JP2001358225A - Dual-gate semiconductor device having barrier layer containing nitrogen and oxygen and method of manufacturing the same - Google Patents

Dual-gate semiconductor device having barrier layer containing nitrogen and oxygen and method of manufacturing the same

Info

Publication number
JP2001358225A
JP2001358225A JP2001105631A JP2001105631A JP2001358225A JP 2001358225 A JP2001358225 A JP 2001358225A JP 2001105631 A JP2001105631 A JP 2001105631A JP 2001105631 A JP2001105631 A JP 2001105631A JP 2001358225 A JP2001358225 A JP 2001358225A
Authority
JP
Japan
Prior art keywords
gate
barrier layer
diffusion barrier
forming
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001105631A
Other languages
Japanese (ja)
Inventor
Sailesh Chittipeddi
チッティぺッディ サイレッシュ
Yi Ma
マ イー
Pradip K Roy
ケー.ロイ プラディップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agere Systems LLC
Original Assignee
Agere Systems Guardian Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agere Systems Guardian Corp filed Critical Agere Systems Guardian Corp
Publication of JP2001358225A publication Critical patent/JP2001358225A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Abstract

PROBLEM TO BE SOLVED: To provide a dual-gate semiconductor device capable of solving a problem associated with boron diffusion, and a method of manufacturing the same. SOLUTION: In a form of embodiment, the dual-gate semiconductor device contains a low-voltage region where a first gate dielectric are formed thereon and a diffusion barrier layer containing nitrogen and oxygen is formed on the first gate dielectric, and a high-voltage region where a second gate dielectric having a thickness thicker than that of the first gate dielectric is formed thereon and the diffusion barrier layer does not exist.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、概して半導体装置
に関し、特にゲート誘電体上に窒素および酸素含有障壁
層が形成されたデュアルゲート半導体装置に関する。
FIELD OF THE INVENTION The present invention relates generally to semiconductor devices, and more particularly to a dual gate semiconductor device having a nitrogen and oxygen containing barrier layer formed on a gate dielectric.

【0002】[0002]

【従来の技術】集積回路(IC)産業において、1つの
集積回路装置上にデュアルゲート酸化物層を集積するこ
とが必要になってきた。デュアルゲート酸化物処理を実
行する1つの動機づけは、高性能トランジスタが薄いゲ
ート誘電体領域を必要とし、かつ低い電圧(例えば、
1.8V〜2.5V)で動作する一方で、大抵の従来か
らの外部周辺装置は、一般に3.3V〜5.0V等のよ
り高い動作電圧を必要とする、ということである。低電
圧高性能の金属酸化膜半導体(MOS)トランジスタを
それより電圧の高い装置にインタフェースしている場
合、ICの入力および出力(I/O)バッファは、一般
に、高い方の外部周辺装置の電圧と互換性のあるより厚
いゲート誘電体領域を含むよう設計されるが、一方で、
極薄ゲート酸化膜を有する低電圧トランジスタが設計さ
れている。更に、最近のマイクロコントローラユニット
およびデジタル信号プロセッサは、いくつか異なるタイ
プのテクノロジを1つの集積回路上に集積している。例
えば、目下、高速ロジック、パワーロジック、スタティ
ックランダムアクセスメモリ、不揮発性メモリ、埋込み
ダイナミックランダムアクセスメモリ、アナログ回路、
および他の装置およびテクノロジに対し、同じ集積回路
ダイ上に集積することが考慮されている。これら装置の
多くは、異なるゲート誘電体処理および異なるゲート誘
電体層を必要とする。
2. Description of the Related Art In the integrated circuit (IC) industry, it has become necessary to integrate dual gate oxide layers on a single integrated circuit device. One motivation for performing dual gate oxide processing is that high performance transistors require thin gate dielectric regions and require low voltage (eg,
While operating at 1.8V to 2.5V), most conventional external peripherals generally require higher operating voltages, such as 3.3V to 5.0V. When interfacing a low voltage, high performance metal oxide semiconductor (MOS) transistor to a higher voltage device, the input and output (I / O) buffers of the IC typically require higher external peripheral device voltages. Designed to include a thicker gate dielectric region compatible with
Low voltage transistors with ultra-thin gate oxides have been designed. Further, modern microcontroller units and digital signal processors integrate several different types of technology on a single integrated circuit. For example, high-speed logic, power logic, static random access memory, non-volatile memory, embedded dynamic random access memory, analog circuits,
And other devices and technologies are contemplated for integration on the same integrated circuit die. Many of these devices require different gate dielectric processing and different gate dielectric layers.

