JP2001359235A - Ground protective relay - Google Patents

Ground protective relay

Info

Publication number
JP2001359235A
JP2001359235A JP2000176294A JP2000176294A JP2001359235A JP 2001359235 A JP2001359235 A JP 2001359235A JP 2000176294 A JP2000176294 A JP 2000176294A JP 2000176294 A JP2000176294 A JP 2000176294A JP 2001359235 A JP2001359235 A JP 2001359235A
Authority
JP
Japan
Prior art keywords
zero
current
ground fault
terminal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000176294A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Furuse
溢泰 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2000176294A priority Critical patent/JP2001359235A/en
Publication of JP2001359235A publication Critical patent/JP2001359235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a controlled variable of a relay from being affected by zero-phase circulating current. SOLUTION: Ground protective relays G1, G2 conduct operation output, when a value obtained by subtracting the controlled variable from an operating amount is equal to or higher than a prescribed value, where differential current between a power source side terminal A of each of parallel two lines 3L, 4L fitted in parallel with parallel liens 1L, 2L and a load side terminal C is defined as an operating amount, and (k) (sum of the currents of the respective terminals) is defined as the controlled variable. A zero-phase circulating current IOth, prior to the occurrence of an accident by several cycles, is stored as a vector amount, and conventionally the vector amount of IOth stored from the current of the respective terminals (vector sum IOF3+IOth at a terminal A) is subtracted from the controlled variable including IOth, to obtain a controlled variable excluding IOth, thereby preventing malfunctions due to variation in IOth based on induction from the line 1L or 2L.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、送電線の地絡保護
リレー、高抵抗接地系(60kV〜145kV系統)に
おける地絡保護リレー、特に併架送電線において零相循
環電流の影響が無視できない系統の地絡保護リレーに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault protection relay for a transmission line, a ground fault protection relay in a high resistance grounding system (60 kV to 145 kV system), and in particular, the influence of a zero-phase circulating current on a parallel transmission line cannot be ignored. It relates to a ground fault protection relay of a system.

【0002】[0002]

【従来の技術】併架送電線の地絡保護について図5を用
いて説明する。送電線1Lと2L及び3Lと4Lは各々
平行2回線で回線1L,2Lと3L,4Lは同一の鉄塔
に併架されている。このような送電系の回線3L,4L
の地絡保護リレーとしては、変電所(端子)A又はCで
回線3L,4Lの零相差電流を求め、その零相差電流の
方向によって、回線3L,4Lいずれに地絡事故が発生
しているかを判別する地絡回線選択リレー(図示省
略)、または、図5に示すように、端子A、Cの零相電
流をD/A変換器1a,1cでD/A変換し、伝送装置
2a,2cにより光ファイバーOF1,OF2を介して他
端子側の伝送装置2c,2aに伝送し、マイクロプロセ
ッサ3a,3bにより差動演算を行い各回線内部事故を
判別して保護する地絡差動リレーGa及びGcが採用され
る上記地絡回線選択リレーは、自端のみのデータ(情
報)で保護ができ、伝送装置や伝送ケーブルが不要であ
るため、簡単で安価でありディジタルリレーとしても多
く採用されている。
2. Description of the Related Art Ground fault protection of an overhead transmission line will be described with reference to FIG. The transmission lines 1L and 2L and the transmission lines 3L and 4L are respectively two parallel lines, and the lines 1L, 2L and 3L and 4L are mounted on the same steel tower. Such transmission lines 3L and 4L
As for the earth fault protection relay, the zero phase difference current of the lines 3L and 4L is obtained at the substation (terminal) A or C, and depending on the direction of the zero phase difference current, which of the lines 3L and 4L has a ground fault has occurred. Or a ground fault line selection relay (not shown) for determining whether or not, as shown in FIG. 5, the D / A converters 1a and 1c convert the zero-phase currents of the terminals A and C into D / A converters 1a and 1c. ground fault differential relay 2c via the optical fiber oF 1, oF 2 transmits to the transmission device 2c, 2a of the other terminal side by, protected to determine each circuit internal fault performs differential operation microprocessor 3a, the 3b The above-mentioned ground fault line selection relay employing G a and G c can be protected by data (information) only at its own end, and requires no transmission device or transmission cable. Many are adopted.

