JP2001510199A - Photosensitizer - Google Patents

Photosensitizer

Info

Publication number
JP2001510199A
JP2001510199A JP2000503091A JP2000503091A JP2001510199A JP 2001510199 A JP2001510199 A JP 2001510199A JP 2000503091 A JP2000503091 A JP 2000503091A JP 2000503091 A JP2000503091 A JP 2000503091A JP 2001510199 A JP2001510199 A JP 2001510199A
Authority
JP
Japan
Prior art keywords
ligand
derivative
derivative according
pyridine
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000503091A
Other languages
Japanese (ja)
Inventor
アンソニー マーラー,バリー
グレッツェル,ミカエル
モハメド カハヤ ナツェールディン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of JP2001510199A publication Critical patent/JP2001510199A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/002Osmium compounds
    • C07F15/0026Osmium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • C07F15/004Iridium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • C07F15/008Rhodium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0673Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having alkyl radicals linked directly to the Pc skeleton; having carbocyclic groups linked directly to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/12Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0014Influencing the physical properties by treatment with a liquid, e.g. solvents
    • C09B67/0016Influencing the physical properties by treatment with a liquid, e.g. solvents of phthalocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • C09B67/0034Mixtures of two or more pigments or dyes of the same type
    • C09B67/0035Mixtures of phthalocyanines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)

Abstract

(57)【要約】 半導体、例えばTiO2 に結合できる軸方向リガンドを有し、且つ少なくとも1個の周囲置換基を有する新規の遷移金属フタロシアニン型化合物は染料太陽電池のための有効な光増感剤である。好適な化合物は近赤外線における太陽光放射線の吸収を供し、そして発電窓に利用できうる。 (57) Abstract: semiconductor, for example having an axial ligand capable of binding to TiO 2, and the novel transition metal phthalocyanine-type compound having at least one peripheral substituents effective photosensitizers for the dye solar cell Agent. Suitable compounds provide absorption of solar radiation in the near infrared and may be utilized in power windows.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 本発明は光増感剤、より詳しくは新規の遷移金属光増感剤に関する。The present invention relates to photosensitizers, and more particularly to novel transition metal photosensitizers.

【0002】 様々な金属入りフタロシアニン誘導体が潜在的な光動力学的治療剤、即ち、腫
瘍の処置における光増感剤として提案されている。例えば、Rosenthal, Photoch
em Photobiol, 53 (6), 859-870 (1991)及び我々の公開国際出願WO 93/0
9124号を参照のこと。興味深い新たな光増感分野はTiO2 を基礎とする光
電池中の光増感剤としての増白剤及びフタロシアニンの利用にある(WO 91
/16719(Graetzel)及びWO 94/05025(Sandoz)を参照のこと
)。我々は数多くの企業がこの技術を基礎として光電池を開発しているものと理
解する。現在推奨されている染料型増感剤は「RuN3染料」として知られるシ
ス−ジ(チオシアナト)ビス(2,2′−ビピリジン−4,4′−ジカルボキシ
レート)ルテニウム(II),(I)である。RuN3 染料は優れた光電子対電子
変換率を有し、そして非常に安定である。一定の金属入りフタロシアニンが試験
されているが、その電気出力はRuN3 染料ほど高くない。RuN3 染料を基礎
とする光電子デバイスの高い効率性及び出力、並びに曇り条件下で高い出力を持
続するその極めて有用な特性にもかかわらず(珪素ベース光電池とは異なる)、
それらは紫色を帯びている。TiO2 ベース光電池デバイスに利用するための代
替的な光増感剤、特にRuN3 よりも長い波長を吸収するものについてのニーズ
が残っている。かかる増感剤は近赤外線領域を吸収し、そして可能としては例え
ば窓又はその他の艶付き領域に有用な光学的に透明な光電池デバイスを作るのに
利用されている。慣用の可視スペクトル光増感剤、例えばRuN3 と組合せたと
き、より幅広いスペクトル由来の太陽エネルギーが電気へと変換され、デバイス
の効率を高めるべきである。
[0002] Various metal-containing phthalocyanine derivatives have been proposed as potential photodynamic therapeutic agents, ie, photosensitizers in the treatment of tumors. For example, Rosenthal, Photoch
em Photobiol, 53 (6), 859-870 (1991) and our published international application WO 93/0.
See No. 9124. An interesting new field of photosensitization is the use of brighteners and phthalocyanines as photosensitizers in photocells based on TiO 2 (WO 91).
/ 16719 (Graetzel) and WO 94/05025 (Sandoz)). We understand that many companies are developing photovoltaic cells based on this technology. The currently recommended dye-type sensitizer is cis-di (thiocyanato) bis (2,2'-bipyridine-4,4'-dicarboxylate) ruthenium (II), known as "RuN3 dye". It is. RuN 3 dyes have excellent photoelectron-to-electron conversion and are very stable. Although certain metal-containing phthalocyanine is tested, its electrical output is not as high as RuN 3 dye. Despite the high efficiency and power of optoelectronic devices based on RuN 3 dyes, and their extremely useful properties of sustaining high power under cloudy conditions (unlike silicon-based photovoltaic cells),
They are purple. There remains a need for alternative photosensitizers for use in TiO 2 -based photovoltaic devices, especially those that absorb wavelengths longer than RuN 3 . Such sensitizers absorb in the near infrared region and are potentially used to make optically transparent photovoltaic devices useful, for example, in windows or other glossy regions. Visible spectrum light sensitizers customary, for example, when combined with RuN 3, more solar energy broad spectrum derived is converted into an electric, it should increase the efficiency of the device.

【0003】 本発明は次式Iの新規の遷移金属フタロシアニン型誘導体を提供するThe present invention provides novel transition metal phthalocyanine-type derivatives of the following formula I:

【化4】 (式中、MはRu,Rh,Os,Ir又はPtであり、 各Xは水素、アルキル、アルコキシ、ヒドロキシ、アリール、置換化アリール
、アルキルチオ、エーテル、チオエーテル、アミノ又はモノ−もしくはジ−置換
化アミノであるか、又は隣り合うXは一緒になって−C4 4 (Y)n −もしく
Embedded image Wherein M is Ru, Rh, Os, Ir or Pt, and each X is hydrogen, alkyl, alkoxy, hydroxy, aryl, substituted aryl, alkylthio, ether, thioether, amino or mono- or di-substituted. -C 4 H 4-amino or where adjacent X together (Y) n - or

【化5】 を形成してよく、ここでYはアルキル、アルコキシ、ヒドロキシ、アリール、
置換化アリール、アルキルチオ、エーテル、チオエーテル、アミノ又はモノ−も
しくはジ−置換化アミノであり、そしてnは0〜4の値を有し、 R及びR′は各々独立して、第一結合リガンドであって、TiO2 もしくはそ
の他の増感すべき半導体に対する結合を可能とする官能基を含み、且つ結合して
いるときに励起状態のフタロシアニン構造体からTiO2 もしくはその他の半導
体の伝導バンドへと電子を伝導できるリガンドであるか、又は第二リガンドであ
ってMと前記第一結合リガンドとの結合を不安定にしないリガンドのいずれかで
あり、但しR及びR′の少なくとも一方が前記第一結合リガンドであり、そして Qは窒素又は−CZ−であり、ここでZは独立して水素、アルキル、アルコキ
シ、ヒドロキシ、アリール、置換化アリール、アルキルチオ、エーテル、チオエ
ーテル、アミノ又はモノ−もしくはジ−置換化アミノであり、 但しX,Y及びZの少なくとも一つは水素以外であるものとする)。
Embedded image Where Y is alkyl, alkoxy, hydroxy, aryl,
A substituted aryl, alkylthio, ether, thioether, amino or mono- or di-substituted amino, and n has a value from 0 to 4, and R and R 'are each independently a first binding ligand And contains a functional group that enables binding to TiO 2 or other semiconductor to be sensitized, and when bound, the electrons are transferred from the phthalocyanine structure in an excited state to the conduction band of TiO 2 or other semiconductor. Or a second ligand that does not destabilize the binding between M and the first binding ligand, provided that at least one of R and R 'is the first binding ligand. Ligand, and Q is nitrogen or -CZ-, wherein Z is independently hydrogen, alkyl, alkoxy, hydroxy, aryl, substituted aryl. To a substituted amino, provided that X, as at least one of Y and Z is other than hydrogen) - le, alkylthio, ether, thioether, amino or mono- - or di.