【0003】[0003]

【発明が解決しようとする課題】デュアルゲート半導体
装置は設計の問題を十分に対処してきたが、問題が無い
わけではない。例えば、低電圧トランジスタのゲート酸
化膜厚は、実質的に低減し、かつ低減し続けている。こ
れら極薄酸化膜には、しばしばより厚いゲート酸化膜に
は関連しないホウ素拡散問題が発生することが分かっ
た。更に、高品質を実現するよう、極薄ゲート酸化膜は
挑戦してきた。容易に理解されるように、ゲート電極は
一般に、ソースおよびドレイン領域と同じイオン注入プ
ロセスによってドープされる。例えば、ホウ素は、しば
しば、Pチャネル金属酸化膜半導体電界効果トランジス
タ(MOSFET)においてソースおよびドレインを形
成するよう注入され、また、MOSFETのゲート電極
に注入されることによりP型ポリシリコンゲート電極を
生成する。しかしながら、ホウ素はかかる「軽い」原子
であるため、ポリシリコンゲート電極に注入されるホウ
素は、粒界に沿って下方におよびゲート酸化膜内に容易
に拡散する可能性がある。非I/Oトランジスタのゲー
ト酸化膜は、連続的に低減しているため、目下、ホウ素
を下にあるチャネル領域に拡散しないようにすることが
できない。ゲート電極からチャネル領域への追加のホウ
素拡散は、半導体装置の装置パラメータ、特に閾値電
圧、ゲート漏れ電流およびトランジスタ信頼性に影響を
与える可能性がある。
While dual gate semiconductor devices have adequately addressed design problems, they are not without their problems. For example, the gate oxide thickness of low voltage transistors has substantially decreased and continues to decrease. These ultra-thin oxides have been found to have boron diffusion problems that are often not associated with thicker gate oxides. Furthermore, ultra-thin gate oxides have been challenging to achieve high quality. As will be readily appreciated, the gate electrode is generally doped by the same ion implantation process as the source and drain regions. For example, boron is often implanted to form the source and drain in a P-channel metal oxide semiconductor field effect transistor (MOSFET) and creates a P-type polysilicon gate electrode by being implanted into the MOSFET gate electrode. I do. However, because boron is such a "light" atom, boron implanted into the polysilicon gate electrode can easily diffuse down along the grain boundaries and into the gate oxide. Since the gate oxide of non-I / O transistors is continuously reduced, it is not currently possible to prevent boron from diffusing into the underlying channel region. Additional boron diffusion from the gate electrode to the channel region can affect device parameters of the semiconductor device, particularly the threshold voltage, gate leakage current and transistor reliability.

【0004】従って、本技術分野で必要とされているも
のは、現デュアルゲート半導体装置に関連する問題が発
生しないデュアルゲート半導体装置である。
Therefore, what is needed in the art is a dual gate semiconductor device that does not suffer from the problems associated with current dual gate semiconductor devices.

【0005】[0005]

【課題を解決するための手段】従来技術の上述した欠点
に対処するために、本発明は、デュアルゲート半導体装
置およびその製造方法を提供する。1つの実施の形態で
は、デュアルゲート半導体装置は、窒素および酸素が上
に形成されている拡散障壁層を有する第1のゲート誘電
体が上に形成されている低電圧領域と、第1のゲート誘
電体より厚い第2のゲート誘電体が上に形成されてお
り、拡散障壁層が無い高電圧領域と、を含む。
SUMMARY OF THE INVENTION To address the above-mentioned shortcomings of the prior art, the present invention provides a dual gate semiconductor device and a method of manufacturing the same. In one embodiment, a dual gate semiconductor device comprises a low voltage region having a first gate dielectric formed thereon having a diffusion barrier layer having nitrogen and oxygen formed thereon, and a first gate region. A second gate dielectric thicker than the dielectric is formed thereon and includes a high voltage region without a diffusion barrier layer.