【0003】また、上記地絡差動リレーGa,Gcは送電
線の差電流保護方式であるため、ケーブルや光ファイバ
ーなど伝送ケーブルが必要となり高価となるが、送電線
が多端子構成や零相循環電流IOthなどが複雑に発生
する系統では差電流の内に零相循環電流IOthが含ま
れない。(零相循環電流IOthは回線間を循環する電
流であるため流入電流と流出電流は等しくなり差電流を
求めることにより除去することができる。)従って併架
系統や多端子系統には地絡回線選択リレーより多く採用
されている。
Further, since the above-mentioned ground fault differential relays G a and G c are of a differential current protection type of transmission lines, transmission cables such as cables and optical fibers are required, which is expensive. It does not include zero-phase circulating current I O th within the differential current in the lines generated complex such as a phase circulating current I O th. (Zero-phase circulating current I O th inflow current and outgoing current for a current circulating between the lines can be removed by obtaining equally be differential current.) Therefore earth in併架system and multi-terminal system It is more often used than a line selection relay.

【0004】[0004]

【発明が解決しようとする課題】端子A及びCに設置さ
れた地絡差動リレーGa及びGcのディジタルリレーとし
ての構成は図1(本発明の地絡保護リレーの構成)に示
す平行2回線3L,4Lの端子A及びCに設置された地
絡保護リレーG1,G2と同じである(ただし、動作量、
抑制量の演算方式が異なる)。又、リレーの入力も同じ
で表1で示される地絡保護リレーG1,G2の動作式は
(1)式で示される。
The configuration of the ground fault differential relays G a and G c provided at the terminals A and C as digital relays is shown in FIG. 1 (configuration of the ground fault protection relay of the present invention). The ground fault protection relays G 1 and G 2 installed at the terminals A and C of the two lines 3L and 4L are the same (however, the operation amount,
The calculation method of the suppression amount is different). Further, the input of the relay is the same, and the operation equation of the ground fault protection relays G 1 and G 2 shown in Table 1 is expressed by equation (1).

【0005】[0005]

【表1】 [Table 1]

【0006】[0006]

【数1】 (Equation 1)

【0007】内部事故F1時にリレーG1の動作量は事故
電流IFとなり、事故電流そのものが動作電流となって
リレーG1の入力となるが、抑制量は各端子電流絶対値
の和であることから零相循環電流Iothそのものが抑
制量となって入力される。
[0007] Operation of internal fault F 1 at the relay G 1 is the fault current I F becomes, the fault current itself becomes the input relay G 1 becomes operating current, suppressing the amount of the sum of the respective terminal current absolute value zero-phase circulation current I o th itself is input becomes suppression quantity since there.

【0008】零相循環電流IOthは、併架されている
線路1L,2L(図5)の負荷電流IL1,IL2のねん架
状態、1回線停止などの状態により変化し、平常時、内
部事故発生中などに変化する場合がある。
[0008] zero-phase circulating current I O th is line 1L being併架, 2L Ninen rack state of the load current I L1, I L2 (FIG. 5), varies with conditions such as 1 line stop, during normal May change during an internal accident.

【0009】電流差動を用いた地絡保護リレーで最も問
題となるのは,図6に示すリレーの特性上、零相循環電
流Iothの変化による抑制量の変化により、抑制量が
多くなると図6(a)に示すように動作領域内にあった
動作点×が図6(b)に示すように動作領域外に移動
し、内部事故であるにも拘わらず、リレーが不動作にな
ることである。
[0009] become most problematic in ground protection relay with current differential, the nature of the relay shown in FIG. 6, by a change in inhibiting amount due to a change in the zero-phase circulation current I o th, many suppression quantity When this happens, the operating point x, which was in the operating area as shown in FIG. 6A, moves out of the operating area as shown in FIG. 6B, and the relay becomes inactive despite an internal accident. It is becoming.