【0004】 好ましくは、MはRuである。[0004] Preferably, M is Ru.

【0005】 適当な第一結合リガンドR又はR′はホスホン酸、カルボン酸又は可能として
はスルホン酸基を含む。R又はR′がアミンを含むとき、それは直鎖又は枝分れ
したアミンであるか、又は環式又は芳香族アミン、例えばピリジン、イミダゾー
ル又はトリアゾールであってよい。リガンドは上記の基によりモノ−又はポリ−
置換されていてよい。適当なリガンドには4−ピリジンエタン−スルホネート、
3−ピリジンスルホネート、ピリジン−3−ホスホン酸、イミダゾール−4,5
−ジカルボン酸、1,2,3−トリアゾール−4,5−ジカルボン酸、4−ジフ
ェニルホスフィノ安息香酸、トリス(4−カルボキシフェニルホスフィン)、4
−イソシアノベンゾエート、ニコチン酸が挙げられ、そして特に好ましいのはピ
リジン−3,4−ジカルボキシレート及びピリジン−4−ホスホン酸である。更
に、TiO2 結合基は金属結合部位から適当な連結基、例えば
[0005] Suitable first binding ligands R or R 'comprise a phosphonic acid, a carboxylic acid or possibly a sulfonic acid group. When R or R 'comprises an amine, it may be a linear or branched amine, or a cyclic or aromatic amine such as pyridine, imidazole or triazole. The ligand may be mono- or poly-
It may be substituted. Suitable ligands include 4-pyridineethane-sulfonate,
3-pyridinesulfonate, pyridine-3-phosphonic acid, imidazole-4,5
-Dicarboxylic acid, 1,2,3-triazole-4,5-dicarboxylic acid, 4-diphenylphosphinobenzoic acid, tris (4-carboxyphenylphosphine), 4
-Isocyanobenzoate, nicotinic acid, and particularly preferred are pyridine-3,4-dicarboxylate and pyridine-4-phosphonic acid. Further, the TiO 2 linking group may be a suitable linking group from the metal binding site,

【化6】 により隔離されていてよい。Embedded image May be isolated by

【0006】 リガンドR又はR′は、TiO2 に結合しているとき、π結合システムを供す
ることが特に所望されるものと信じられている。
[0006] It is believed that the ligand R or R ', when bound to TiO 2 , is particularly desirable to provide a π-linked system.

【0007】 R又はR′が前記第二リガンドであるとき、それはCOであるか、又は好まし
くは窒素供与体、例えば脂肪族、特に枝分れ脂肪族アミン、又は環式アミン、特
に芳香族アミンであってよい。かかる第二リガンドは置換基を担持していてよい
When R or R ′ is said second ligand, it is CO or preferably a nitrogen donor, such as an aliphatic, especially a branched aliphatic amine, or a cyclic amine, especially an aromatic amine It may be. Such a second ligand may carry a substituent.

【0008】 X,Y又はZがアルキル又はアルコキシであるとき、好ましくは各アルキル又
はアルコキシ基は8個までの炭素原子を有し、そして枝分れしていてよい。
When X, Y or Z is alkyl or alkoxy, preferably each alkyl or alkoxy group has up to 8 carbon atoms and may be branched.

【0009】 当該化合物は塩形質をとっていてもよく、この場合その対向イオンはK+ ,N
+ 又は第四級アンモニウムであることが所望される。
The compound may have a salt trait, in which case the counter ions are K + , N
Desirably, it is a + or quaternary ammonium.

【0010】 式Iの化合物は新規であり、そして次式IIの金属フタロシアニン化合物The compounds of the formula I are new and the metal phthalocyanine compounds of the formula II

【化7】 (式中、M,Q及びXは上記の通りであり、そしてAはアミン、好ましくはピリ
ジン基、CO(一酸化炭素)又は配位触媒、例えばベンゾニトリルである)をリ
ガンドRの塩と反応させ、次いで式Iの生成化合物を単離することを含んで成る
方法により調製されうる。
Embedded image Wherein M, Q and X are as described above, and A is an amine, preferably a pyridine group, CO (carbon monoxide) or a coordination catalyst, such as benzonitrile, reacting with a salt of ligand R And then isolating the resulting compound of Formula I.

【0011】 式IIの反応体及びリガンドRの塩は論文から公知のものであるか、又は周知の
ものと類似の方法により調製できうる。
The reactants of formula II and the salts of ligand R are known from the literature or can be prepared by analogous methods to those known.

【0012】 適切には、出発金属フタロシアニン又はナフタロシアニンを有機溶媒、例えば
トルエン、エタノール又は2−メトキシエタノール、又は水混和性有機溶媒と水
との混合物、例えば水性テトラヒドロフラン、又は非混和性溶媒混合物、例えば
クロロホルムと水との混合物の中に、過剰量、例えば2〜10倍化学理論量の軸
方向(アキシアル)リガンドと共に、不活性雰囲気下、例えばアルゴン下で混合
する。反応は所望するには加熱により、例えば還流させて約2日間実施する。生
成物は反応混合物への共溶媒の添加により単離してよい。必要なら、この生成物
の溶解度を一般の公知の手段により対向イオンを交換することにより高めること
ができうる。
Suitably, the starting metal phthalocyanine or naphthalocyanine is converted to an organic solvent such as toluene, ethanol or 2-methoxyethanol, or a mixture of a water-miscible organic solvent and water, such as aqueous tetrahydrofuran, or a mixture of immiscible solvents, For example, a mixture of chloroform and water is mixed with an excess, for example 2 to 10 times the stoichiometric amount of axial ligand, under an inert atmosphere, for example argon. The reaction is carried out, if desired, by heating, for example at reflux, for about 2 days. The product may be isolated by adding a co-solvent to the reaction mixture. If necessary, the solubility of this product can be increased by exchanging counterions by commonly known means.

【0013】 本発明の化合物における軸方向リガンドRが同一でないとき、それはAが第二
リガンドRとして作用するのに適当なアミンである式IIの化合物から出発して調
製することが適当でありうる。次にリガンドAの一つを上記と似た方法で第一リ
ガンドRの塩と置換してよい。他方、双方のリガンドRが同一の芳香族アミンで
ある式Iの化合物を調製し、そして一方のリガンドRを一当量の非芳香族アミン
を利用して置換してよい。
When the axial ligands R in the compounds of the invention are not identical, it may be appropriate to prepare them starting from a compound of formula II where A is an amine suitable to act as a second ligand R . One of the ligands A may then be replaced with a salt of the first ligand R in a manner similar to that described above. Alternatively, a compound of Formula I may be prepared in which both ligands R are the same aromatic amine, and one ligand R may be displaced utilizing one equivalent of a non-aromatic amine.

