JP2001524063A - Inorganic fiber composition - Google Patents

Inorganic fiber composition

Info

Publication number
JP2001524063A
JP2001524063A JP52043298A JP52043298A JP2001524063A JP 2001524063 A JP2001524063 A JP 2001524063A JP 52043298 A JP52043298 A JP 52043298A JP 52043298 A JP52043298 A JP 52043298A JP 2001524063 A JP2001524063 A JP 2001524063A
Authority
JP
Japan
Prior art keywords
weight
mgo
cao
sio
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP52043298A
Other languages
Japanese (ja)
Inventor
チャールズ エフ ラップ
ピーター ビー マッギニス
Original Assignee
オウェンス コーニング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/778,419 external-priority patent/US5932347A/en
Application filed by オウェンス コーニング filed Critical オウェンス コーニング
Publication of JP2001524063A publication Critical patent/JP2001524063A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/02Biodegradable glass fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

(57)【要約】 無機繊維組成物が、第1態様において、重量%で示した以下の成分を含むことを開示する。即ち、SiO2を約54〜約70重量%、Al23を約0〜約4重量%、Na2Oを約0〜約6重量%、K2Oを約0〜約6重量%、MgOを約0〜約6重量%、CaOを約10〜約28重量%、FeOとした全鉄を約6〜約17重量%、TiO2を約0〜約5重量%含み、SiO2とAl23との総重量%が約56〜約72重量%、MgOとCaOとの総重量%を約12〜約28重量%、Na2OとK2Oとの総重量%を6重量%を越えず、全成分の総重量%が、もしあれば微量成分を含めて100%である。第2態様において、当該組成物には、重量%で示した以下の成分が含まれる。即ち、SiO2を約50〜約68重量%、Al23を約0〜約4重量%、K2Oを約0〜約6重量%、Na2Oを約0〜約6重量%、MgOを約0〜約10重量%、CaOを約10〜約28重量%、FeOとした全鉄を約6〜約16重量%、TiO2を約0〜約5重量%、ZrO2を約0.5〜約12重量%含み、Na2OとK2Oとの総重量%が6重量%を越えず、全成分の総重量%が、もしあれば微量成分を含めて100%である。 (57) [Summary] It is disclosed that the inorganic fiber composition includes, in the first embodiment, the following components shown in% by weight. That is, the SiO 2 from about 54 to about 70 wt%, the Al 2 O 3 from about 0 to about 4 wt%, from about 0 to about 6 wt% of Na 2 O, from about 0 to about 6 wt% of K 2 O, MgO from about 0 to about 6 wt%, from about 10 to about 28 wt% of CaO, total iron about 6 to about 17 weight percent and FeO, comprises TiO 2 from about 0 to about 5 wt%, SiO 2 and Al The total weight% of 2 O 3 is about 56 to about 72% by weight, the total weight% of MgO and CaO is about 12 to about 28% by weight, and the total weight% of Na 2 O and K 2 O is 6% by weight. Not more than 100% of the total weight of all components, including trace components, if any. In a second embodiment, the composition comprises the following components, expressed in% by weight: That is, the SiO 2 from about 50 to about 68 wt%, the Al 2 O 3 from about 0 to about 4 wt%, from about 0 to about 6 wt% of K 2 O, from about 0 to about 6 wt% of Na 2 O, about 0 to about 10 wt% of MgO, from about 10 to about 28 wt% of CaO, total iron about 6 to about 16 weight percent and FeO, the TiO 2 from about 0 to about 5 wt%, the ZrO 2 about 0 .5~ comprises about 12 wt%, does not exceed the total weight percent 6 wt% of Na 2 O and K 2 O, the total weight percent of all components is 100% including the minor components, if any.