【0010】これは例えば、図5で回線2Lと3Lに同
時に地絡事故が発生し回線2Lが先に遮断された場合、
併架線路は1Lのみとなり、回線1L,2L側から3
L,4L側への誘導Mがアンバランスになるため、3
L,4Lの零相循環電流IOthが3Lの事故中に大き
くなる。これにより図6(a)の動作点×が図6(b)
のように移りリレーは不動作になってしまう。
[0010] For example, in FIG. 5, if a ground fault occurs simultaneously in the lines 2L and 3L and the line 2L is cut off first,
The overhead line is only 1L, and 3 lines from lines 1L and 2L
Since the induction M to the L and 4L sides becomes unbalanced, 3
L, the zero-phase circulation current I O th of 4L increases during accident 3L. As a result, the operating point x in FIG.
As shown in the above, the relay becomes inoperative.

【0011】上述のように、零相循環電流IOthは上
記リレー動作式(1)の抑制量に含まれてくるため、こ
の零相循環電流IOthの大きさにより、動作点が一定
にならず、(1)式の抑制率K1を定めることが困難と
なる。
[0011] As described above, since the zero-phase circulating current I O th come included in the suppression of the relay operation (1), the magnitude of the zero-phase circulating current I O th, the operating point is constant not become, it is difficult to determine the (1) inhibition rate K 1 of the formula.

【0012】本発明は、上記課題を解決すべくなされた
ものであり、その目的とするところは、リレーの抑制量
が零相循環電流の影響を受けないようにした地絡保護リ
レーを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a ground fault protection relay in which the amount of suppression of the relay is not affected by the zero-phase circulating current. It is in.

【0013】[0013]

【課題を解決するための手段】本発明は、平行2回線の
端子にそれぞれ設けられ、それぞれ回線の各端子電流の
差を動作量とすると共に各回線の各端子電流の和に抑制
率を掛けた値を抑制量とし、この動作量から抑制量を差
し引いた値が所定の値以上となった場合に動作出力する
地絡保護リレーにおいて、数サイクル前の零相循環電流
を線間電圧を基準としてをベクトル量としてメモリに記
憶し、各端子の零相電流から前記記憶された零相循環電
流のベクトル量を差し引き前記抑制量に含まれる零相循
環電流を除去することを特徴とする。
According to the present invention, the difference between each terminal current of each line is set as an operation amount and the sum of each terminal current of each line is multiplied by a suppression rate. In the ground fault protection relay that outputs an operation when the value obtained by subtracting the amount of suppression from this amount of operation becomes a predetermined value or more, the zero-phase circulating current several cycles earlier is referenced to the line voltage. Is stored in a memory as a vector amount, and the stored zero-phase circulating current vector amount is subtracted from the zero-phase current of each terminal to remove the zero-phase circulating current included in the suppression amount.

【0014】または、各端子にそれぞれ両回線の零相電
流のベクトル和によって両回線の内部方向に向かって流
れる電流が所定値以上であるとき動作する地絡検出要素
を設け、この電源側端子の地絡検出要素の動作出力と負
荷側端子の地絡検出要素の動作出力を反転させたものと
の論理積をとり前記抑制量を制御することを特徴とす
る。
Alternatively, each terminal is provided with a ground fault detecting element which operates when the current flowing toward the inside of both lines is equal to or greater than a predetermined value by the vector sum of the zero-phase currents of both lines. The suppression amount is controlled by calculating the logical product of the operation output of the ground fault detection element and the inverted operation output of the ground fault detection element at the load side terminal.