【0014】 本発明は、Pcの周囲においての慣用の置換(SandozのWO 94/0502
5参照のこと)の代わりに結合軸方向リガンドを組込むことにより長所を有し、
且つ異性体的に純粋な化合物の合成を促進する。RuN3 染料による実験は染料
の純度が重要であり、しかも獲得するのが困難であることを示している。最適な
増感効率のため、基底及び励起状態の酸化還元電位は、吸収のλmax と同様、慎
重に最適化する必要がある。本発明はフタロシアニン構造の周囲において置換に
より、最適な光増感の選択及び特性の「細い調節」の改善を可能にするものと信
じている。環の周囲においての基質結合基の組込みは特性の最適化の妨げとなる
と考えられ、それ故、最も効率的な光増感剤のデザイン及び調製は一層困難とな
ることさえもある。当該新規化合物は後述の通りTiO2 ベース光電池デバイス
のための光増感活性において有効であることが認められた。更に、少なくとも一
部の本化合物は喜ばしい緑色を帯びており、このことは光増感剤としての本化合
物の商業的用途の機会を増大させる。
The present invention relates to conventional substitutions around Pc (Sandoz WO 94/052).
5) has the advantage of incorporating a binding axial ligand instead of
And promote the synthesis of isomerically pure compounds. Experiments with RuN 3 dye show that the purity of the dye is important and difficult to obtain. For optimum sensitization efficiency, the ground and excited state redox potentials, as well as the absorption λ max , need to be carefully optimized. The present invention believes that substitution around the phthalocyanine structure allows for the selection of optimal photosensitization and improved "fine tuning" of properties. The incorporation of substrate binding groups around the ring is believed to hinder optimization of properties, and therefore, the design and preparation of the most efficient photosensitizers may be even more difficult. The novel compounds were found to be effective in photosensitizing activity for as TiO 2 based photovoltaic device will be described later. In addition, at least some of the compounds have a pleasant green tinge, which increases the opportunities for commercial use of the compounds as photosensitizers.

【0015】 本発明の新規の化合物は一般の公知の方法で光電池デバイスに利用されうる。
当該化合物は従来の詳しくは発表されているSandoz WO 94/05025及
び我々のWO 93/09124のフタロシアニンよりも有意に改善された性能
を示し、これは以降に示す。
The novel compounds of the present invention can be utilized in photovoltaic devices in a generally known manner.
The compounds show significantly improved performance over the previously detailed published phthalocyanines of Sandoz WO 94/05025 and our WO 93/09124, which are shown below.

【0016】 従って、本発明はTiO2 のフィルムを基礎とする光電池デバイスを更に提供
し、それにおいてはTiO2 の上に一般式Iの化合物が載っている。
[0016] Accordingly, the present invention further provides a photovoltaic device which is based the film of TiO 2, compounds of general formula I is placed on the TiO 2 in it.

【0017】 本発明を以下の限定でない実施例で更に説明する。The present invention is further described by the following non-limiting examples.

【0018】 実施例1 Embodiment 1

【化8】 RuCl3 ・xH2 O(43.37%のRh、2.64g、0.113mmol)を
1−ペンタノール(20ml)の中で深紫色の溶液となるまで煮沸した。これを1
−ペンタノール(60ml)中の3,6−ジメチルフタロニトリル(8.85g、
0.0566mol )及びヒドロキノン(0.62g、0.0056mol )の還流
溶液に窒素雰囲気下で加えた。アンモニアガスを反応フラスコに通し、そして3
日間還流し続けた。冷却した懸濁物を濾過し、そして紫色の固体をペンタノール
(2×50ml)、次いでメタノール(3×25ml)で洗い、そして乾かしてα,
α′−Me8 PcRu(NH3)2 (4.81g)を得た。これを更に精製するこ
となく使用した。
Embedded image RuCl 3 · xH 2 O (43.37 % of Rh, 2.64g, 0.113mmol) and boiled until a solution deep purple in 1-pentanol (20ml). This one
3,6-dimethylphthalonitrile (8.85 g,
0.0566 mol) and a refluxing solution of hydroquinone (0.62 g, 0.0056 mol) were added under a nitrogen atmosphere. Ammonia gas is passed through the reaction flask and 3
Reflux continued for days. The cooled suspension was filtered and the purple solid was washed with pentanol (2 × 50 ml) then with methanol (3 × 25 ml) and dried to give α,
α′-Me 8 PcRu (NH 3 ) 2 (4.81 g) was obtained. This was used without further purification.

【0019】 ベンゾニトリル(50ml)中のα,α′−Me8 PcRu(NH3)2 (4.8
1g)を窒素雰囲気下で24時間還流した。紫色の固体を濾過し、メタノールで
洗い(4×25ml)、そしてα,α′−Me8 PcRu(PhCN)2 を得た(
3.80g)。
Α, α′-Me 8 PcRu (NH 3 ) 2 (4.8 in benzonitrile (50 ml)
1 g) was refluxed for 24 hours under a nitrogen atmosphere. The purple solid was filtered, washed with methanol (4 × 25 ml), and α, α′-Me 8 PcRu (PhCN) 2 was obtained (
3.80 g).

【0020】 実験値:C 69.74%、H 4.58%、N 15.10%;C544210 RuはC 69.6%、H 4.54%、N 15.0%を要件とする。Experimental values: C 69.74%, H 4.58%, N 15.10%; C 54 H 42 N 10 Ru has C 69.6%, H 4.54%, N 15.0%. Requirements.

【0021】 α,α′−Me8 PcRu(PhCN)2 (0.58g、0.6mmol)及びピ
リジン−3,4−ジカルボン酸(0.45g、2.7mmol)を窒素下、且つ1:
1のテトラヒドロフラン(THF)/水(190ml)の中で光なしで80時間還
流した。その間、容量を保つために追加のTHFを必要なだけ加えた。次いでT
HFを窒素流下で除き、そしてその生成物を濾過により集めた。それを水でよく
洗い、そして真空乾燥して紫色のα,α′−Me8 PcRu(ピリジン−3,4
−ジカルボン酸)2 の結晶を得た。収量:0.41g(IR C=Oストレッチ
1734,1708cm-1;逆相クロマトグラフィーを利用するHPLC分析、純
度95%)。
Α, α′-Me 8 PcRu (PhCN) 2 (0.58 g, 0.6 mmol) and pyridine-3,4-dicarboxylic acid (0.45 g, 2.7 mmol) were added under nitrogen and:
Reflux in 1 of tetrahydrofuran (THF) / water (190 ml) without light for 80 hours. During that time, additional THF was added as needed to maintain capacity. Then T
The HF was removed under a stream of nitrogen, and the product was collected by filtration. It is washed well with water and dried in vacuo to give a purple α, α′-Me 8 PcRu (pyridine-3,4
-Dicarboxylic acid) 2 crystals were obtained. Yield: 0.41 g (IR C = O stretch 1734, 1708 cm -1 ; HPLC analysis using reverse phase chromatography, purity 95%).

【0022】 実施例2 α,α′−(n−オクチル)8 PcRu(ピリジン−3,4−ジカルボン酸) 2 α,α′−(n−オクチル)8 PcRu(PhCN)2 を過剰のピリジン−3
,4−ジカルボン酸と1:1のTHF/水の中で反応させた。この混合物を一夜
還流させた。その溶媒をエバポレーションにより除去し、そしてその残渣をTH
F/石油に取り込み、そしてシリカで濾過した。シリカをTHFで抽出し、そし
てその生成物を抽出物のエバポレーションにより紫色の結晶として回収した。(
IR C=Oストレッチ1720cm-1)。
[0022]Example 2 α, α '-(n-octyl)8PcRu (pyridine-3,4-dicarboxylic acid) Two α, α '-(n-octyl)8PcRu (PhCN)TwoWith excess pyridine-3
, 4-dicarboxylic acid in 1: 1 THF / water. This mixture overnight
Reflux. The solvent is removed by evaporation and the residue is
F / Petroleum and filtered through silica. Extract the silica with THF and add
The product was recovered as purple crystals by evaporation of the extract. (
IR C = O stretch 1720cm-1).