Description

【発明の詳細な説明】 無機繊維組成物 技術分野 本発明は、無機繊維組成物、特にそのような組成物から作られる繊維から形成 した絶縁体製品に関する。 発明の背景 無機繊維絶縁体はよく知られており、長期にわたって、市販されている。その ような絶縁体は、一般に溶融物から、以下に示すようないくつかの方法の1つに よって、繊維化し、結合剤によって結合させた、からみ合わせた繊維の不織網ネ ットワークから作られる。この結合剤は、いかなる好適な材料であってもよいが 、ほぼ一般的には、フェノール−ホルムアルデヒド樹脂又は尿素ホルムアルデヒ ド樹脂である。コンベアは、一般に結合剤で被覆された層の形の繊維を収集し、 当該層を熱硬化して最終絶縁製品を生産する。種々の密度の絶縁材料は、コンベ ア速度と硬化した絶縁体の厚さを変化させることによって生産され得る。 ガラスウールは、一般にロータリー法によって調製され、ここでガラス溶融物 は、多数の穴のある周壁を有する「紡績機」中に滴下され、このガラスは、繊維 を形成するために遠心力にかけられる。この方法は、良好な繊維生成物、即ち低 い「1回分(shot)」含有量で与え、かつ良好な絶縁特性を与える。しかしながら 、これらの繊維を製造するために使用されるガラスは、低い軟化温度を有するの でこれらガラスの使用は、一般に適度に高い使用温度のみに限られる。 一方、無機ウールは、高い軟化温度及び使用温度を有するので、一般的に高い 温度環境で使用される。しかしながら、このような組成物は、一般的にロータリ ー繊維化には高すぎる成形温度を有する。無機ウールは、普通、ロータリー法よ り低い繊維生成と高い一回分含有量とを示す外部の遠心分離機法によって形成さ れる。外部の遠心分離機法によって繊維化されることを目的とする無機ウールの 例は、WO/00196で開示されている。 従来技術の無機ウール組成物は、ロータリー法によって繊維に形成され得ると いわれている(国際公開WO95/01941及びWO93/02977、米国特許第5,554,324号明 細書及び欧州特許第583792号参照)。しかしながら、これらの組成物は、すべて 大量のNa2O、K2O、及びB23を含んでおり、これらは、繊維の高い温度特 性に悪影響を与え得るものであり、Al23の量が多いと、繊維の生物溶解性が 減少し得る。 無機繊維は、人の病気に関連しないが、無機繊維の生物溶解性を増加するのに 望ましくなる。無機繊維の溶解性が増加すると、もし吸い込んでも、繊維が肺に 残る時間を更に減少するので、人の肺に存在する塩溶液と類似した組成物を有す る塩溶液における無機繊維の溶解速度は、そのような繊維の生物溶解性の良好な 指標になる。この溶解速度は、繊維の化学組成物を変更することによって改善さ れ得る。従来技術では、これらの変更を、商業目的に必要な繊維の他の特性を損 なうことなく行うことはできなかった。 従って、本発明の目的は、改善された無機繊維組成物及びそのような組成物か ら形成される改善された無機繊維を提供することにある。 本発明の他の目的は、比較的高い温度環境で使用可能な無機繊維を提供するこ とにある。 本発明の更なる目的は、ロータリー繊維化方法で無機繊維に形成されてもよい 無機繊維組成物を提供することにある。 さらに、本発明の他の目的は、比較的生物溶解性で、さらに十分耐久性のある 無機繊維を提供することにある。 より好ましくは、本発明の目的は、ロータリー繊維化方法で無機繊維に形成で きる無機繊維組成物を提供することにあり、当該繊維は、高い温度環境でも使用 可能であり、十分耐久性があるものである。 より好ましくは、本発明の目的は、ロータリー繊維化方法で無機繊維に形成で きる無機繊維組成物を提供することにあり、当該繊維は、高い温度環境でも使用 可能であり、比較的生物溶解性で、更に十分耐久性のあるものである。 本発明の概要 上記目的並びに他の目的は、具体的に列挙されないが、本発明の第1態様に従 う無機繊維組成物によって達成され、この組成物には、重量%で示した以下の成 分が含まれる。即ち、SiO2を約54〜約70重量%、Al23を約0〜約4 重量%、Na2Oを約0〜約6重量%、K2Oを約0〜約6重量%、MgOを約0 〜約6重量%、CaOを約10〜約28重量%、FeOとした全鉄を約6〜約1 7重量%、TiO2を約0〜約5重量%含み、SiO2とAl23との総重量%が 約56〜約72重量%、MgOとCaOとの総重量%を約12〜約28重量%、 Na2OとK2Oとの総重量%を6重量%を越えず、全成分の総重量%が、もしあ れば微量成分を含めて100%である。 上記目的は、本発明の第2態様に従う無機繊維組成物によっても達成され、こ の組成物には、重量%で示した以下の成分が含まれる。即ち、SiO2を約50 〜約68重量%、Al23を約0〜約4重量%、K2Oを約0〜約6重量%、N a2Oを約0〜約6重量%、MgOを約0〜約10重量%、CaOを約10〜約 28重量%、FeOとした全鉄を約6〜約16重量%、TiO2を約0〜約5重 量%、ZrO2を約0.5〜約12重量%含み、Na2OとK2Oとの総重量%が 6重量%を越えず、全成分の総重量%が、もしあれば微量成分を含めて100%で ある。 上記目的は、本発明の第1態様に従う組成物を有する無機繊維を含む無機ウー ル絶縁体、及び第2態様に従う組成物を有する無機繊維を含む無機ウール絶縁体 によって更に達成される。 発明の詳細な説明と好ましい態様 以下でより完全に明らかにするように、本発明の無機繊維組成物は、標準ロッ クウールと比べて低い液相線温度と高い粘度とを有するので、これをロータリー 繊維化できる。これらの組成物に対し、液相線温度は、一般的に約1204℃( 2200°F)より低く、及び、より好ましく11193℃(2180°F)よ り低い。これらの比較的低い液相線温度は、少なくとも部分的には、無機繊維組 成物の比較的低いMgO含有量による。組成物の粘度は、一般に1232℃(2 250°F)で約15〜100Pa・秒(約150〜1000ポイズ)、より好 ましくは、1232℃(2250°F)で約20〜80Pa・秒(約200〜8 00ポイズ)になる。これらの特性によって、本発明の組成物は、これらの 組成物を一般的なロータリー繊維化装置中で使用するのに十分に低い液相線温度 及び十分な粘度範囲を有する。 本発明の組成物は、好ましくは、高温分解性に耐性があるので、比較的高い温 度環境で使用し得るウール製品を形成する。本発明の組成物は、好ましくは比較 的生物溶解性のある繊維も製造するので、導入された場所において、ウール製品 の物理的一体性を数年に渡って維持するのに十分な耐久性がある。そのような繊 維は、好ましくは、導入位置における水分攻撃から完全に不活性であるだけでな く、人の肺液のような生理的培地中で溶解することができる。 以下で開示する標準ロックウール組成物のように、本発明の組成物は、比較的 良好な高温耐久性のロータリー繊維化製品を与える手助けをするために、比較的 低いNa2O+K2O含有量を有する。しかしながら、本発明の組成物は、標準ロ ックウールと比較して、適度に増加した量のSiO2、非常に減少した量のAl2 3及び増加したFe23含有量を含む。本発明のある態様において、この組成 物は、増加したZrO2含有量を含んでもよい。以下で完全に示すように、これ らの変更は、ロータリー法によって繊維化できる組成物を製造するために率を変 えるだけでなく、率を変えて、高温耐性、耐久性、及び好ましくは比較的生物溶 解性の組成物を製造するために実行され得る。 本発明の第1態様に従う無機繊維組成物は、以下の成分を含み、重量%で示す (当該技術の標準的な慣例として、実質的にそのような個体結晶が存在しなくて も、成分を酸化物として示す)。 成分 重量% SiO2 54〜70 Al23 0〜4 Na2O 0〜6 K2O 0〜6 MgO 0〜6 CaO 10〜28 全鉄(FeOとして)* 6〜17 TiO2 0〜5 SiO2+Al23 56〜72 Na2O+K2O 0〜6 MgO+CaO 12〜28* 鉄は、Fe2+及びFe3+あるいはFeO及びFe23の酸化物として存在する。 Fe2+及びFe3+の画分は不明であるので、双方の鉄酸化物の総量をここでFe Oとして示す。 本発明の第1態様に従う組成物の成分の好ましい範囲は、以下の通りであり、 重量%で示す。 成分 重量% SiO2 56〜68 Al23 0〜3 Na2O 0〜5 K2O 0〜5 MgO 1〜6 CaO 10〜25 全鉄(FeOとして) 8〜16 TiO2 0〜4 SiO2+Al23 58〜71 Na2O+K2O 0〜5 MgO+CaO 14〜26 本発明の第1態様に従う組成物の成分の更に好ましい範囲は、以下の通りであ り、重量%で示す。 成分 重量% SiO2 58〜65 Al23 0〜3 Na2O 0〜4 K2O 0〜4 MgO 2〜5 CaO 11〜20 全鉄(FeOとして) 9〜13 TiO2 0〜3 SiO2+Al23 60〜68 Na2O+K2O 0〜4 MgO+CaO 17〜22比較例1 以下の表は、市販ロックウール、即ち組成物A、並びに本発明の第1態様に従 う7種の無機ウール組成物、即ち組成物B〜Hに対する組成物重量%及び一定の 特性の概算を示す。 ロータリー法による繊維化に対する標準ロックウールの適合性が不足している ことは、組成物Aに対する値から証明される。特に、組成物Aは、1231℃( 2251°F)の液相線温度を有するが、この温度は、現在使われている一般的 なロータリー法から経済的な結果を達成するには、一般に高すぎる。また、組成 分Aは、1230℃(2250°F)で10.4Pa・秒(104ポイズ)粘度 を有するが、この粘度は、低い1回分含有量を有する良質の繊維を得るに は、一般に低すぎる。加えて、組成物Aの溶解速度は、15ng/cm2-時であり、 所望値よりも非常に低い。 これと対照に、組成物Bは1188℃(2171°F)の液相線温度、225 0℃で44.2Pa・秒(442ポイズ)の粘度を有し、組成物Cは1182℃( 2160°F)の液相線温度、32.8Pa・秒(328ポイズ)の粘度を有し組 成物Dは1181℃(2158°F)の液相線温度、34.4Pa・秒(344ポイ ズ)の粘度を有し、これは、組成物B、C及びDが、かなり良好な繊維品質で、 比較的標準のロータリー法を使用して経済的に繊維化できることを示す。加えて 、組成物B及びDの高温耐久性は、組成物Aの高温耐久性と良好に比較でき、即 ち930℃における線収縮率は、それぞれ3及び4%対6%である。線収縮率% は、標準燃焼試験から測定された耐火性の基準であり、収縮率が小さいことは、 耐火特性に優れていることを示す。更に、組成物B及びDは、組成物Aと関連し て、それぞれ42ng/cm2-時の溶解速度に改善された。 本発明の第1態様に従う組成物の温度耐久性は、比較的低いアルカリ、即ちN a2O+K2Oそれ自身の含有量に従い、かつ比較的低い液相線温度それ自身は、 少なくとも部分的には、比較的低いMgO含有量による。加えて、この組成物の 比較的改善された溶解速度は、その低いアルミナレベルのためである。組成物F 及びGに見られるように、改善された溶解速度は、非常に速く、即ち、組成物F に対して107ng/cm2-時であるが、一定の組成物に対する他の特性をいくらか 犠牲にする可能性がある。即ち組成物Gの高い液相線温度である。従って、本発 明の第2態様に従う代わりの組成物は、液相線、粘度及び溶解速度の一定の組み 合わせを示す一定の例示として望ましい。 本発明の第2態様に従う無機繊維組成物は以下の成分を含み、重量%で示す。 成分 重量% SiO2 50〜68 Al23 0〜4 K2O 0〜6 Na2O 0〜6 MgO 0〜10 CaO 10〜28 全鉄(FeOとして) 6〜16 TiO2 0〜5 ZrO2 0.5〜12 Na2O+K2O 0〜6 本発明の第2態様に従う組成物の成分に対する好ましい範囲は以下の通りであ り、重量%で示す。 成分 重量% SiO2 52〜66 Al23 0〜3.5 K2O 0〜5 Na2O 0〜5 MgO 1〜8 CaO 11〜25 全鉄(FeOとして) 7〜15 TiO2 0〜4 ZrO2 1〜11 Na2O+K2O 0〜5 本発明の第2態様に従う組成物の成分に対する更に好ましい範囲は、以下の通 りであり、重量%で示す。 成分 重量% SiO2 54〜64 Al23 0〜3.5 K2O 0〜4.5 Na2O 0〜4.5 MgO 1〜4 CaO 12〜23 全鉄(FeOとして) 7〜14 TiO2 0〜3 ZrO2 1〜9 Na2O+K2O 0〜4.5 本発明の第2態様に従う組成物の成分に対する更に好ましい範囲は、以下の通 りであり、重量%で示す。 成分 重量% SiO2 57〜62 Al23 0.5〜2 K2O 0〜4 Na2O 0〜3 MgO 2〜4 CaO 16〜22 全鉄(FeOとして) 7〜12 TiO2 0〜2 ZrO2 1〜5 Na2O+K2O 0〜4.5 実施例2 本発明の第2態様に従う特定の実施例を、全組成物に対する重量%で示した量 で、以下の表に示す。 組成物Dと組成物Jを比較してみると、これらの組成物は非常に類似しており 、組成物Jが3%のZrO2を有する代わりに、組成物Dは2%のSiO2と1% のCaOを有する。更に、組成物J中へのZrO2の添加は、組成物Dと比較し て、組成物Jの液相線温度における緩やかな減少を与え、1232℃(2250 °F)における粘度の緩やかな増加を与える。双方の変化は、それぞれロータリ ー繊維化の経済的かつ繊維の品質の改善に望ましいものである。更に、組成物J は、組成物Dの溶解速度に匹敵する溶解速度、及び比較的良好な温度耐久性を有 する。 組成物Iの線収縮率%を測定し、41.7%とした。これは、組成物D及びJ に対する線収縮率と比較して高い線収縮率である。組成物Iの高い線収縮率は、 そのSiO2濃度及びZrO2濃度に起因され得る。組成物Iの配合は、組成物D と比べて2%少ないSiO2、1.5%多いZrO2を含む。組成物Iは、SiO2 は組成物Jと同じ%であるが、1.5%少ないZrO2を含む。組成物Iに対す る比較的高い線収縮率は、特定の組成物に対し、他の成分を比較的一定に維持し ながら1.5%のZrO2のみを添加ても、2%のSiO2が組成物から除去され ると失われる高温耐久性を完全に補うことはできない。しかしながら、組成物D と組成物Jを比較してみると、SiO2の2%損失の代わりにZrO2を3%添加 すると、SiO2が組成物から除去されると失われる高温耐久性を完全に補う。 組成物Jの生物溶解性は、組成物Aのような標準ロックウールと比べて非常に 改善されている一方で、本発明のより好ましい態様によって達成されるよりもま だ低い。Al23が減少する結果として、そのような生物溶解性が増加するのは 、組成物Jと組成物R及びSとを比較することによって理解され得る。組成物R 及びSは、組成物Jに類似しており、およそ1.5%のAl23は、ひとまとめ にしておよそ1.5%のCaO及びMgOと置換される。組成物R及びSは、モ デル生理食塩水中、37℃、流速0.2ml/分で、それぞれ74、80ng/cm2- 時であり、組成物D及びJに対する42、44.3ng/cm2-時と比較される。組 成物R及びSも、比較的良好な高温耐久性を有し、組成物Dの液相線温度と類似 の液相線温度を有する。組成物Sの粘度も、ロータリー繊維化方法における比 較的良好な繊維品質を与える範囲にある(組成物Rの粘度は、試験されていない が、好適な範囲内にあることが予想される)。これらの理由から、組成物R及び Sは、現時点で本発明の最も好ましい態様である。 前記の通り、本発明の組成物は、ロータリー繊維化装置によって無機ウール繊 維に形成され得る。絶縁製品を作成するために使用する場合、繊維は、絶縁性品 同士を支持するための結合剤で被覆され得る。この繊維は、潤滑剤、湿潤剤、帯 電防止剤及び増量剤又は安定剤で被覆され得る。