【0015】[0015]

【発明の実施の形態】実施の形態1 図1に実施の形態1にかかる地絡保護リレーの構成を示
す。地絡保護リレーG 1,G2は、従来図5の地絡保護リ
レーGa(Gc)と同様に検出した自端子の電圧、電流等
をディジタルデータに変換するA/D変換器、光ファイ
バーを介して他端子側地絡保護リレーとデータの交換を
する伝送装置、自端子と他端子のデータを用いて地絡作
動リレー演算をするマイクロプロセッサ等で構成されて
いる。実施の形態1にかかる地絡保護リレーの従来図5
の地絡保護リレーGa(Gc)との相違は変化幅差動方法
となっている点である。
FIG. 1 shows the configuration of a ground fault protection relay according to a first embodiment.
You. Ground fault protection relay G 1, GTwoIs the ground fault protection
Leh Ga(Gc) Voltage, current, etc. of own terminal detected in the same way
A / D converter for converting digital data into digital data, optical fiber
Data exchange with other terminal side ground fault protection relay via bar
Transmission device, ground fault using data of own terminal and other terminal
It consists of a microprocessor that performs dynamic relay operation
I have. FIG. 5 shows a conventional ground fault protection relay according to the first embodiment.
Ground fault protection relay Ga(Gc) Is different from the differential width method
The point is that.

【0016】実施の形態1にかかる地絡保護リレー
1,G2の変化幅差動方式を図1,図2を用いて説明す
る。なお、文中、電圧、電流はベクトル量であるが、ベ
クトル記号は省略してある。送電線は図5に示す平行2
回線1Lと2L及び3Lと4Lで、事故回線を3Lと
し、この事故回線の端子A側のR,S,T相電圧を
aR,E aS,EaT,ST相間電圧をEaTSとする。
A ground fault protection relay according to the first embodiment.
G1, GTwoThe change width differential method will be described with reference to FIGS.
You. In the description, voltage and current are vector quantities.
The kutle symbol is omitted. The transmission line is parallel 2 shown in FIG.
Lines 1L and 2L and 3L and 4L, accident line 3L
Then, the R, S, T phase voltage on the terminal A side of this fault line is
EaR, E aS, EaT, ST phase voltage to EaTSAnd

【0017】地絡事故F1発生前から存在する零相循環
電流IOthを図2に示すように1線地絡では変化する
ことのない線間電圧、例えば、EaTSを基準として零相
循環電流IOthをベクトル量としてメモリに記憶す
る。また、地絡事故F1発生を零相電圧VO発生を検出す
ることで検出し、検出した時点より数サイクル前の電流
Othをベクトル量としてメモリに記憶し、抑制量の
演算のため入力される端子電流、端子AではIF1+IO
thから上記記憶したIOthのベクトル量を引算する
ことにより抑制量に含まれるIOthを除去する。
The earth fault F 1 generation zero-phase circulation current I O th line voltage not to change one line ground as shown in FIG. 2 the preexisting, for example, zero-phase E ATS based the circulating current I O th stored in the memory as a vector quantity. Also, detected by detecting the zero-phase voltage V O generate ground fault F 1 generation, stored in memory several cycles before the current I O th as a vector quantity from the time of detection, for suppressing the amount of calculation terminal current input, the terminal A I F1 + I O
The vector quantity I O th that the memory from th removing I O th contained amount suppression by subtracting.

【0018】[0018]

【数2】 (Equation 2)