【0023】 化合物α,α′−(n−デシル)8 PcRu(ピリジン−3,4−ジカルボン
酸)2 は同じようにして調製される。
The compound α, α ′-(n-decyl) 8 PcRu (pyridine-3,4-dicarboxylic acid) 2 is prepared in a similar manner.

【0024】 実施例3 α,α′−Me8 PcRu(ピリジン−3,5−ジカルボン酸)2 α,α′−Me8 PcRu(PhCN)2 (0.2g、0.2mmol)及びピリ
ジン−3,5−ジカルボン酸(0.14g、0.8mmol)を窒素下で、且つ光な
しで1:1のTHF/水(190ml)の中で80時間還流した。THFを煮沸除
去して粘性の青/緑色の残渣が水に残った。この固体を濾過により集め、次いで
ソクスレー装置に入れ、そして過剰量のリガンドを一夜かけて抽出した。得られ
る固体を濾過により集め、そして水で洗い(4×20ml)、次いでジエチルエー
テルで洗って(3×5ml)紫色のα,α′−Me8 PcRu(ピリジン−3,5
−ジカルボン酸)2 の結晶を得た。収量:0.21g。(IR C=Oストレッ
チ1724cm-1)。
Example 3 α, α′-Me 8 PcRu (pyridine-3,5-dicarboxylic acid) 2 α, α′-Me 8 PcRu (PhCN) 2 (0.2 g, 0.2 mmol) and pyridine-3 , 5-Dicarboxylic acid (0.14 g, 0.8 mmol) was refluxed in 1: 1 THF / water (190 ml) under nitrogen and without light for 80 hours. The THF was boiled off leaving a viscous blue / green residue in the water. The solid was collected by filtration, then placed in a Soxhlet apparatus, and the excess ligand was extracted overnight. The resulting solid was collected by filtration and washed with water (4 × 20 ml), then with diethyl ether (3 × 5 ml) and purple α, α′-Me 8 PcRu (pyridine-3,5).
-Dicarboxylic acid) 2 crystals were obtained. Yield: 0.21 g. (IR C = O stretch 1724 cm -1 ).

【0025】 実施例4 α,α′−Me8 PcRu(ピリジン−4−ヒドロキサミン酸)2 α,α′−Me8 PcRu(PhCN)2 (0.2g、0.2mmol)及びピリ
ジン−4−ヒドロキサミン酸(0.5g、3.7mmol、17当量)を窒素下、且
つ光なしで1:1のエタノール/トルエン(60ml)の中で48時間還流した。
溶媒を減圧除去し、次いで青/緑色の残渣を水(20ml)と1時間撹拌して過剰
リガンドを除去した。得られる固体を濾過により集め、そして水(4×20ml)
、次いでヘキサン(2×20ml)で洗い、α,α′−Me8 PcRu(ピリジン
−4−ヒドロキサミン酸)2 を得た。収量:0.19g。IR 1741,17
02,1606cm-1;逆相クロマトグラフィーを利用するHPLC分析、純度9
2%。
Example 4 α, α′-Me 8 PcRu (pyridine-4-hydroxamic acid) 2 α, α′-Me 8 PcRu (PhCN) 2 (0.2 g, 0.2 mmol) and pyridine-4-hydroxamine The acid (0.5 g, 3.7 mmol, 17 equiv.) Was refluxed in 1: 1 ethanol / toluene (60 ml) under nitrogen and without light for 48 hours.
The solvent was removed in vacuo, then the blue / green residue was stirred with water (20 ml) for 1 hour to remove excess ligand. The resulting solid was collected by filtration and water (4 × 20 ml)
Then, it was washed with hexane (2 × 20 ml) to obtain α, α′-Me 8 PcRu (pyridine-4-hydroxamic acid) 2 . Yield: 0.19 g. IR 1741, 17
02,1606 cm -1 ; HPLC analysis using reverse phase chromatography, purity 9
2%.

【0026】 実施例5 α,α′−Me8 PcRu(ピリジン−3−ホスホン酸)2 ピリジン−3−ホスホン酸(0.4g、2.1mmol)及びテトラ−n−ブチル
水酸化アンモニウム水性溶液(3.7ml、5.5mmol、1.48M、2当量)を
エタノール(25ml)の中で30分還流した。溶媒を減圧除去し、ピリジン−3
−テトラ−n−ブチルアンモニウムホスホネートを得た。
Example 5 α, α'-Me 8 PcRu (pyridine-3-phosphonic acid) 2 Pyridine-3-phosphonic acid (0.4 g, 2.1 mmol) and aqueous solution of tetra-n-butylammonium hydroxide ( (3.7 ml, 5.5 mmol, 1.48 M, 2 eq) were refluxed in ethanol (25 ml) for 30 min. The solvent was removed under reduced pressure and pyridine-3
-Tetra-n-butylammonium phosphonate was obtained.

【0027】 α,α′−Me8 PcRu(PhCN)2 (0.2g、0.2mmol)及びピリ
ジン−3−テトラ−n−ブチルアンモニウムホスホネート(0.34g、0.8
mmol、3.1mlのエタノール中)を窒素下、且つ光なしで1:1のエタノール/
トルエン(30ml)の中で48時間還流した。溶媒を減圧で除去し、そして青/
緑色の残渣を10mlの0.2MのHClで洗った。その固体を濾過し、そして0
.2MのHCl(10ml)及び80〜100石油エーテル(2×10ml)で洗い
、α,α′−Me8 PcRu(ピリジン−3−ホスホン酸)2 を得た。収量:0
.19g。
Α, α′-Me 8 PcRu (PhCN) 2 (0.2 g, 0.2 mmol) and pyridine-3-tetra-n-butylammonium phosphonate (0.34 g, 0.8
mmol, in 3.1 ml of ethanol) under nitrogen and without light with 1: 1 ethanol /
Refluxed in toluene (30 ml) for 48 hours. The solvent was removed under reduced pressure and blue /
The green residue was washed with 10 ml of 0.2 M HCl. The solid is filtered and
. Washing with 2M HCl (10 ml) and 80-100 petroleum ether (2 × 10 ml) gave α, α′-Me 8 PcRu (pyridine-3-phosphonic acid) 2 . Yield: 0
. 19g.

【0028】 実施例6 α,α′−Me8 PcRu(ピリジン−3−ジエチルホスホンエステル)2 α,α′−Me8 PcRu(PhCN)2 (0.2g、0.2mmol)及びピリ
ジン−3−ジエチルホスホンエステル(0.2g、0.8mmol、16mlの1:1
のトルエン/エタノール中)を窒素下、且つ光なしで1:1のエタノール/トル
エン(40ml)の中で60時間還流した。溶媒を減圧除去して青/緑色の残渣を
得た。その固体をクロロホルム(50ml)に溶かし、そして0.1MのHCl(
2×50ml)と振盪し、次いでヘキサン(250ml)をこの青/緑色クロロホル
ム溶液に加えて紫色の結晶固体を沈殿させた。この固体を濾過除去し、そしてヘ
キサンで洗い(2×20ml)、そして乾燥させてα,α′−Me8 PcRu(ピ
リジン−3−ジエチルホスホンエステル)2 を得た。収量0.21g、IR 1
730cm-1
Example 6 α, α′-Me 8 PcRu (pyridine-3-diethylphosphonate) 2 α, α′-Me 8 PcRu (PhCN) 2 (0.2 g, 0.2 mmol) and pyridine-3- Diethylphosphonic ester (0.2 g, 0.8 mmol, 16 ml of 1: 1
In toluene / ethanol) was refluxed for 60 hours in 1: 1 ethanol / toluene (40 ml) under nitrogen and without light. The solvent was removed under reduced pressure to give a blue / green residue. The solid was dissolved in chloroform (50 ml) and 0.1 M HCl (
2 × 50 ml) and then hexane (250 ml) was added to the blue / green chloroform solution to precipitate a purple crystalline solid. The solid was filtered off and washed with hexane (2 × 20 ml) and dried to give α, α′-Me 8 PcRu (pyridine-3-diethylphosphonate) 2 . Yield 0.21 g, IR 1
730 cm -1 .