一般に、この繊維は、繊維化装 置から繊維化されるにつれて被覆される。しかしながら当業者であれば、繊維が 、絶縁体形成工程中のいかなる時にも被覆され得ることを認識するだろう。繊維 が繊維化装置から繊維化されると、この繊維は、絶縁体製品に形成されるために 、一般に穴の開いたコンベアベルト又は他の収集装置で集められる。 本発明の組成物は、無機ウール絶縁体製品に主に有用であるものとして上述さ れているが、当業者であれば、本発明の組成物が絶縁体よりも有用な他の用途に 無機繊維を形成するのに使用され得ることを理解するだろう。例えば、本発明の 組成物から形成される繊維は、空気取扱いダクト、天井パネル及び音響パネルを 形成するのにも使用され得る。 一定の代表的な態様及び詳細は、本発明の例示目的で示したものであって、当 業者であれば、種々の変更及び改良は、本発明の範囲から出発することなく本発 明の構成になり得、これを添付した請求の範囲で示す。DETAILED DESCRIPTION OF THE INVENTION                              Inorganic fiber composition                                 Technical field   The present invention relates to inorganic fiber compositions, in particular formed from fibers made from such compositions. Related to insulator products.                                Background of the Invention   Inorganic fiber insulation is well known and has been commercially available for a long time. That Such insulators are typically prepared from the melt in one of several ways, as described below. Therefore, a non-woven mesh of entangled fibers that has been fiberized and bound by a binder Network. The binder can be any suitable material, , Almost commonly, phenol-formaldehyde resins or urea-formaldehyde. Resin. The conveyor collects the fibers, generally in the form of a layer coated with a binder, The layer is thermoset to produce the final insulation product. Different densities of insulating material It can be produced by varying the speed and thickness of the cured insulator.   Glass wool is generally prepared by a rotary method, where the glass melt Is dropped into a "spinning machine" having a perforated wall with a number of holes, and the glass Is subjected to centrifugal force to form This method has a good fiber product, i.e. low Low "shot" content and good insulation properties. However The glass used to make these fibers has a low softening temperature The use of these glasses is generally limited to only moderately high use temperatures.   On the other hand, inorganic wool has a high softening temperature and a high use temperature, so that it is generally high. Used in temperature environment. However, such compositions are generally -It has a molding temperature that is too high for fiberization. Inorganic wool is usually a rotary process Formed by an external centrifuge method showing low fiber production and high batch content It is. Of inorganic wool intended to be fiberized by an external centrifuge method Examples are disclosed in WO / 00196.   Prior art inorganic wool compositions can be formed into fibers by a rotary process. (WO95 / 01941 and WO93 / 02977, U.S. Pat. No. 5,554,324) See the detailed description and EP 583792). However, all of these compositions Large amount of NaTwoO, KTwoO and BTwoOThreeThese are the high temperature characteristics of the fiber. Can adversely affect the properties of AlTwoOThreeThe higher the amount, the higher the biosolubility of the fiber May decrease.   Inorganic fiber is not related to human illness, but increases the biosolubility of inorganic fiber Would be desirable. As the solubility of the inorganic fibers increases, the fibers, even if inhaled, Has a composition similar to salt solutions present in human lungs, as it further reduces the time remaining The dissolution rate of the inorganic fibers in the salt solution depends on the good biosolubility of such fibers. Become an indicator. This dissolution rate can be improved by changing the fiber's chemical composition. Can be In the prior art, these changes would impair other properties of the fiber required for commercial purposes. It couldn't be done without help.   Accordingly, it is an object of the present invention to provide improved inorganic fiber compositions and such compositions. It is to provide an improved inorganic fiber formed therefrom.   Another object of the present invention is to provide an inorganic fiber that can be used in a relatively high temperature environment. And there.   A further object of the present invention may be formed into inorganic fibers by a rotary fiberization method. An object of the present invention is to provide an inorganic fiber composition.   Further, another object of the present invention is to provide a relatively biosoluble and sufficiently durable It is to provide an inorganic fiber.   More preferably, the object of the present invention is to form inorganic fibers in a rotary fiberization process. To provide an inorganic fiber composition that can be used even in a high temperature environment. It is possible and durable enough.   More preferably, the object of the present invention is to form inorganic fibers in a rotary fiberization process. To provide an inorganic fiber composition that can be used even in a high temperature environment. It is possible, relatively biosoluble and more durable.                               Summary of the present invention   The above object and other objects are not specifically listed, but are in accordance with the first aspect of the present invention. This is achieved by a mineral fiber composition, which comprises the following components in weight%: Minutes. That is, SiOTwoFrom about 54 to about 70% by weight of AlTwoOThreeFrom about 0 to about 4 Wt%, NaTwoAbout 0 to about 6% by weight of O, KTwoAbout 0 to about 6% by weight of O and about 0% of MgO About 6% by weight, about 10 to about 28% by weight of CaO, and about 6 to about 1 7% by weight, TiOTwoFrom about 0 to about 5 wt.TwoAnd AlTwoOThreeAnd the total weight% About 56 to about 72% by weight, the total weight of MgO and CaO being about 12 to about 28% by weight, NaTwoO and KTwoThe total weight percent of all components does not exceed 6 weight percent with O If it is, it is 100% including trace components.   The above object is also achieved by an inorganic fiber composition according to the second aspect of the present invention, Contains the following components in% by weight: That is, SiOTwoAbout 50 ~ 68% by weight, AlTwoOThreeFrom about 0 to about 4% by weight, KTwoO to about 6% by weight, N aTwoAbout 0 to about 6% by weight of O, about 0 to about 10% by weight of MgO, and about 10 to about 28% by weight, about 6 to about 16% by weight of total iron as FeO, TiOTwoAbout 0 to about 5 layers %, ZrOTwoFrom about 0.5 to about 12% by weight,TwoO and KTwoTotal weight% with O Not more than 6% by weight, the total weight% of all components is 100% including trace components, if any is there.   