【0019】常時事故発生前より流れている零相循環電
流IOthは図2(b)のように、ある基準に対しベク
トル量(大きさと位相角θ)としてメモリに記憶する。
この記憶方法としては電流の瞬時値そのまま一定サンプ
ル数だけメモリに記憶し、零相電圧VO発生(地絡事故
発生)と同時にその記憶データを現時点のデータの瞬時
値を引算することによっても(2)式のように抑制量か
らIOthを除去することができる。ただし、この瞬時
値を記憶する方法は数サイクル前の記憶値と現時点のデ
ータに時刻的なずれ(差)が生じると、そのずれがその
まま位相ずれとなるが、零相電圧VO発生後短時間(2
〜3サイクル)で動作、保護遮断する場合はあまり問題
とならない。
[0019] Always accident before flowing and zero-phase circulating current I O th is as shown in FIG. 2 (b), stored as a vector quantity with respect to a certain reference (magnitude and phase angle theta) in the memory.
This storage method is also to store the instantaneous value of the current as it is in the memory for a fixed number of samples, and to subtract the instantaneous value of the current data from the stored data at the same time when the zero-phase voltage V O is generated (the occurrence of a ground fault). (2) can be removed I O th from suppression amount as expression. However, in the method of storing the instantaneous value, when a time difference (difference) occurs between the stored value several cycles before and the current data, the difference becomes a phase shift as it is, but shortly after the zero-phase voltage V O is generated. Time (2
(3 cycles), there is not much problem when the protection is shut off.

【0020】しかし、高抵抗接地系統などでは、異相地
絡などでは短絡リレーを優先させて動作させる場合が多
い。このため地絡保護リレーは一定時間遅れさせて動作
させる。このような場合、上記瞬時値を記憶する方法で
は時間ずれの影響大で誤動作や誤不動作になることがあ
る。この時間ずれは地絡事故後に系統の周波数が微少で
も変化すると発生する。
However, in a high-resistance grounding system or the like, a short-circuit relay is often given priority in the event of an out-of-phase ground fault or the like. For this reason, the ground fault protection relay is operated with a certain delay. In such a case, the method of storing the instantaneous value may cause a malfunction or a malfunction due to the influence of the time lag. This time lag occurs when the frequency of the system changes even if it is very small after a ground fault.

【0021】実施の形態2 上記実施の形態1は、地絡事故発生前の零相循環電流を
ベクトル量として記憶し、事故中の零相電流(事故電流
と零相循環電流の和)よりこの記憶値を差し引くことに
よって零相電流に含まれる零相循環電流IOthを除去
するものである。しかし、これだけでは零相循環電流I
Othの影響を完全に除去することはできず問題があ
る。
Embodiment 2 In Embodiment 1 described above, the zero-phase circulating current before the occurrence of the ground fault is stored as a vector quantity, and the zero-phase current during the fault (sum of the fault current and the zero-phase circulating current) is stored. it is intended to eliminate the zero-phase circulation current I O th included in the zero-phase current by subtracting the stored value. However, this alone has a zero-phase circulating current I
There is a problem can not be completely removed the effects of O th.

【0022】今、図5で併架送電線1Lと3Lの同時事
故を考える。特に回線1L,2Lが別系等で超高圧(直
接接地系系)である場合には、1回線1Lの事故が先に
除去されるのが一般的であり、1Lが遮断される。
Now, consider the simultaneous accident of the overhead transmission lines 1L and 3L in FIG. In particular, when the lines 1L and 2L are separate systems and have a very high voltage (direct grounding system), it is general that the accident of the line 1L is generally removed first, and the 1L is cut off.

【0023】このような場合には、同時に発生した1L
側の地絡電流により3L,4L間の零相循環電流IO
hが変化する。また1L遮断によって1L側負荷電流が
零となり、2L側に移る。これによって事故発生中に3
L,4L間のIOthが大幅に変化することがある。こ
のようになると上記実施の形態1のように事故発生前の
零相循環電流IOthをベクトル量でメモリに記憶して
も零相循環電流IOthの影響を除去することはできな
い。
In such a case, simultaneously generated 1L
3L The side ground fault current of the zero phase circulation current between 4L I O t
h changes. In addition, the 1L cut-off causes the 1L-side load current to become zero and shifts to the 2L side. As a result, 3
L, I O th among 4L may change significantly. This occurs when it is impossible to remove the effects of the accident before the zero-phase circulating current I O th even zero-phase circulation is stored in the memory to a vector quantity of current I O th as in the first embodiment.