【0029】 実施例7 α,α′−(オクチル)8 PcRu(CO)(ピリジン−3,4−ジカルボン
酸) α,α′−(オクチル)8 PcH2 (0.6g、0.39mmol)及びRu3
CO)12(0.32g、0.5mmol)をベンゾニトリル(15ml)と一緒に3時
間還流した。メタノールを加え、そしてこの混合物をシリカゲルを利用して濾過
した。そのゲルをメタノールで洗い、そしてその生成物を石油エーテル(沸点4
0〜60℃)/THF(4:1)を利用して溶出させた。これはα,α′−(オ
クチル)8 PcRu(CO)(PhCN)及びα,α′−(オクチル)8 PcR
u(PhCN)2 の混合物である。
Example 7 α, α ′-(octyl) 8 PcRu (CO) (pyridine-3,4-dicarboxylic acid) α, α ′-(octyl) 8 PcH 2 (0.6 g, 0.39 mmol) and Ru 3 (
(CO) 12 (0.32 g, 0.5 mmol) was refluxed with benzonitrile (15 ml) for 3 hours. Methanol was added and the mixture was filtered over silica gel. The gel is washed with methanol and the product is petroleum ether (bp 4
0 to 60 ° C) / THF (4: 1). This is because α, α '-(octyl) 8 PcRu (CO) (PhCN) and α, α'-(octyl) 8 PcR
u (PhCN) 2 .

【0030】 その溶出液をエバポレーションし、そしてその固体を石油エーテル(沸点40
〜60℃)に再溶解させた。その溶液を還流するまで加熱し、そしてCOを反応
がtlcによる表示に従い完了するまで(1時間)吹き込んだ。次いでこの溶液
を乾くまでエバポレーションし、α,α′−(オクチル)8 PcRu(CO)(
PhCN)を得た。
The eluate was evaporated and the solid was petroleum ether (bp 40
6060 ° C.). The solution was heated to reflux and CO was bubbled in until the reaction was complete as indicated by tlc (1 hour). The solution is then evaporated to dryness and α, α '-(octyl) 8 PcRu (CO) (
PhCN) was obtained.

【0031】 α,α′−(オクチル)8 PcRu(CO)(PhCN)を過剰量の3,4−
ピリジン−ジカルボン酸を少しづつ添加しながら炭酸カリウムを伴って1:1の
THF/水の中で還流加熱した。3日後、その溶媒をエバポレーションし、そし
てその混合物をシリカで濾過し、石油エーテル(沸点40〜60℃)/THFで
溶出させた。これは未反応の出発材料を溶出させる。このシリカをソクスレー装
置を利用して抽出した。得られる溶液をエバポレーションし、生成物α,α′−
(オクチル)8 PcRu(CO)(ピリジン−3,4−ジカルボン酸)を得た。
1 H NMR(C6 6 ) δ3.56(s)、6.02(d)ピリジンジカル ボン酸リガンド δ4.65(m)、5.04(m)PC−C 2 − C7 5 (ピリジンジカルボキシレート及びフタロ シアニンリガンドのその他の共鳴体はスペクトルの 複雑さのため表記していない)。
Α, α ′-(octyl) 8 PcRu (CO) (PhCN) is added to an excess amount of 3,4-
Heat to reflux in 1: 1 THF / water with potassium carbonate with little addition of pyridine-dicarboxylic acid. After 3 days, the solvent was evaporated and the mixture was filtered over silica, eluting with petroleum ether (bp 40-60 <0> C) / THF. This elutes unreacted starting material. This silica was extracted using a Soxhlet apparatus. The resulting solution is evaporated to give the product α, α'-
(Octyl) 8 PcRu (CO) (pyridine-3,4-dicarboxylic acid) was obtained.
1 H NMR (C 6 D 6 ) δ3.56 (s), 6.02 (d) pyridine dicarboxylic acid ligand δ4.65 (m), 5.04 (m ) PC-C H 2 - C 7 H 5 (Pyridine dicarboxylate and other phthalocyanine ligands are not shown due to spectral complexity).

【0032】 その他フタロシアニン及びRリガンドを含む錯体PcRu(CO)Rは似たよ
うにして得られうる。
Other complexes PcRu (CO) R containing phthalocyanine and R ligand can be obtained in a similar manner.

【0033】 異なるリガンドR′(例えばR′がRとは異なるピリジンリガンドである)を
含む錯体が公知の方法に従い、過剰量のリガンドR′の存在下での光分解による
カルボニルリガンドの置換により得られうる〔D Dolphin, B R James, A J Murr
ay and J R Thornback, Can J Chem (1980), 58, 1125 〕。
Complexes containing different ligands R ′ (eg, where R ′ is a different pyridine ligand than R) can be obtained according to known methods by displacement of carbonyl ligands by photolysis in the presence of excess ligand R ′. (D Dolphin, BR James, AJ Murr
ay and JR Thornback, Can J Chem (1980), 58, 1125].

【0034】 以下の化合物を実施例1と似たようにして調製した:The following compounds were prepared analogously to Example 1:

【0035】[0035]

【表1】 [Table 1]

【0036】 この新規化合物の実際の性能を下記の通りに試験した。化合物Aのアルコール
性溶液を調製した。可視吸収バンドは650nmに最大値を有し(e49’000
-1cm-1)、そしてリン光のそれは895nmにあり、三重項状態の寿命は嫌気条
件下で474nsである。発光は化合物Aをナノ結晶TiO2 フィルムに吸着させ
たときに全て消失した。J.Am.Chem.Soc. 1993, 115, 6382に記載されている通り
にして、メソスコープアナターゼフィルム(厚さ約10μ、導性ガラスLOF TEC
10、フッ素ドープSnO2 シート(抵抗10ohm /平方)上にコーティング)を
50mMの3α,7α−ジヒドロキシ−5β−コール酸(Cheno)及び2.5
%のDMSOを含むエタノール中の3×10-4Mの溶液の中に数時間浸漬するこ
とによりこの化合物を沈着させた。Chenoの存在は増感剤の表層凝集を回避
するために必要である。化合物Aの吸収スペクトルの可視バンドは赤であり、吸
収により10nmシフトした。
The actual performance of this new compound was tested as follows. An alcoholic solution of Compound A was prepared. The visible absorption band has a maximum at 650 nm (e49'000
M -1 cm -1 ), and that of phosphorescence is at 895 nm, the triplet state lifetime is 474 ns under anaerobic conditions. All luminescence disappeared when Compound A was adsorbed on the nanocrystalline TiO 2 film. J. Am. Chem. Soc. 1993, 115, 6382, a mesoscopic anatase film (about 10μ thick, conductive glass LOF TEC).
10. Fluorine-doped SnO 2 sheet (coating on resistance 10 ohm / sq) was coated with 50 mM 3α, 7α-dihydroxy-5β-cholic acid (Cheno) and 2.5 mM
The compound was deposited by immersion in a 3 × 10 −4 M solution in ethanol containing% DMSO for several hours. The presence of Cheno is necessary to avoid surface aggregation of the sensitizer. The visible band of the absorption spectrum of Compound A is red, and the absorption spectrum was shifted by 10 nm.