An object of the present invention is to provide an inorganic fiber comprising an inorganic fiber having the composition according to the first aspect of the present invention. Wool insulator comprising inorganic fibers having the composition according to the second aspect Is further achieved by:                      DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS   As will be more fully apparent below, the inorganic fiber compositions of the present invention are prepared using standard locks. It has a lower liquidus temperature and a higher viscosity than quool. Can be fiberized. For these compositions, the liquidus temperature is generally about 1204 ° C. ( Lower than 2200 ° F, and more preferably at 2180 ° F. Lower. These relatively low liquidus temperatures are due, at least in part, to inorganic fiber sets. Due to the relatively low MgO content of the product. The viscosity of the composition is generally 1232 ° C. (2 About 150-100 Pa · s (about 150-1000 poise) at 250 ° F), more preferable. More preferably, the temperature is about 20 to 80 Pa · s at about 1232 ° C. (2250 ° F.) (about 200 to 8 Pa · s). 00 poise). Due to these properties, the compositions of the present invention make these compositions Liquidus temperature low enough to use the composition in a typical rotary fiberizer And a sufficient viscosity range.   The compositions of the present invention are preferably resistant to high temperature degradation and therefore have relatively high temperatures. Form a wool product that can be used in the environment. Compositions of the invention are preferably compared Also produce bio-soluble fibers, so that wool products Is durable enough to maintain its physical integrity over several years. Such fibers The fibers should preferably not only be completely inert from moisture attack at the point of introduction. Alternatively, it can be dissolved in a physiological medium such as human lung fluid.   Like the standard rock wool compositions disclosed below, the compositions of the present invention are relatively To help provide a good hot durable rotary fiberized product, relatively Low NaTwoO + KTwoHas an O content. However, the compositions of the present invention have Moderately increased amount of SiO, compared to cook woolTwo, A very reduced amount of AlTwo OThreeAnd increased FeTwoOThreeIncluding content. In one embodiment of the invention, the composition The object is increased ZrOTwoThe content may be included. As shown fully below, this These changes alter the rate to produce compositions that can be fiberized by the rotary process. Not only can it change the rate, but it is also resistant to high temperatures, durable, and preferably It can be performed to produce a degradable composition.   The inorganic fiber composition according to the first aspect of the present invention comprises the following components, expressed in% by weight: (The standard practice in the art is that substantially no such solid crystals exist. Are also shown as oxides).component weight%               SiOTwo                 54-70               AlTwoOThree                0-4               NaTwoO 0-6               KTwoO 0-6               MgO 0-6               CaO 10-28               All iron (as FeO)*     6-17               TiOTwo                 0-5               SiOTwo+ AlTwoOThree       56-72               NaTwoO + KTwoO 0-6               MgO + CaO 12-28* Iron is Fe2+And Fe3+Or FeO and FeTwoOThreeExists as an oxide of Fe2+And Fe3+Is unknown, so the total amount of both iron oxides is Shown as O.   Preferred ranges of the components of the composition according to the first aspect of the present invention are as follows: Shown in% by weight.               component weight%               SiOTwo                 56-68               AlTwoOThree                0-3               NaTwoO 0-5               KTwoO 0-5               MgO 1-6               CaO 10-25               Total iron (as FeO) 8-16               TiOTwo                 0-4               SiOTwo+ AlTwoOThree       58-71               NaTwoO + KTwoO 0-5               MgO + CaO 14-26   Further preferred ranges of the components of the composition according to the first aspect of the present invention are as follows: % By weight.               component weight%               SiOTwo                58-65               AlTwoOThree               0-3               NaTwoO 0-4               KTwoO 0-4               MgO 2-5               CaO 11-20               All iron (as FeO) 9-13               TiOTwo                0-3               SiOTwo+ AlTwoOThree       60-68               NaTwoO + KTwoO 0-4               MgO + CaO 17-22Comparative Example 1   The following table shows commercially available rock wool, composition A, as well as according to the first aspect of the invention. 7 inorganic wool compositions, i.e., composition weight percent relative to compositions BH and a constant Here is an estimate of the characteristics.   Lack of compatibility of standard rock wool for fiberization by rotary method This is evidenced by the values for composition A. In particular, composition A has a temperature of 1231 ° C ( Has a liquidus temperature of 2251 ° F., which is the typical temperature currently used. It is generally too high to achieve economic results from a simple Rotary law. Also the composition Minute A is 10.4 Pa · s (104 poise) viscosity at 1230 ° C (2250 ° F) But this viscosity is necessary to obtain a good quality fiber with a low serving content. Is generally too low. In addition, the dissolution rate of composition A is 15 ng / cmTwo-It ’s time, Very lower than desired.   In contrast, Composition B had a liquidus temperature of 1188 ° C. (2171 ° F.), 225 Composition C has a viscosity of 44.2 Pa · s (442 poise) at 0 ° C. Liquid phase temperature of 2160 ° F., viscosity of 32.8 Pa · s (328 poise) Product D has a liquidus temperature of 1181 ° C. (2158 ° F.), 34.4 Pa · s (344 poi. B), which means that the compositions B, C and D give relatively good fiber qualities, Shows that relatively standard rotary processes can be used to economically fibrillate. in addition The high temperature durability of the compositions B and D can be compared favorably with the high temperature durability of the composition A. The linear shrinkage at 930 ° C. is 3 and 4% versus 6%, respectively. Linear shrinkage% Is a standard of fire resistance measured from a standard combustion test, and a small shrinkage rate means Indicates excellent fire resistance. Further, compositions B and D are associated with composition A. And each is 42ng / cmTwo-Improved dissolution rate at the time.   The temperature durability of the composition according to the first aspect of the present invention is relatively low, ie, N 2 aTwoO + KTwoAccording to the content of O itself and the relatively low liquidus temperature itself, At least in part, due to the relatively low MgO content. In addition, the composition The relatively improved dissolution rate is due to its low alumina level. Composition F And G, the improved dissolution rate is very fast, ie, composition F 107ng / cm forTwo-Sometimes, but some other properties for certain compositions May be sacrificed. That is, the liquidus temperature of the composition G is high. Therefore, An alternative composition according to the second aspect of the invention has a fixed set of liquidus, viscosity and dissolution rate. This is desirable as a certain example showing the matching.   