【0024】[0024]

【表2】 [Table 2]

【0025】これは表2の内部事故F1(図1の事故
1)のとき差電流保護方式の地絡保護リレーG1,G2
の抑制量の式
This is because when the internal fault F 1 in Table 2 (accident F 1 in FIG. 1 ) occurs, the ground fault protection relays G 1 and G 2 of the differential current protection method are used.
Equation for the amount of suppression

【0026】[0026]

【数3】 (Equation 3)

【0027】に含まれる零相循環電流IOthが事故中
に変化するので、上記(2)式ではIOthを完全に除
去することは困難であることを示しており、図6(b)
のようにIOthにより動作点×がずれることは避けら
れない。
[0027] Since the zero-phase circulation current I O th contained in changes during the accident, in the above (2) shows that it is difficult to completely remove the I O th, FIG 6 (b )
It is inevitably shifted operating point × by I O th as.

【0028】実施の形態2は、上記事故中に変化する零
相循環電流IOthによって差動リレーG1,G2が不動
作になることを防止するため、図3に示すように、回線
3L,4Lの端子A及びCに、それぞれ3L,4Lの零
相電流のベクトル和によって零相電源からみて3L,4
Lの内部方向に向って流れる電流(零相電圧VOに対
し)が一定値以上であるとき動作する地絡検出要素Σ
I,ΣOを設け、図4に示すように論理積回路A1で地
絡検出要素ΣIの動作出力と,ΣOの動作出力の反転し
たものとの論理積をとりその信号を制御量制御信号とし
てリレーG1,G2の抑制量を制御する。
[0028] Embodiment 2, to prevent the zero-phase circulation current I O th change during the accident differential relay G 1, G 2 becomes inoperative, as shown in FIG. 3, the line The terminals A and C of 3L and 4L are connected to the terminals 3L and 4L, respectively, as viewed from the zero-phase power source by the vector sum of the zero-phase currents of 3L and 4L.
A ground fault detection element that operates when the current flowing toward the inside of L (with respect to the zero-phase voltage V O ) is equal to or greater than a certain value.
I and ΣO are provided, and as shown in FIG. 4, a logical product of the operation output of the ground fault detection element ΣI and the inverted operation output of ΣO is taken by an AND circuit A 1 and the signal is used as a control amount control signal. The amount of suppression of the relays G 1 and G 2 is controlled.

【0029】この地絡検出要素ΣI,ΣOは表2に示す
ように、いずれの系統状態でも零相循環電流IOthは
全く入力として入ってこない。(IOthは循環電流で
あるため、3Lと4Lの電流の向きが反対となり、ベク
トル和をとることで完全に消去される。)。
[0029] The ground fault detection element ΣI, ΣO, as shown in Table 2, the zero-phase circulating current I O th in any of the system state does not come entered exactly as input. (For I O th is circulating current, the direction of the current of 3L and 4L is opposite, is completely erased by taking the vector sum.).

【0030】このため、内部事故では地絡検出要素ΣI
は0が入力となり,地絡検出要素ΣOは2IF2が入力と
なりΣIは動作し、ΣOは動作しない。また外部事故で
は地絡検出要素ΣIはIF/2+IF/2=IFとなり、
内部事故同様動作する。ただし、地絡検出要素ΣOは同
様にIFの入力となるが、零相電圧VOに対し内部事故と
は位相が反対となるため動作しない。従って図4に示す
ように地絡検出要素ΣIとΣOの反転の動作出力の論理
積である抑制量制御信号によりリレーG1,G2の抑制量
を制御することにより図6(b)のような動作点のずれ
を防止することができ、リレーG1,G2は正しく動作す
ることが可能となる。
Therefore, in the case of an internal accident, the ground fault detecting element ΔI
Is 0, 2I F2 is input to the ground fault detection element ΣO, ΣI operates, and ΣO does not operate. The element ΣI out ground fault in the external accident I F / 2 + I F / 2 = I F next,
It works like an internal accident. However, although the ground fault detecting elements ΣO the same in the I F input, does not work because the phase is opposite to the internal fault with respect to the zero-phase voltage V O. Therefore, as shown in FIG. 4, by controlling the suppression amounts of the relays G 1 and G 2 by the suppression amount control signal which is the logical product of the operation outputs of the ground fault detection elements ΣI and 検 出 O, as shown in FIG. It is possible to prevent a significant shift of the operating point, and the relays G 1 and G 2 can operate correctly.