【0037】 化合物Aの発光の非常に効率的な消失は、励起三重項状態のフタロシアニンか
らTiO2 の伝導バンドに至る電子射出によるものと認められた。光電流作用ス
ペクトルを図1に示し、そこでは入射光子対電流変換効率(IPCE)を波長の
関数としてプロットしている。その起伏はIPCEが50%を超える660m付
近にて最大値を示す近IR領域へと十分に広がっている。ピリジル軌道は化合物
Aの650nmの吸収バンドを担うπ,π* 励起には関与しないようであるが、そ
の励起状態でのTi(3d)伝導帯マンホールドに対する電子結合は、この付加
態様を通じ、電荷射出を非常に有効なものとするよう十分に強い。
The very efficient extinction of the emission of Compound A was found to be due to electron emission from the excited triplet state of phthalocyanine to the conduction band of TiO 2 . The photocurrent action spectrum is shown in FIG. 1, where the incident photon versus current conversion efficiency (IPCE) is plotted as a function of wavelength. The undulation has sufficiently extended to the near IR region where the IPCE has a maximum value near 660 m exceeding 50%. Although the pyridyl orbitals do not appear to be involved in the π, π * excitation responsible for the 650 nm absorption band of compound A, the electronic binding to the Ti (3d) conduction band manhold in its excited state, through this additional mode, is Strong enough to make the injection very effective.

【0038】 電子移動を図1の挿入部に示す時間分解ナノ秒Nd−YAGレーザー実験によ
り更に確認した。パルスの過渡的スペクトルの先端は化合物Aの基底状態吸収の
褐色並びに700〜800nm及び480〜580nmの波長域における新たな起伏
の出現を示唆する。これらのバンドはフタロシアニンの陽イオン基の形成による
。電荷組換えによる基底状態スペクトルの復帰は数百マイクロ秒の時間スケール
で認められ、酸化染料による導電帯電子の再捕獲が比較的ゆっくりとした過程で
あることを示唆する。
Electron transfer was further confirmed by a time-resolved nanosecond Nd-YAG laser experiment shown in the insert of FIG. The top of the transient spectrum of the pulse indicates the brown color of the ground state absorption of Compound A and the appearance of new undulations in the 700-800 nm and 480-580 nm wavelength ranges. These bands are due to the formation of the phthalocyanine cationic group. The return of the ground state spectrum by charge recombination was observed on a time scale of several hundred microseconds, suggesting that the recapture of conduction band electrons by the oxidative dye is a relatively slow process.

【0039】 我々の結果は軸方向に付加されたリガンドを通じての酸化物表面に対するフタ
ロシアニンのグラフティングについての新たな経路を確立する。1MのLiI/
0.05MのLiI3 酸化還元電解質と共にJ.Am.Chem.Soc.文献に記載のサンド
イッチ型電池形状のフィルムを利用することで、10mA/cm2 に至る光電流が擬
似AM1.5太陽光放射線下で容易に得られた。これらはフタロシアニン型増感
剤の中で今までに観察された最大の変換効率を示す。
Our results establish a new route for phthalocyanine grafting to oxide surfaces through axially attached ligands. 1M LiI /
Utilizing a sandwich-type battery-shaped film described in J. Am. Chem. Soc. Together with a 0.05 M LiI 3 redox electrolyte, the photocurrent reaching 10 mA / cm 2 can be simulated AM1.5 solar radiation. Obtained easily below. These show the highest conversion efficiency ever observed among phthalocyanine-type sensitizers.

【0040】 上記の化合物A及び化合物B〜Eについて論文に記載の標準試験を実施し、そ
して以下にまとめる。
The standard tests described in the dissertation were carried out on Compound A and Compounds BE above and are summarized below.

【0041】[0041]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SZ,UG,ZW),EA(AM ,AZ,BY,KG,KZ,MD,RU,TJ,TM) ,AL,AM,AT,AU,AZ,BA,BB,BG, BR,BY,CA,CH,CN,CU,CZ,DE,D K,EE,ES,FI,GB,GE,GH,GM,HU ,ID,IL,IS,JP,KE,KG,KP,KR, KZ,LC,LK,LR,LS,LT,LU,LV,M D,MG,MK,MN,MW,MX,NO,NZ,PL ,PT,RO,RU,SD,SE,SG,SI,SK, SL,TJ,TM,TR,TT,UA,UG,US,U Z,VN,YU,ZW (72)発明者 マーラー,バリー アンソニー イギリス国,レディング アールジー1 5エスビー,カーナーボン ロード 17 (72)発明者 グレッツェル,ミカエル スイス国,セアッシュ−1025 サン スル ピス,シュマン デュ マルキサ 7アー (72)発明者 ナツェールディン モハメド カハヤ スイス国,セアッシュ−1024 エクブラ ン,シュマン ドゥ ラ シェサ 9 Fターム(参考) 4H050 AA01 AA02 AB92 BB11 BB14 BB31 BB46 BB47 BB61 WB11 WB14 WB21 5F051 AA12 BA05 ──────────────────────────────────────────────────続 き Continuation of front page (81) Designated country EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE ), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR , KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW (72) Inventor Mahler, Barry Anthony United Kingdom, Reading RGS 15 SBS, Carnarvon Road 17 (72) Inventor Gretzel, Michael, Switzerland, Seash-1025 San Sul Pis, Shman du Marxa 7a (72) Inventor Nazerudin Mohamed Kahaya, Switzerland, Seash-1024 Eckbran, Shman de la Shesa 9F Term (reference) 4H050 AA01 AA02 AB92 BB11 BB14 BB31 BB46 BB47 BB61 WB11 WB14 WB21 5F051 AA12 BA05