The inorganic fiber composition according to the second aspect of the present invention comprises the following components and is indicated in% by weight.component weight%               SiOTwo                50-68               AlTwoOThree               0-4               KTwoO 0-6               NaTwoO 0-6               MgO 0-10               CaO 10-28               Total iron (as FeO) 6-16               TiOTwo                0-5               ZrOTwo                0.5-12               NaTwoO + KTwoO 0-6   Preferred ranges for the components of the composition according to the second aspect of the present invention are as follows: % By weight.               component weight%               SiOTwo                52-66               AlTwoOThree               0-3.5               KTwoO 0-5               NaTwoO 0-5               MgO 1-8               CaO 11-25               Total iron (as FeO) 7-15               TiOTwo                0-4               ZrOTwo                 1 to 11               NaTwoO + KTwoO 0-5   Further preferred ranges for the components of the composition according to the second aspect of the present invention are as follows: And are given in% by weight.component weight%               SiOTwo                54-64               AlTwoOThree               0-3.5               KTwoO 0-4.5               NaTwoO 0-4.5               MgO 1-4               CaO 12-23               All iron (as FeO) 7-14               TiOTwo                0-3               ZrOTwo                1-9               NaTwoO + KTwoO 0-4.5   Further preferred ranges for the components of the composition according to the second aspect of the present invention are as follows: And are given in% by weight.               component weight%               SiOTwo                57-62               AlTwoOThree               0.5-2               KTwoO 0-4               NaTwoO 0-3               MgO 2-4               CaO 16-22               Total iron (as FeO) 7-12               TiOTwo                0-2               ZrOTwo                1-5               NaTwoO + KTwoO 0-4.5                                 Example 2   Certain examples according to the second aspect of the present invention, the amount expressed in% by weight relative to the total composition And is shown in the table below.  Comparing Composition D and Composition J, these compositions are very similar. , Composition J containing 3% of ZrOTwoInstead of having composition 2% SiO 2TwoAnd 1% Of CaO. Further, ZrO in composition JTwoIs compared to Composition D To give a gradual decrease in the liquidus temperature of composition J, at 1232 ° C (2250 ° C). Gives a gradual increase in viscosity at ° F). Both changes are individually -It is desirable for economical fiberization and improvement of fiber quality. Further, the composition J Has a dissolution rate comparable to the dissolution rate of Composition D and relatively good temperature durability. I do.   The linear shrinkage% of the composition I was measured to be 41.7%. This is because compositions D and J Is a higher linear shrinkage ratio than the linear shrinkage ratio. The high linear shrinkage of the composition I is The SiOTwoConcentration and ZrOTwoIt can be attributed to the concentration. The composition of the composition I is the composition D 2% less SiOTwo, 1.5% more ZrOTwoincluding. Composition I comprises SiOTwo Is the same% as composition J but 1.5% less ZrOTwoincluding. For composition I The relatively high linear shrinkage keeps the other components relatively constant for a particular composition. 1.5% ZrOTwo2% SiO 2TwoIs removed from the composition It cannot completely compensate for the high-temperature durability that is lost. However, composition D And composition J, SiO2TwoZrO instead of 2% loss ofTwo3% added Then, SiOTwoCompletely compensates for the high temperature durability that is lost when it is removed from the composition.   The biosolubility of composition J is very high compared to standard rock wool such as composition A. While improved, it is better than achieved by the more preferred aspects of the invention. Low. AlTwoOThreeAs a result of the decrease in , Can be understood by comparing composition J with compositions R and S. Composition R And S are similar to composition J, with approximately 1.5% AlTwoOThreeIs a group To about 1.5% of CaO and MgO. Compositions R and S are 74 and 80 ng / cm respectively at 37 ° C., 0.2 ml / min in Dell salineTwo- Time, 42, 44.3 ng / cm for compositions D and JTwo-Compared to time. set Compositions R and S also have relatively good high temperature durability, similar to the liquidus temperature of Composition D Has a liquidus temperature of The viscosity of the composition S also depends on the ratio in the rotary fiberizing method. In the range that gives relatively good fiber quality (the viscosity of composition R has not been tested Is expected to be in a preferred range). For these reasons, composition R and S is currently the most preferred embodiment of the present invention.   As described above, the composition of the present invention is produced using an inorganic wool fiber by a rotary fiberizing device. It can be formed on fibers. When used to create an insulating product, the fiber is an insulating product They can be coated with a binder to support each other. This fiber is used for lubricants, wetting agents, bands It can be coated with antistatic agents and extenders or stabilizers. Generally, this fiber is It is coated as it is fiberized from the device. However, those skilled in the art will It will be appreciated that it can be coated at any time during the insulator formation process. fiber When the fiber is fiberized from the fiberizing device, this fiber is , Generally collected on a perforated conveyor belt or other collection device.   The compositions of the present invention are described above as being primarily useful for inorganic wool insulation products. However, those skilled in the art will recognize that the compositions of the present invention may be useful in other applications where they are more useful than insulators. It will be appreciated that it can be used to form inorganic fibers. For example, the present invention Fibers formed from the composition can be used for air handling ducts, ceiling panels and acoustic panels. It can also be used to form.   Certain representative aspects and details have been set forth for the purpose of illustration of the invention, and are not limiting. Various modifications and improvements may occur to those skilled in the art without departing from the scope of the invention. It can be a clear configuration, which is set forth in the appended claims.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),AU,CA,CN,J P,KR,NO────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, L U, MC, NL, PT, SE), AU, CA, CN, J P, KR, NO