【0031】抑制量の制御は系統の定数(IFの大き
さ、IOthの最大値、等)により予め整定しておく。
例えばIOthが0のときの抑制量は|IF1|+|IF2
|≒|IF|となることから|IF|以上の抑制量はカッ
トする。また、外部故障における電流がCT飽和等の問
題がない場合には抑制量を0にするなどの設定をする。
The suppression of the control constant of the system (I F of magnitude, the maximum value of I O th, etc.) in advance settling by.
For example inhibition of the time of I O th is 0 | I F1 | + | I F2
Since | ≒ | I F |, the suppression amount equal to or greater than | I F | is cut. If there is no problem such as CT saturation or the like in the current due to an external failure, the setting is made such that the suppression amount is set to zero.

【0032】[0032]

【発明の効果】本発明の地絡保護リレーは、上述のよう
に構成されているので、送電線の併架系統において零相
循環電流の影響を受けることなく地絡保護できる。ま
た、異電源(超高圧)系等との併架送電線、同一電源に
接続される高抵抗接地併架送電線などいずれの系統構成
をもつ送電線に適用できる。
Since the ground fault protection relay of the present invention is constructed as described above, the ground fault protection can be performed without being affected by the zero-phase circulating current in a transmission line parallel system. Further, the present invention can be applied to a transmission line having any system configuration, such as an overhead transmission line with a different power source (ultra high voltage) system or the like, or a high resistance grounding overhead transmission line connected to the same power source.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1にかかる変化幅差動式の地絡保護
リレーの構成図。
FIG. 1 is a configuration diagram of a variable-width differential ground fault protection relay according to a first embodiment;

【図2】同リレーの動作を説明するための電圧、電流ベ
クトル図。
FIG. 2 is a voltage and current vector diagram for explaining the operation of the relay.

【図3】実施の形態2にかかる地絡保護リレー構成図。FIG. 3 is a configuration diagram of a ground fault protection relay according to a second embodiment;

【図4】同リレーの抑制量制御ブロック図。FIG. 4 is a block diagram of a suppression amount control of the relay.

【図5】従来例にかかる地絡差動リレーの構成図。FIG. 5 is a configuration diagram of a ground fault differential relay according to a conventional example.

【図6】地絡保護リレーの動作点移動説明図。FIG. 6 is an explanatory diagram of an operation point movement of a ground fault protection relay.

【符号の説明】[Explanation of symbols]

1,G2,Ga,Gc…地絡保護リレー ΣI,MO…地絡検出要素 IOth…零相循環電流 IF…内部事故電流 G 1, G 2, G a , G c ... ground fault protection relay .SIGMA.I, MO ... ground detection element I O th ... zero-phase circulation current I F ... internal fault current