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 次式Iの遷移金属フタロシアニン型誘導体 【化1】 (式中、MはRu,Rh,Os,Ir又はPtであり、 各Xは水素、アルキル、アルコキシ、ヒドロキシ、アリール、置換化アリール
、アルキルチオ、エーテル、チオエーテル、アミノ又はモノ−もしくはジ−置換
化アミノであるか、又は隣り合うXは一緒になって−C4 4 (Y)n −もしく
は 【化2】 を形成してよく、ここでYはアルキル、アルコキシ、ヒドロキシ、アリール、
置換化アリール、アルキルチオ、エーテル、チオエーテル、アミノ又はモノ−も
しくはジ−置換化アミノであり、そしてnは0〜4の値を有し、 R及びR′は各々独立して、第一結合リガンドであって、TiO2 もしくはそ
の他の増感すべき半導体に対する結合を可能とする官能基を含み、且つ結合して
いるときに励起状態のフタロシアニン構造体からTiO2 もしくはその他の半導
体の伝導バンドへと電子を伝導できるリガンドであるか、又は第二リガンドであ
ってMと前記第一結合リガンドとの結合を不安定にしないリガンドのいずれかで
あり、但しR及びR′の少なくとも一方が前記第一結合リガンドであり、そして Qは窒素又は−CZ−であり、ここでZは独立して水素、アルキル、アルコキ
シ、ヒドロキシ、アリール、置換化アリール、アルキルチオ、エーテル、チオエ
ーテル、アミノ又はモノ−もしくはジ−置換化アミノであり、 但しX,Y及びZの少なくとも一つは水素以外であるものとする)。
1. A transition metal phthalocyanine type derivative of the following formula I: Wherein M is Ru, Rh, Os, Ir or Pt, and each X is hydrogen, alkyl, alkoxy, hydroxy, aryl, substituted aryl, alkylthio, ether, thioether, amino or mono- or di-substituted. amino or where adjacent X is -C 4 H 4 together (Y) n - or ## STR2 ## Where Y is alkyl, alkoxy, hydroxy, aryl,
A substituted aryl, alkylthio, ether, thioether, amino or mono- or di-substituted amino, and n has a value from 0 to 4, and R and R 'are each independently a first binding ligand And contains a functional group that enables binding to TiO 2 or other semiconductor to be sensitized, and when bound, the electrons are transferred from the phthalocyanine structure in an excited state to the conduction band of TiO 2 or other semiconductor. Or a second ligand that does not destabilize the binding between M and the first binding ligand, provided that at least one of R and R 'is the first binding ligand. Ligand, and Q is nitrogen or -CZ-, wherein Z is independently hydrogen, alkyl, alkoxy, hydroxy, aryl, substituted aryl. To a substituted amino, provided that X, as at least one of Y and Z is other than hydrogen) - le, alkylthio, ether, thioether, amino or mono- - or di.
【請求項2】 前記MがRuである、請求項1記載の誘導体。2. The derivative according to claim 1, wherein said M is Ru. 【請求項3】 前記R又はR′が結合リガンドであり、1又は複数個のホス
ホン酸、カルボン酸又はスルホン酸官能基を含む、請求項1又は2記載の誘導体
3. The derivative according to claim 1, wherein said R or R ′ is a binding ligand and comprises one or more phosphonic acid, carboxylic acid or sulfonic acid functional groups.
【請求項4】 前記R又はR′が直鎖又は枝分れしたアミン又は環式もしく
は芳香族アミンである、請求項1〜3のいずれか1項記載の誘導体。
4. The derivative according to claim 1, wherein said R or R ′ is a straight-chain or branched amine or a cyclic or aromatic amine.
【請求項5】 前記R又はR′が4−ピリジンエタンスルホネート、3−ピ
リジンスルホネート、ピリジン−3−ホスホン酸、イミダゾール−4,5−ジカ
ルボン酸、1,2,3−トリアゾル−4,5−ジカルボン酸、4−ジフェニルホ
スフィノ安息香酸、トリス(4−カルボキシフェニルホスフィン)、4−イソシ
アノベンゾエート、ニコチン酸、ピリジン−3,4−ジカルボキシレート及びピ
リジン−4−リン酸から選ばれる、請求項1〜4のいずれか1項記載の誘導体。
5. The method according to claim 1, wherein R or R ′ is 4-pyridineethanesulfonate, 3-pyridinesulfonate, pyridine-3-phosphonic acid, imidazole-4,5-dicarboxylic acid, 1,2,3-triazole-4,5- Claims selected from dicarboxylic acids, 4-diphenylphosphinobenzoic acid, tris (4-carboxyphenylphosphine), 4-isocyanobenzoate, nicotinic acid, pyridine-3,4-dicarboxylate and pyridine-4-phosphate. Item 5. The derivative according to any one of Items 1 to 4.
【請求項6】 前記R及びR′の一方がCOである、請求項1〜5のいずれ
か1項記載の誘導体。
6. The derivative according to claim 1, wherein one of R and R ′ is CO.
【請求項7】 前記X,Y又は2の1又は複数が8個までの炭素原子数のア
ルキル又はアルコキシであり、そのアルキル基が直鎖又は枝分れしている、請求
項1〜5のいずれか1項記載の誘導体。
7. The method according to claim 1, wherein one or more of X, Y or 2 is alkyl or alkoxy having up to 8 carbon atoms, and the alkyl group is linear or branched. A derivative according to any one of the preceding claims.
【請求項8】 R=R′である請求項1記載の誘導体の製造方法であって、
次式IIの金属フタロシアニン化合物 【化3】 (式中、M,Q及びXは請求項1に定義した通りであり、そしてAはアミンであ
る)を請求項1において定義したリガンドRの塩と反応させ、そして式Iの生成
誘導体を単離することを含んで成る方法。
8. The method for producing a derivative according to claim 1, wherein R = R ′,
Metal phthalocyanine compound of the following formula II Wherein M, Q and X are as defined in claim 1 and A is an amine, is reacted with a salt of ligand R as defined in claim 1 and the resulting derivative of formula I is simply A method comprising releasing.
【請求項9】 有機溶媒、水混和性有機溶媒と水との混合物、又は非混和性
有機溶媒と水との混合物の中で、化学理論上過剰な量のリガンドRの塩の存在下
で、不活性雰囲気下で実施する、請求項8記載の方法。
9. In an organic solvent, a mixture of a water-miscible organic solvent and water, or a mixture of an immiscible organic solvent and water, in the presence of a stoichiometric excess of a salt of a ligand R, 9. The method according to claim 8, which is performed under an inert atmosphere.
【請求項10】 請求項1において定義した、且つRがR′と同じではない
式Iの誘導体の製造のための方法であって、対応の非金属化フタロシアニンをR
3 (CO)12及び結合リガンドと反応させてR又はR′がCOであり、そして
R及びR′の他方が結合リガンドである式Iの誘導体を生成し、そして所望する
なら当該カルボニルリガンドを別のリガンドと置換することを含んで成る、方法
10. A process for the preparation of a derivative of the formula I as defined in claim 1, wherein R is not the same as R ′, wherein the corresponding nonmetallated phthalocyanine is
reacting with u 3 (CO) 12 and a binding ligand to produce a derivative of Formula I wherein R or R ′ is CO and the other of R and R ′ is a binding ligand, and if desired, converting the carbonyl ligand to A method comprising substituting with another ligand.
【請求項11】 染料太陽電池中での半導体用の光増感剤としての請求項1
〜7のいずれか1項記載の誘導体の利用。
11. A photosensitizer for semiconductors in dye solar cells as claimed in claim 1.
Use of the derivative according to any one of claims 1 to 7.
【請求項12】 染料太陽電池中での半導体用の光増感剤としてのRuN3 との組合せにおける請求項1〜7のいずれか1項記載の誘導体の利用。12. Use of a derivative of any one of claims 1 to 7 in combination with RuN 3 as photosensitizer for semiconductors in the dye solar cell. 【請求項13】 染料が請求項1〜7のいずれか1項記載の誘導体を含んで
成る、染料太陽電池に組込まれた光学的に透明なデバイス。
13. An optically transparent device incorporated in a dye solar cell, wherein the dye comprises a derivative according to any one of claims 1 to 7.
【請求項14】 染料が請求項1〜7のいずれか1項記載の誘導体を含んで
成る染料太陽電池。
14. A dye solar cell, wherein the dye comprises the derivative according to any one of claims 1 to 7.
【請求項15】 請求項14記載の染料太陽電池を含んで成る、建築物用の
窓。
15. A window for a building, comprising a dye solar cell according to claim 14.
【請求項16】 染料太陽電池中の半誘導体用の光増感剤としての請求項1
〜7のいずれか1項記載の誘導体の利用を含んで成る、太陽光から発電を行う方
法。
16. A photosensitizer for a semi-derivative in a dye solar cell.
A method for generating electricity from sunlight comprising the use of a derivative according to any one of claims 7 to 7.
JP2000503091A 1997-07-16 1998-07-14 Photosensitizer Pending JP2001510199A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9714905.8A GB9714905D0 (en) 1997-07-16 1997-07-16 Photosensitizers
GB9714905.8 1997-07-16
PCT/GB1998/001872 WO1999003868A1 (en) 1997-07-16 1998-07-14 Photosensitizers

Publications (1)

Publication Number Publication Date
JP2001510199A true JP2001510199A (en) 2001-07-31

Family

ID=10815895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000503091A Pending JP2001510199A (en) 1997-07-16 1998-07-14 Photosensitizer