Claims (1)

【特許請求の範囲】 1.SiO2を約54〜約70重量%、Al23を約0〜約4重量%、Na2Oを 約0〜約6重量%、K2Oを約0〜約6重量%、MgOを約0〜約6重量%、 CaOを約10〜約28重量%、FeOとした全鉄を約6〜約17重量%、T iO2を約0〜約5重量%含む無機繊維組成物であって、SiO2とAl23と の総重量%が約56〜約72重量%、MgOとCaOとの総重量%が約12〜 約28重量%、Na2OとK2Oとの総重量%が6重量%を越えず、全成分の総 重量%が、もしあれば微量成分を含めて100%であることを特徴とする当該組 成物。 2.SiO2を約56〜約68重量%、Al23を約0〜約3重量%、Na2Oを 約0〜約5重量%、K2Oを約0〜約5重量%、MgOを約1〜約6重量%、 CaOを約10〜約25重量%、FeOとした全鉄を約8〜約16重量%、T iO2を約0〜約4重量%含む無機繊維組成物であって、SiO2とAl23と の総重量%か約58〜約71重量%、MgOとCaOとの総重量%が約14〜 約26重量%、Na2OとK2Oとの総重量%が5重量%を越えず、全成分の総 重量%が、もしあれば微量成分を含めて100%である、請求項1に記載の無機 繊維組成物。 3.SiO2を約58〜約65重量%、Al23を約0〜約3重量%、K2Oを約 0〜約4重量%、Na2Oを約0〜約4重量%、MgOを約2〜約5重量%、 CaOを約11〜約20重量%、FeOとした全鉄を約9〜約13重量%、T iO2を約0〜約3重量%含む無機繊維組成物であって、SiO2とAl23と の総重量%が約60〜約68重量%、MgOとCaOとの総重量%が約17〜 約22重量%、Na2OとK2Oとの総重量%が4重量%を越えず、全成分の総 重量%が、もしあれば微量成分を含めて100%である、請求項1に記載の無機 繊維組成物。 4.SiO2を約62重量%、Al23を約3重量%、K2Oを約2.6重量%、 Na2Oを約0.9重量%、MgOを約4.5重量%、CaOを約13.4重 量%、TiO2を約1.9重量%、及びFeOとした全鉄を約11.7重量% 含む、請求項1に記載の無機繊維組成物。 5.SiO2を約63重量%、Al23を約2重量%、Na2Oを約2.5重量% 、K2Oを約0.5重量%、MgOを約3.5重量%、CaOを約18.5重 量%、TiO2を約0.2重量%、及びFeOとした全鉄を約9.8重量%含 む、請求項1に記載の無機繊維組成物。 6.SiO2を約62重量%、Al23を約3重量%、Na2Oを約2.5重量% 、K2Oを約0.5重量%、MgOを約2.5重量%、CaOを約19.5重 量%、TiO2を約0.2重量%、及びFeOとした全鉄を約9.8重量%含 む、請求項1に記載の無機繊維組成物。 7.SiO2を約63重量%、Al23を約3重量%、Na2Oを約5.5重量% 、K2Oを約0.5重量%、MgOを約3重量%、CaOを約16重量%、T iO2を約0.2重量%、及びFeOとした全鉄を約9.8重量%含む、請求 項1に記載の無機繊維組成物。 8.SiO2を約64重量%、Al23を約1重量%、Na2Oを約2.5重量% 、K2Oを約0.5重量%、MgOを約2.5重量%、CaOを約19.5重 量%、TiO2を約0.2重量%、及びFeOとした全鉄を約9.8重量%含 む、請求項1に記載の無機繊維組成物。 9.SiO2を約63重量%、Al23を約2重量%、Na2Oを約2.5重量% 、K2Oを約0.5重量%、MgOを約2.5重量%、CaOを約19.5重 量%、TiO2を約0.2重量%、及びFeOとした全鉄を約9.8重量%含 む、請求項1に記載の無機繊維組成物。 10.組成物が、1204℃(2200°F)より低い液相線温度を有し、123 2℃(22500F)で約10〜100Pa・秒(約100〜約1000ポイ ズ)の範囲の粘度を有する、請求項1に記載の無機繊維組成物。 11.請求項1の組成物を有する無機繊維を含む無機ウール絶縁体。 12.SiO2を約50〜約68重量%、Al23を約0〜約4重量%、K2Oを約 0〜約6重量%、Na2Oを約0〜約6重量%、MgOを約0〜約10重量% 、CaOを約10〜約28重量%、FeOとした全鉄を約6〜約16重量%、 TiO2を約0〜約5重量%、ZrO2を約0.5〜約12重量%含む無機繊維 組成物であって、Na2OとK2Oとの総重量%が6重量%を越えず、全成 分の総重量%が、もしあれば微量成分を含めて100%であることを特徴とする 当該組成物。 13.SiO2を約52〜約66重量%、Al23を約0〜約3.5重量%、K2O を約0〜約5重量%、Na2Oを約0〜約5重量%、MgOを約1〜約8重量 %、CaOを約11〜約25重量%、FeOとした全鉄を約7〜約15重量% 、TiO2を約0〜約4重量%、ZrO2を約1〜約11重量%含む無機繊維組 成物であって、Na2OとK2Oとの総重量%が5重量%を越えず、全成分の総 重量%が、もしあれば微量成分を含めて100%である、請求項12に記載の無機 繊維組成物。 14.SiO2を約54〜約64重量%、Al23を約O〜約3.5重量%、K2O を約0〜約4.5重量%、Na2Oを約0〜約4.5重量%、MgOを約1〜 約4重量%、CaOを約12〜約23重量%、FeOとした全鉄を約7〜約1 4重量%、TiO2を約0〜約3重量%、ZrO2を約1〜約9重量%含む無機 繊維組成物であって、Na2OとK2Oとの総重量%が4.5重量%を越えず、 全成分の総重量%が、もしあれば微量成分を含めて100%である、請求項12に 記載の無機繊維組成物。 15.SiO2を約57〜約62重量%、Al23を約0.5〜約2.0重量%、K2 Oを約0〜約4重量%、Na2Oを約0〜約3重量%、MgOを約2〜約4重 量%、CaOを約16〜約22重量%、FeOとした全鉄を約7〜約12重量 %、TiO2を約0〜約2重量%、ZrO2を約1〜約5重量%含む無機繊維組 成物であって、Na2O+K2Oの総重量%が4.5重量%を越えず、全成分の 総重量%が、もしあれば微量成分を含めて100%である、請求項12に記載の無 機繊維組成物。 16.SiO2を約60重量%、Al23を約3重量%、Na2Oを約2.5重量% 、K2Oを約0.5重量%、MgOを約2.6重量%、CaOを約19.9重 量%、TiO2を約0.2重量%、FeOとした全鉄を約9.8重量%及びZ rO2を約1.5重量%含む、請求項12に記載の無機繊維組成物。 17.SiO2を約60重量%、Al23を約3重量%、Na2Oを約2.5重量 %、K2Oを約0.5重量%、MgOを約2.4重量%、CaOを約18.6 重量%、TiO2を約0.2重量%、FeOとした全鉄を約9.8重量%及び ZrO2を約3重量%含む、請求項12に記載の無機繊維組成物。 18.SiO2を約60重量%、Al23を約2重量%、Na2Oを約0.25重量 %、K2Oを約2.75重量%、MgOを約2.5重量%、CaOを約19. 5重量%、TiO2を約0.2重量%、FeOとした全鉄を約9.8重量%及 びZrO2を約3重量%含む、請求項12に記載の無機繊維組成物。 19.SiO2を約56重量%、Al23を約3重量%、Na2Oを約2.5重量% 、K2Oを約0.5重量%、MgOを約2.2重量%、CaOを約16.8重 量%、TiO2を約0.2重量%、FeOとした全鉄を約9.8重量%及びZ rO2を約9重量%含む、請求項12に記載の無機繊維組成物。 20.SiO2を約60重量%、Al23を約3重量%、Na2Oを約2.5重量% 、K2Oを約0.5重量%、MgOを約2.1重量%、CaOを約16重量% 、BaOを約3重量%、TiO2を約0.2重量%、FeOとした全鉄を約9 .8重量%及びZrO2を約3重量%含む、請求項12に記載の無機繊維組成物 。 21.SiO2を約62重量%、Al23を約3重量%、Na2Oを約2.5重量% 、K2Oを約0.5重量%、MgOを約3.2重量%、CaOを約16.8重 量%、TiO2を約0.2重量%、FeOとした全鉄を約9.8重量%及びZ rO2を約2重量%含む、請求項12に記載の無機繊維組成物。 22.SiO2を約62重量%、Al23を約3重量%、Na2Oを約2.5重量% 、K2Oを約0.5重量%、MgOを約2.9重量%、CaOを約15.1重 量%、TiO2を約0.2重量%、FeOとした全鉄を約9.8重量%及びZ rO2を約4重量%含む、請求項12に記載の無機繊維組成物。 23.SiO2を約60重量%、Al23を約2重量%、Na2Oを約0.25重量 %、K2Oを約2.75重量%、MgOを約2重量%、CaOを約18重量% 、TiO2を約0.2重量%、FeOとした全鉄を約11.8重量%及びZrO2 を約3重量%含む、請求項12に記載の無機繊維組成物。 24.SiO2を約60.5重量%、Al23を約0.5重量%、Na2Oを約4重 量%、K2Oを約0.2重量%、MgOを約3.1重量%、CaOを約19. 9 重量%、TiO2を約0.06重量%、FeOとした全鉄を約9.75重量% 及びZrO2を約2重量%含む、請求項12に記載の無機繊維組成物。 25.SiO2を約60重量%、Al23を約1.5重量%、Na2Oを約2.5重 量%、K2Oを約0.4重量%、MgOを約3.1重量%、CaOを約19. 4重量%、TiO2を約0.06重量%、FeOとした全鉄を約10重量%及 びZrO2を約3.0重量%含む、請求項12に記載の無機繊維組成物。 26.SiO2を約60重量%、Al23を約1.3重量%、Na2Oを約2.5重 量%、K2Oを約0.4重量%、MgOを約3.1重量%、CaOを約19. 4重量%、TiO2を約0.06重量%、FeOとした全鉄を約10重量%及 びZrO2を約3.3重量%含む、請求項12に記載の無機繊維組成物。 27.請求項12の組成物を有する無機繊維を含む無機ウール絶縁体。[Claims] 1. SiOTwoFrom about 54 to about 70% by weight of AlTwoOThreeFrom about 0 to about 4% by weight of NaTwoO   About 0 to about 6% by weight, KTwoAbout 0 to about 6% by weight of O, about 0 to about 6% by weight of MgO,   About 10 to about 28% by weight of CaO, about 6 to about 17% by weight of total iron as FeO, T   iOTwoAn inorganic fiber composition comprising about 0 to about 5% by weight ofTwoAnd AlTwoOThreeWhen   Is about 56 to about 72% by weight, and the total weight% of MgO and CaO is about 12 to   About 28% by weight, NaTwoO and KTwoO total weight% does not exceed 6 weight%,   % By weight, if any, including trace components, if any   Adult. 2. SiOTwoFrom about 56 to about 68% by weight of AlTwoOThreeFrom about 0 to about 3% by weight of NaTwoO   About 0 to about 5% by weight, KTwoAbout 0 to about 5% by weight of O, about 1 to about 6% by weight of MgO,   About 10 to about 25% by weight of CaO, about 8 to about 16% by weight of total iron as FeO, T   iOTwoAn inorganic fiber composition comprising about 0 to about 4% by weight ofTwoAnd AlTwoOThreeWhen   From about 58% to about 71% by weight of MgO and about 14% by weight of MgO and CaO.   About 26% by weight, NaTwoO and KTwoThe total weight% with O does not exceed 5% by weight.   2. The inorganic composition of claim 1, wherein the weight percent is 100% including trace components, if any.   Fiber composition. 3. SiOTwoFrom about 58 to about 65% by weight of AlTwoOThreeFrom about 0 to about 3% by weight, KTwoAbout O   0 to about 4% by weight, NaTwoAbout 0 to about 4% by weight of O, about 2 to about 5% by weight of MgO,   About 11 to about 20% by weight of CaO, about 9 to about 13% by weight of total iron as FeO, T   iOTwoAn inorganic fiber composition containing about 0 to about 3% by weight ofTwoAnd AlTwoOThreeWhen   Is about 60 to about 68% by weight, and the total weight% of MgO and CaO is about 17 to   About 22% by weight, NaTwoO and KTwoThe total weight% with O does not exceed 4% by weight,   2. The inorganic composition of claim 1, wherein the weight percent is 100% including trace components, if any.   Fiber composition. 4. SiOTwoAbout 62% by weight of AlTwoOThreeAbout 3% by weight, KTwoAbout 2.6% by weight of O;   NaTwoAbout 0.9% by weight of O, about 4.5% by weight of MgO, and about 13.4% by weight of CaO   %, TiOTwoAbout 1.9% by weight, and about 11.7% by weight of total iron as FeO.   The inorganic fiber composition according to claim 1, comprising: 5. SiOTwoAbout 63% by weight of AlTwoOThreeAbout 2% by weight of NaTwoAbout 2.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 3.5% by weight of MgO, and about 18.5% by weight of CaO   %, TiOTwoAnd about 9.8% by weight of total iron as FeO.   The inorganic fiber composition according to claim 1. 6. SiOTwoAbout 62% by weight of AlTwoOThreeAbout 3% by weight of NaTwoAbout 2.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 2.5% by weight of MgO, and about 19.5% by weight of CaO   %, TiOTwoAnd about 9.8% by weight of total iron as FeO.   The inorganic fiber composition according to claim 1. 7. SiOTwoAbout 63% by weight of AlTwoOThreeAbout 3% by weight of NaTwoAbout 5.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 3% by weight of MgO, about 16% by weight of CaO,   iOTwoAnd about 9.8% by weight of total iron as FeO.   Item 7. The inorganic fiber composition according to Item 1. 8. SiOTwoAbout 64% by weight of AlTwoOThreeAbout 1% by weight of NaTwoAbout 2.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 2.5% by weight of MgO, and about 19.5% by weight of CaO   %, TiOTwoAnd about 9.8% by weight of total iron as FeO.   