【0006】従って、1つの態様において、本発明は、
第1のゲート誘電体上に形成された窒素および酸素を含
む拡散障壁層を有するデュアルゲート半導体装置とその
製造方法とを提供し、ゲート漏れを低減しホウ素注入を
制限することによって、デュアルゲート半導体装置の寿
命を延長する。
Accordingly, in one aspect, the present invention provides:
Dual gate semiconductor device having a diffusion barrier layer containing nitrogen and oxygen formed on a first gate dielectric and a method of fabricating the same to reduce gate leakage and limit boron implantation Extend the life of the device.

【0007】1つの特定の実施の形態では、第2のゲー
ト誘電体は、約3.5nmの厚さを有し、第1のゲート
誘電体は、約1.0nmから約2.0nmに亙る厚さを
有する。代替的な実施の形態では、第1のゲート誘電体
は緻密化された酸化物である。他の実施の形態では、第
1のゲート誘電体には、ホウ素がドープされたソース/
ドレイン領域が関連している。他の実施の形態では、拡
散障壁層は約0.5nmから約1.0nmに亙る厚さを
有しており、低圧化学気相成長(LPCVD)プロセ
ス、プラズマ化学気相成長(PECVD)プロセスまた
は他の同様のプロセスを用いて堆積されてよい。好まし
い実施の形態では、拡散障壁層は、酸窒化膜障壁層であ
る。
[0007] In one particular embodiment, the second gate dielectric has a thickness of about 3.5 nm and the first gate dielectric ranges from about 1.0 nm to about 2.0 nm. Having a thickness. In an alternative embodiment, the first gate dielectric is a densified oxide. In another embodiment, the first gate dielectric comprises a boron-doped source /
The drain region is relevant. In other embodiments, the diffusion barrier layer has a thickness ranging from about 0.5 nm to about 1.0 nm, and includes a low pressure chemical vapor deposition (LPCVD) process, a plasma chemical vapor deposition (PECVD) process, It may be deposited using other similar processes. In a preferred embodiment, the diffusion barrier layer is an oxynitride barrier layer.

【0008】他の態様では、第1および第2のゲート誘
電体は、酸化物を含むが、好ましい態様では、第1およ
び第2の誘電体は二酸化珪素を含む。他の態様では、拡
散障壁層の上に第1のゲートが形成される。代替的な態
様では、第1のゲートはP型チャネル金属酸化膜半導体
(PMSO)装置のゲートを形成する。代替的な態様で
は、第2のゲート誘電体の上に第2のゲートが形成され
る。
[0008] In another aspect, the first and second gate dielectrics comprise an oxide, but in a preferred aspect, the first and second dielectrics comprise silicon dioxide. In another aspect, a first gate is formed over the diffusion barrier layer. In an alternative aspect, the first gate forms a gate of a P-type channel metal oxide semiconductor (PMSO) device. In an alternative aspect, a second gate is formed over the second gate dielectric.

【0009】本発明の他の実施の形態は、内部に上述し
たデュアルゲート半導体装置が設けられた集積回路を提
供する。本集積回路は、(1)基板上に形成された上記
デュアルゲート半導体装置と、(2)デュアルゲートト
ランジスタ上に形成された誘電体層と、(3)誘電体層
内に形成され、デュアルゲートトランジスタを相互接続
することにより演算集積回路を形成する相互接続構造
と、を含む。他の実施の形態では、集積回路は更に、C
MOS装置、BiCMOS装置、バイポーラ装置または
他の同様の装置を含む。
Another embodiment of the present invention provides an integrated circuit in which the above-described dual gate semiconductor device is provided. The present integrated circuit includes (1) the dual gate semiconductor device formed on a substrate, (2) a dielectric layer formed on a dual gate transistor, and (3) a dual gate semiconductor formed in the dielectric layer. An interconnect structure forming an arithmetic integrated circuit by interconnecting the transistors. In another embodiment, the integrated circuit further comprises C
Includes MOS devices, BiCMOS devices, bipolar devices or other similar devices.