Country Status (6)

Country Link
EP (1) EP0998481A1 (en)
JP (1) JP2001510199A (en)
AU (1) AU734412B2 (en)
GB (1) GB9714905D0 (en)
WO (1) WO1999003868A1 (en)
ZA (1) ZA986323B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515857A (en) * 2008-03-19 2011-05-19 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン Organic thin film for infrared detection
WO2011155131A1 (en) * 2010-06-07 2011-12-15 国立大学法人九州工業大学 Dye-adsorbed semiconductor electrode for dye-sensitized solar cell, dye-sensitized solar cell, and process for production of dye-adsorbed semiconductor electrode
JP2012015251A (en) * 2010-06-30 2012-01-19 National Institute Of Advanced Industrial & Technology Photoelectric conversion element and solar cell
JP2015029082A (en) * 2013-06-28 2015-02-12 島根県 Photosensitizing dye, metal oxide semiconductor electrode containing the same, and dye-sensitized solar cell

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051702A (en) * 1997-05-08 2000-04-18 Rutgers, The University Of New Jersey Organic dyes for photovoltaic cells and for photoconductive electrophotography systems
ES2155414B1 (en) * 1999-10-26 2001-11-16 Longuetto Antonino Ad Trimboli SOLAR PHOTOVOLTAIC CELL AND ITS MANUFACTURING PROCEDURE.
US8268143B2 (en) 1999-11-15 2012-09-18 Abbott Diabetes Care Inc. Oxygen-effect free analyte sensor
US8444834B2 (en) 1999-11-15 2013-05-21 Abbott Diabetes Care Inc. Redox polymers for use in analyte monitoring
AU1602601A (en) 1999-11-15 2001-05-30 Therasense, Inc. Polymeric transition metal complexes and uses thereof
WO2001046367A1 (en) 1999-12-22 2001-06-28 Reckitt Benckiser (Uk) Limited Photocatalytic compositions and methods
US6676816B2 (en) 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
US8226814B2 (en) 2001-05-11 2012-07-24 Abbott Diabetes Care Inc. Transition metal complexes with pyridyl-imidazole ligands
US8070934B2 (en) 2001-05-11 2011-12-06 Abbott Diabetes Care Inc. Transition metal complexes with (pyridyl)imidazole ligands
CN100415715C (en) * 2003-02-11 2008-09-03 杜锡光 Super-phthalocyanine compound with six isoindole structure subunits in laver oxazine cycle and its synthesis and use
MX2008008104A (en) 2005-12-21 2008-09-03 Oxford Biosensors Ltd Redox mediators.
DE102007037945A1 (en) * 2007-08-11 2009-02-19 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Passivation layer for a transparent conductive oxide layer in an organic active-layer device
EP2112701A1 (en) * 2008-04-22 2009-10-28 Sony Corporation Preparation of high-quality sensitizer dye for dye-sensitized solar cells
JP2011505651A (en) * 2007-11-14 2011-02-24 ソニー株式会社 Production of high-quality sensitizing dyes for dye-sensitized solar cells
EP2061102A1 (en) * 2007-11-14 2009-05-20 Sony Corporation Preparation of high-quality sensitizer dye for dye-sensitized solar cells
DE102009034189A1 (en) * 2009-07-17 2011-01-20 Berthold, Herwig, Dr. New (aza)phthalocyanine compounds useful e.g. to prepare a composition for photodynamic chemotherapy of tumors, as a part of an active layer to prepare and operate photovoltaic cells, and as main or addition components in printing ink

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525070B1 (en) * 1990-04-17 1995-12-20 Ecole Polytechnique Federale De Lausanne Photovoltaic cells
GB9123814D0 (en) * 1991-11-08 1992-01-02 Johnson Matthey Plc Photosensitizers
WO1994005025A1 (en) * 1992-08-17 1994-03-03 Sandoz Ltd. Use of optical brighteners and phthalocyanines as photosensitizers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515857A (en) * 2008-03-19 2011-05-19 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン Organic thin film for infrared detection
WO2011155131A1 (en) * 2010-06-07 2011-12-15 国立大学法人九州工業大学 Dye-adsorbed semiconductor electrode for dye-sensitized solar cell, dye-sensitized solar cell, and process for production of dye-adsorbed semiconductor electrode
JP5816620B2 (en) * 2010-06-07 2015-11-18 国立大学法人九州工業大学 Dye-adsorbed semiconductor electrode for dye-sensitized solar cell, dye-sensitized solar cell, and method for producing dye-adsorbed semiconductor electrode
JP2012015251A (en) * 2010-06-30 2012-01-19 National Institute Of Advanced Industrial & Technology Photoelectric conversion element and solar cell
JP2015029082A (en) * 2013-06-28 2015-02-12 島根県 Photosensitizing dye, metal oxide semiconductor electrode containing the same, and dye-sensitized solar cell

Also Published As

Publication number Publication date
GB9714905D0 (en) 1997-09-17
ZA986323B (en) 1999-02-02
AU734412B2 (en) 2001-06-14
EP0998481A1 (en) 2000-05-10
WO1999003868A1 (en) 1999-01-28
AU8224298A (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP2001510199A (en) Photosensitizer
EP2208212B1 (en) A dye including an anchoring group in its molecular structure
JP4576494B2 (en) Photosensitizing dye
KR102171481B1 (en) Diketopyrrolopyrole (DPP)-based sensitizers for electrochemical or optoelectronic devices
EP2483265B9 (en) Novel ligands for sensitizing dyes of dye-sensitized solar cells
US8598350B2 (en) Branched materials for photovoltaic devices
AU7070498A (en) Metal complex photosensitizer and photovoltaic cell
Willinger et al. Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium (II) donor-antenna dyes
JP5757609B2 (en) Donor-π-acceptor compound, fluorescent dye compound, and fluorescent dye compound for dye-sensitized solar cell
Yanagisawa et al. Ruthenium phthalocyanines with axial carboxylate ligands: Synthesis and function in solar cells based on nanocrystalline TiO 2
Arrechea et al. Charge recombination losses in thiophene-substituted porphyrin dye-sensitized solar cells
Paek et al. New type of ruthenium sensitizers with a triazole moiety as a bridging group
EP2646450A1 (en) Process for the synthesis of precursor complexes of titanium dioxide sensitization dyes based on ruthenium polypyridine complexes
Vats et al. Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells
JP4443906B2 (en) Metal complex and dye-sensitized solar cell using the same
JP5776099B2 (en) Transition metal complex, photosensitizing dye, oxide semiconductor electrode containing the dye, and dye-sensitized solar cell
KR102100883B1 (en) Porphyrin derivative compound and dye sensitized solar cell using the same
Jung et al. New ruthenium sensitizers containing styryl and antenna fragments
Ezhov et al. Synthesis of donor-π-acceptor porphyrins for DSSC: DFT-study, comparison of anchoring mode and effectiveness
Seo et al. Synthesis and characterization of novel heteroleptic Ru (II) bipyridine complexes for dye-sensitized solar cell applications
Ooyama et al. Dye-sensitized solar cells based on D–π–A fluorescent dyes with pyridine ring forming strong interaction with nanocrystalline TiO2
Lam et al. Synthesis and characterization of alkynylrhenium (I) tricarbonyl diimine complexes with fused thiophene and cyanoacrylic acid moiety
CN110317471B (en) Aggregation-free dye with spiro structure auxiliary unit and synthesis method thereof
CN101838477A (en) Bipolar organic dyes and preparation method thereof
US20150361267A1 (en) Process for the Synthesis of Precursor Complexes of Titanium Dioxide Sensitization Dyes Based on Ruthenium Polypyridine Complexes