The inorganic fiber composition according to claim 1. 9. SiOTwoAbout 63% by weight of AlTwoOThreeAbout 2% by weight of NaTwoAbout 2.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 2.5% by weight of MgO, and about 19.5% by weight of CaO   %, TiOTwoAnd about 9.8% by weight of total iron as FeO.   The inorganic fiber composition according to claim 1. Ten. The composition has a liquidus temperature less than 1204 ° C. (2200 ° F.),   Approximately 10 to 100 Pa · s (about 100 to about 1000 poise) at 2 ° C. (22,500 F)   The inorganic fiber composition according to claim 1, which has a viscosity in the range of 1). 11. An inorganic wool insulator comprising an inorganic fiber having the composition of claim 1. 12. SiOTwoFrom about 50 to about 68% by weight of AlTwoOThreeFrom about 0 to about 4% by weight, KTwoAbout O   0 to about 6% by weight, NaTwoAbout 0 to about 6% by weight of O and about 0 to about 10% by weight of MgO   About 10 to about 28% by weight of CaO, about 6 to about 16% by weight of total iron as FeO,   TiOTwoFrom about 0 to about 5% by weight, ZrOTwoFiber containing about 0.5 to about 12% by weight of   A composition comprising NaTwoO and KTwoTotal weight% with O does not exceed 6% by weight.   Characterized in that the total weight% of the ingredients is 100% including the minor components, if any   The composition. 13. SiOTwoFrom about 52 to about 66% by weight of AlTwoOThreeFrom about 0 to about 3.5% by weight, KTwoO   From about 0 to about 5% by weight of NaTwoAbout 0 to about 5% by weight of O and about 1 to about 8% by weight of MgO   %, About 11 to about 25% by weight of CaO, and about 7 to about 15% by weight of total iron as FeO.   , TiOTwoFrom about 0 to about 4% by weight, ZrOTwoOf inorganic fibers containing about 1 to about 11% by weight of   A product, NaTwoO and KTwoThe total weight% with O does not exceed 5% by weight.   13. The inorganic material of claim 12, wherein the weight percent is 100%, including minor components, if any.   Fiber composition. 14. SiOTwoFrom about 54 to about 64% by weight of AlTwoOThreeFrom about O to about 3.5% by weight, KTwoO   From about 0 to about 4.5% by weight of NaTwoAbout 0 to about 4.5% by weight of O and about 1 to about   About 4% by weight, about 12 to about 23% by weight of CaO, and about 7 to about 1   4% by weight, TiOTwoFrom about 0 to about 3% by weight, ZrOTwoContaining about 1 to about 9% by weight of   A fiber composition, comprising NaTwoO and KTwoThe total weight% with O does not exceed 4.5% by weight,   13. The method of claim 12, wherein the total weight percent of all components is 100% including trace components, if any.   The inorganic fiber composition as described in the above. 15. SiOTwoFrom about 57 to about 62% by weight of AlTwoOThreeFrom about 0.5 to about 2.0% by weight, KTwo   O from about 0 to about 4% by weight, NaTwoAbout 0 to about 3% by weight of O and about 2 to about 4 layers of MgO   %, About 16 to about 22% by weight of CaO, and about 7 to about 12% by weight of total iron as FeO.   %, TiOTwoFrom about 0 to about 2% by weight of ZrOTwoOf inorganic fiber containing about 1 to about 5% by weight of   A product, NaTwoO + KTwoO total weight% does not exceed 4.5 weight%,   13. The method of claim 12, wherein the total weight percent is 100% including trace components, if any.   Machine fiber composition. 16. SiOTwoAbout 60% by weight of AlTwoOThreeAbout 3% by weight of NaTwoAbout 2.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 2.6% by weight of MgO, and about 19.9% by weight of CaO   %, TiOTwoAbout 0.2% by weight, about 9.8% by weight of total iron as FeO, and Z   rOTwo13. The inorganic fiber composition of claim 12, comprising about 1.5% by weight. 17. About 60% by weight of SiO2, AlTwoOThreeAbout 3% by weight of NaTwoAbout 2.5 weight of O   %, KTwoAbout 0.5% by weight of O, about 2.4% by weight of MgO, and about 18.6% of CaO   Wt%, TiOTwoAbout 0.2% by weight, about 9.8% by weight of total iron   ZrOTwo13. The inorganic fiber composition of claim 12, comprising about 3% by weight. 18. SiOTwoAbout 60% by weight of AlTwoOThreeAbout 2% by weight of NaTwoO is about 0.25 weight   %, KTwoAbout 2.75% by weight of O, about 2.5% by weight of MgO, and about 19% of CaO.   5% by weight, TiOTwoAbout 0.2% by weight, and about 9.8% by weight of total iron as FeO.   And ZrOTwo13. The inorganic fiber composition of claim 12, comprising about 3% by weight. 19. SiOTwoAbout 56% by weight of AlTwoOThreeAbout 3% by weight of NaTwoAbout 2.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 2.2% by weight of MgO, and about 16.8% by weight of CaO   %, TiOTwoAbout 0.2% by weight, about 9.8% by weight of total iron as FeO, and Z   rOTwo13. The inorganic fiber composition according to claim 12, comprising about 9% by weight. 20. SiOTwoAbout 60% by weight of AlTwoOThreeAbout 3% by weight of NaTwoAbout 2.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 2.1% by weight of MgO, and about 16% by weight of CaO   About 3% by weight of BaO and TiOTwoAbout 0.2% by weight, and about 9   . 8% by weight and ZrOTwo13. The inorganic fiber composition according to claim 12, comprising about 3% by weight of   . twenty one. SiOTwoAbout 62% by weight of AlTwoOThreeAbout 3% by weight of NaTwoAbout 2.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 3.2% by weight of MgO, and about 16.8% by weight of CaO   %, TiOTwoAbout 0.2% by weight, about 9.8% by weight of total iron as FeO, and Z   rOTwo13. The inorganic fiber composition according to claim 12, comprising about 2% by weight. twenty two. SiOTwoAbout 62% by weight of AlTwoOThreeAbout 3% by weight of NaTwoAbout 2.5% by weight of O   , KTwoAbout 0.5% by weight of O, about 2.9% by weight of MgO, and about 15.1% by weight of CaO   %, TiOTwoAbout 0.2% by weight, about 9.8% by weight of total iron as FeO, and Z   rOTwo13. The inorganic fiber composition of claim 12, comprising about 4% by weight. twenty three. SiOTwoAbout 60% by weight of AlTwoOThreeAbout 2% by weight of NaTwoO is about 0.25 weight   %, KTwoAbout 2.75% by weight of O, about 2% by weight of MgO, and about 18% by weight of CaO   , TiOTwoAbout 0.2% by weight, about 11.8% by weight of total iron as FeO and ZrOTwo   13. The inorganic fiber composition of claim 12, comprising about 3% by weight. twenty four. SiOTwoAbout 60.5% by weight of AlTwoOThreeAbout 0.5% by weight of NaTwoAbout 4 layers of O   Amount%, KTwoAbout 0.2% by weight of O, about 3.1% by weight of MgO, and about 19% of CaO.   9   Wt%, TiOTwoAbout 0.06% by weight, and about 9.75% by weight of total iron as FeO   And ZrOTwo13. The inorganic fiber composition according to claim 12, comprising about 2% by weight. twenty five. SiOTwoAbout 60% by weight of AlTwoOThreeAbout 1.5% by weight of NaTwoAbout 2.5 times O   Amount%, KTwoAbout 0.4% by weight of O, about 3.1% by weight of MgO, and about 19% of CaO.   4% by weight, TiOTwoAbout 0.06% by weight and about 10% by weight of total iron   And ZrOTwo13. The inorganic fiber composition of claim 12, comprising about 3.0% by weight. 26. SiOTwoAbout 60% by weight of AlTwoOThreeAbout 1.3% by weight of NaTwoAbout 2.5 times O   Amount%, KTwoAbout 0.4% by weight of O, about 3.1% by weight of MgO, and about 19% of CaO.   4% by weight, TiOTwoAbout 0.06% by weight and about 10% by weight of total iron   And ZrOTwo13. The inorganic fiber composition of claim 12, comprising about 3.3% by weight. 27. An inorganic wool insulator comprising an inorganic fiber having the composition of claim 12.
JP52043298A 1996-10-31 1997-07-08 Inorganic fiber composition Pending JP2001524063A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US74184996A 1996-10-31 1996-10-31
US08/741,849 1996-10-31
US08/778,419 US5932347A (en) 1996-10-31 1996-12-31 Mineral fiber compositions
US08/778,419 1996-12-31
PCT/US1997/011432 WO1998018618A1 (en) 1996-10-31 1997-07-08 Mineral fiber compositions