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平行2回線の端子にそれぞれ設けられ、
それぞれ回線の各端子電流の差を動作量とすると共に各
回線の各端子電流の和に抑制率を掛けた値を抑制量と
し、この動作量から抑制量を差し引いた値が所定の値以
上となった場合に動作出力する地絡保護リレーにおい
て、 数サイクル前の零相循環電流を線間電圧を基準としてを
ベクトル量としてメモリに記憶し、 各端子の零相電流から前記メモリに記憶された零相循環
電流のベクトル量を差し引き前記抑制量に含まれる零相
循環電流を除去するすることを特徴とする地絡保護リレ
ー。
1. A terminal provided for two parallel lines,
The difference between the terminal currents of each line is set as the operation amount, and the value obtained by multiplying the sum of the terminal currents of each line by the suppression rate is set as the suppression amount, and the value obtained by subtracting the suppression amount from this operation amount is equal to or greater than a predetermined value. In a ground fault protection relay that outputs an operation when the power supply becomes zero, the zero-phase circulating current several cycles ago is stored in a memory as a vector amount with reference to the line voltage, and stored in the memory from the zero-phase current of each terminal. A ground fault protection relay, wherein a vector amount of a zero-phase circulating current is subtracted to remove a zero-phase circulating current included in the suppression amount.
【請求項2】 平行2回線の端子にそれぞれ設けられ、
それぞれ各回線の端子電流の差を動作量とすると共に各
回線の各端子電流の和に抑制率を掛けた値を抑制量と
し、この動作量から抑制量を差し引いた値が所定の値以
上となった場合に動作出力する地絡保護リレーにおい
て、 各端子にそれぞれ両回線の零相電流のベクトル和によっ
て両回線の内部方向の向かって流れる電流が所定値以上
であるとき動作する地絡検出要素を設け、 この電源側端子の地絡検出要素の動作出力と負荷側端子
の地絡検出要素の動作出力を反転させたものとの論理積
をとり前記抑制量を制御することを特徴とする地絡保護
リレー。
2. A terminal provided for each of two parallel lines,
The difference between the terminal currents of the respective lines is used as the operation amount, and the value obtained by multiplying the sum of the respective terminal currents of the respective lines by the suppression ratio is used as the suppression amount. A ground fault protection relay that operates and outputs in the event of a fault, a ground fault detection element that operates when the current flowing toward the inside of both lines is equal to or greater than a predetermined value due to the vector sum of the zero-phase currents of both lines at each terminal. And controlling the suppression amount by taking the logical product of the operation output of the ground fault detection element of the power supply terminal and the inverted operation output of the ground fault detection element of the load side terminal. Fault protection relay.
JP2000176294A 2000-06-13 2000-06-13 Ground protective relay Pending JP2001359235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176294A JP2001359235A (en) 2000-06-13 2000-06-13 Ground protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000176294A JP2001359235A (en) 2000-06-13 2000-06-13 Ground protective relay

Publications (1)

Publication Number Publication Date
JP2001359235A true JP2001359235A (en) 2001-12-26

Family

ID=18678031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176294A Pending JP2001359235A (en) 2000-06-13 2000-06-13 Ground protective relay

Country Status (1)

Country Link
JP (1) JP2001359235A (en)

Similar Documents

Publication Publication Date Title
JP2565870B2 (en) Differential relay
EP2175538A2 (en) Improved line current differential protective relaying method and relay for in-zone tapped transformers
US5566082A (en) Method of detecting a fault section of busbar
JP3857195B2 (en) Distance relay device
KR100782354B1 (en) System and method for determining areas of vulnerability for voltage sags assessment, and a medium having computer readable program for executing the method
CA2427821C (en) Current compensation method and device for power system protection
JP2001359235A (en) Ground protective relay
KR102115243B1 (en) Protection relay device
US7206177B2 (en) Device and method for protection against overcurrents in an electrical energy distribution cabinet
JP5578888B2 (en) Current differential relay
JP4836663B2 (en) Loop system protection device and method
Kasztenny et al. Digital low-impedance bus differential protection–Review of principles and approaches
JP2916148B2 (en) Line selection relay
JP2675207B2 (en) Ratio differential relay system
KR200347633Y1 (en) Hardware structure of intelligent electronic device for fault detection and selective auto-reclosure
JP2006217714A (en) Power system operation method
JP2692805B2 (en) Differential relay
JPS59204418A (en) Trestle multichannel ground-fault protecting relay
JP2550080B2 (en) Protective relay
JPH0532972B2 (en)
JPH1032922A (en) Ratio differential relay
JP3940492B2 (en) Digital type protective relay
JP2011015528A (en) Current differential relay system for protecting transmission line
JPH1141791A (en) Line selection ground fault protective relay
JPH09149539A (en) Differential relay