2018105354A1 (en) * 2016-12-07 2018-06-14 株式会社神戸製鋼所 Film-forming apparatus, method for producing formed film using same, and cooling panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455430B1 (en) * 2002-03-29 2004-11-06 주식회사 엘지이아이 Cooling apparatus for surface treatment device of heat exchanger and manufacturing method thereof
JP2008192618A (en) * 2007-02-06 2008-08-21 Se Plasma Inc Plasma generating device in which an inhalation port is formed around projected plasma exhalation port
KR101019097B1 (en) 2010-08-17 2011-03-15 주식회사 석원 Moving thin film deposition system
WO2018105354A1 (en) * 2016-12-07 2018-06-14 株式会社神戸製鋼所 Film-forming apparatus, method for producing formed film using same, and cooling panel
JP2018090886A (en) * 2016-12-07 2018-06-14 株式会社神戸製鋼所 Film deposition apparatus and manufacturing method of film forming substance using the same and cooling panel
CN110114505A (en) * 2016-12-07 2019-08-09 株式会社神户制钢所 Film formation device, using the film formation device film forming matter manufacturing method and coldplate
CN110114505B (en) * 2016-12-07 2021-05-25 株式会社神户制钢所 Film forming apparatus, method for producing film-formed material using the same, and cooling plate

Similar Documents

Publication Publication Date Title
US4362611A (en) Quadrupole R.F. sputtering system having an anode/cathode shield and a floating target shield
EP1505170B1 (en) Box-shaped facing-targets sputtering apparatus and method for producing compound thin film
US20200381272A1 (en) Placing table structure and treatment device
JP6140539B2 (en) Vacuum processing equipment
US20120138452A1 (en) Method and Apparatus for Super-High Rate Deposition
JP2002001099A (en) Method and apparatus for plasma treatment
JP2002371351A (en) Film forming apparatus
JP3719797B2 (en) Method for forming conductive thin film on organic thin film surface
JP4450654B2 (en) Sputtering source and film forming apparatus
JP2014148736A (en) Thin-substrate treatment apparatus
JPH0925570A (en) Sputtering-type film coating station, method for coating by sputtering and vacuum treatment apparatus
US5874174A (en) Conductor film and its forming method
US6620298B1 (en) Magnetron sputtering method and apparatus
JPS6187868A (en) Method and device for forming thin film
JP2004124171A (en) Plasma processing apparatus and method
JPH0718437A (en) Formation of thin film by bias sputtering
JP2008231532A (en) Method for producing copper-plating-treated material
JP2002373887A (en) Etching system for high dielectric
JPH06184742A (en) Sputtering method and device
JP4467836B2 (en) Deposition method
JP2002004039A (en) Sputtering apparatus
JP2003293129A (en) Sputtering system
JP2000239839A (en) Sputtering device
JPH0734235A (en) Sputtering device
JPH09104969A (en) Conductor film and its formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20090127