Publications (1)

Publication Number Publication Date
JP2001524063A true JP2001524063A (en) 2001-11-27

Family

ID=27113932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52043298A Pending JP2001524063A (en) 1996-10-31 1997-07-08 Inorganic fiber composition

Country Status (8)

Country Link
EP (1) EP0946356A4 (en)
JP (1) JP2001524063A (en)
KR (1) KR20000052666A (en)
AU (1) AU728381B2 (en)
CA (1) CA2267445A1 (en)
NO (1) NO991990D0 (en)
TW (1) TW397872B (en)
WO (1) WO1998018618A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532830A (en) * 2009-07-13 2012-12-20 ロックウール・インターナショナル・アクティーゼルスカブ Mineral fiber and its use
WO2024034546A1 (en) * 2022-08-08 2024-02-15 日本板硝子株式会社 Glass composition, glass fiber, glass filler, glass fiber manufacturing method, and glass filler manufacturing method
WO2024034545A1 (en) * 2022-08-08 2024-02-15 日本板硝子株式会社 Glass composition, glass fibers, glass filler, production method for glass fibers, and production method for glass filler

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859415B2 (en) * 2005-08-31 2012-01-25 ニチアス株式会社 Inorganic fiber and method for producing the same
US7803731B2 (en) 2007-08-15 2010-09-28 Johns Manville Fire resistant glass fiber
CA3205458A1 (en) * 2020-12-15 2022-06-23 Nippon Sheet Glass Company, Limited Reinforcing glass fiber, chopped strand, fiber sheet, and rod

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU249577A (en) *
US2882173A (en) * 1955-06-20 1959-04-14 Owens Corning Fiberglass Corp Glass composition
BE552902A (en) * 1955-11-25
FI93346C (en) * 1990-11-23 1998-03-07 Partek Ab Mineral Fiber Composition
FR2690438A1 (en) * 1992-04-23 1993-10-29 Saint Gobain Isover Mineral fibers capable of dissolving in a physiological medium.
DK0698001T3 (en) * 1994-02-11 1999-01-18 Rockwool Int Synthetic glass fibers
CZ288279B6 (en) * 1994-06-23 2001-05-16 Rockwool Int Heat-stable synthetic glass fibers exhibiting high dissolution rate in biological liquids
DE4443022C2 (en) * 1994-12-02 1996-12-12 Gruenzweig & Hartmann Mineral fiber composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532830A (en) * 2009-07-13 2012-12-20 ロックウール・インターナショナル・アクティーゼルスカブ Mineral fiber and its use
WO2024034546A1 (en) * 2022-08-08 2024-02-15 日本板硝子株式会社 Glass composition, glass fiber, glass filler, glass fiber manufacturing method, and glass filler manufacturing method
WO2024034545A1 (en) * 2022-08-08 2024-02-15 日本板硝子株式会社 Glass composition, glass fibers, glass filler, production method for glass fibers, and production method for glass filler

Also Published As

Publication number Publication date
EP0946356A1 (en) 1999-10-06
NO991990L (en) 1999-04-27
AU728381B2 (en) 2001-01-11
CA2267445A1 (en) 1998-05-07
WO1998018618A1 (en) 1998-05-07
KR20000052666A (en) 2000-08-25
TW397872B (en) 2000-07-11
AU3587397A (en) 1998-05-22
EP0946356A4 (en) 2000-06-21
NO991990D0 (en) 1999-04-27

Similar Documents

Publication Publication Date Title
US5108957A (en) Glass fibers decomposable in a physiological medium
US5658836A (en) Mineral fibers and their compositions
EP0946442B1 (en) Biosoluble, high temperature mineral wools
JP2000511508A (en) Biosoluble crucibles and marble-derived fiberglass
JP4862099B1 (en) Biosoluble inorganic fiber
US5932347A (en) Mineral fiber compositions
JPH10507993A (en) Glass composition and fiber using the same
JP4890673B2 (en) Artificial mineral wool
USRE35557E (en) Mineral fibers decomposable in a physiological medium
MX2012006063A (en) Ceramic fiber composition which is soluble in salt.
AU735688B2 (en) Glass fiber composition
JP2001524063A (en) Inorganic fiber composition
AU722826B2 (en) Glass compositions having high KI values and fibers therefrom
JPH08502717A (en) Glass composition for producing composite glass fiber
JPH11504894A (en) Irregularly shaped glass fiber and its insulation
US20030004049A1 (en) Glass fibers with improved durability via low MgO and Al2O3
CA2575900C (en) Biosoluble pot and marble-derived fiberglass
WO2000073230A1 (en) Man-made vitreous fibres and products containing them
WO2000017116A1 (en) GLASS FIBERS WITH IMPROVED DURABILITY VIA LOW MgO AND Al2O¿3?
CN1240383A (en) Mineral fiber compositions