【0010】上述したことは、当業者が以下の本発明の
詳細な説明をより理解できるよう、本発明の好ましい特
徴および代替的な特徴をむしろおおまかに概説した。発
明の特許請求の範囲の主題を形成する本発明の追加の特
徴は、下に説明する。当業者は、開示された概念および
特定の実施の形態を、本発明の同じ目的を成し遂げる他
の構成を設計しまたは変更する基礎として容易に使用す
ることができる、ということを理解するはずである。ま
た、当業者は、かかる等価な構成がその最も広い形態で
発明の精神および範囲を逸脱しない、ということを認め
るはずである。
The foregoing has outlined rather broadly preferred and alternative features of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features of the invention forming the subject of the claims of the invention are set forth below. Those skilled in the art will appreciate that the disclosed concepts and particular embodiments can be readily used as a basis for designing or modifying other configurations that accomplish the same purpose of the invention. . Also, those skilled in the art will recognize that such equivalent constructions do not depart from the spirit and scope of the invention in its broadest form.

【0011】本発明をより完全に理解するために、ここ
で添付の図面と共に以下の説明を参照する。
For a more complete understanding of the present invention, reference is now made to the following description taken in conjunction with the accompanying drawings.

【0012】[0012]

【発明の実施の形態】最初に図1Aを参照すると、製造
の初期段階におけるデュアルゲート半導体装置100の
部分断面図が示されている。デュアルゲート半導体10
0は、半導体ウェハ基板105を含み、その上には、シ
ャロートレンチ分離構造110が形成されている。シャ
ロートレンチ分離構造110は、基板105の部分内に
選択的にトレンチ120を反応性イオンエッチングする
ことによって形成されてよい。そして、望ましい場合は
トレンチ120内にライナ115が形成されてよい。好
ましくは、ライナ115は、薄い熱成長二酸化珪素層か
または酸窒化物層である。そして、トレンチの大部分に
は、高密度プラズマまたは同様のプロセスを用いて、テ
トラエチルオルソシリケート(TEOS)等の誘電体充
填材料122が充填される。このTEOS材料は、トレ
ンチ分離構造110と共にもたらされる同様の手続きを
使用して、化学的機械的研磨(CMP)されるかまたは
平面化される。なお、示されているトレンチ分離構造1
10の代りに珪素の局所酸化(LOCOS)かまたはポ
リシリコンバッファ(PBL)等の他の分離方式が使用
されてもよい。また、半導体ウェハ基板105は、ウェ
ハレベルに配置された基板またはウェアレベルより上に
配置された基板を含む、デュアルゲート半導体装置10
0に配置されたいかなる基板であってもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring first to FIG. 1A, there is shown a partial cross-sectional view of a dual gate semiconductor device 100 at an early stage of fabrication. Dual gate semiconductor 10
0 includes a semiconductor wafer substrate 105 on which a shallow trench isolation structure 110 is formed. Shallow trench isolation structure 110 may be formed by selectively reactive ion etching trench 120 in a portion of substrate 105. If desired, a liner 115 may be formed in the trench 120. Preferably, liner 115 is a thin thermally grown silicon dioxide layer or an oxynitride layer. Most of the trenches are then filled with a dielectric fill material 122 such as tetraethylorthosilicate (TEOS) using high density plasma or a similar process. The TEOS material is chemically mechanically polished (CMP) or planarized using a similar procedure provided with the trench isolation structure 110. Note that the illustrated trench isolation structure 1
Instead of 10, other isolation schemes such as local oxidation of silicon (LOCOS) or polysilicon buffer (PBL) may be used. Further, the semiconductor wafer substrate 105 includes a dual gate semiconductor device 10 including a substrate arranged at a wafer level or a substrate arranged above a wear level.
Any substrate located at zero.

【0013】シャロートレンチ分離構造110の形成
後、低電圧領域125および高電圧領域130を含むデ
ュアルゲート半導体装置100の表面全体に、従来の方
法で薄い誘電体材料の第1層135が成長させられる。
更に、当業者は、デュアルゲート半導体装置100の設
計と矛盾しないものとして知られている他のあらゆる堆
積技術が使用されてよい、ということを知っている。1
つの実施の形態では、誘電体材料の第1層135は、二
酸化珪素層等の酸化物層であってよい。しかしながら、
望ましい場合は他の誘電体材料が使用されてもよい。好
ましい実施の形態では、誘電体材料の第1層135は、
約1.0nmから約2.0nmに亙る厚さを有してい
る。
After the formation of the shallow trench isolation structure 110, a first layer 135 of a thin dielectric material is grown in a conventional manner over the entire surface of the dual gate semiconductor device 100, including the low voltage region 125 and the high voltage region 130. .
Further, those skilled in the art know that any other deposition technique known to be consistent with the design of dual gate semiconductor device 100 may be used. 1
In one embodiment, the first layer 135 of dielectric material may be an oxide layer, such as a silicon dioxide layer. However,
Other dielectric materials may be used if desired. In a preferred embodiment, the first layer 135 of dielectric material comprises
It has a thickness ranging from about 1.0 nm to about 2.0 nm.

【0014】図1Bに戻ると、誘電体材料の第1層13
5上に酸素および窒素を含む拡散障壁層140を堆積し
た後の、図1Aに示す部分的に完成したデュアルゲート
半導体装置100が示されている。拡散障壁層140
は、複数の従来からの技術を使用して堆積されてよい。
例えば、低圧化学気相成長(LPCVD)プロセス、プ
ラズマ化学気相成長(PECVD)プロセス、急速熱処
理CVD(RTCVD)プロセスまたは他のあらゆる同
様のプロセスが使用されてよい。拡散障壁層140は、
好ましくは約0.5nmから約1.0nmに亙る厚さを
有しているが、他の厚さも本発明の範囲内にある。好ま
しい実施の形態では、窒素および酸素拡散障壁層は、化
学式SiOXYを有する酸窒化膜である。ここで、xお
よびyは、優れた利益を得るため、ガス流量、温度およ
び他の条件を変えることによって変化してよい。
Returning to FIG. 1B, a first layer 13 of dielectric material
FIG. 1A shows the partially completed dual gate semiconductor device 100 shown in FIG. 1A after the deposition of a diffusion barrier layer 140 containing oxygen and nitrogen on 5. Diffusion barrier layer 140
May be deposited using a number of conventional techniques.
For example, a low pressure chemical vapor deposition (LPCVD) process, a plasma enhanced chemical vapor deposition (PECVD) process, a rapid thermal CVD (RTCVD) process, or any other similar process may be used. The diffusion barrier layer 140
It preferably has a thickness ranging from about 0.5 nm to about 1.0 nm, but other thicknesses are within the scope of the invention. In a preferred embodiment, the nitrogen and oxygen diffusion barrier layers are oxynitride films having the chemical formula SiO x N Y. Here, x and y may be varied by changing gas flow rates, temperatures, and other conditions to obtain superior benefits.

【0015】図2に示すように、フォトレジスト層が従
来の方法で堆積され、パターン形成され、洗い流される
ことにより、低電圧領域125上にパターン化されたフ
ォトレジスト領域210が残る。フォトレジスト領域2
10は、低電圧領域125を後に続く酸化プロセスから
保護する。そして、従来からの方法を用いて、誘電体材
料の第1層135と拡散障壁層140(図1B)とがエ
ッチングされることにより、低電圧層125上に誘電体
材料の第1層220の一部と拡散障壁層230の一部と
が残る。例えば、プラズマエッチングを使用して窒素お
よび酸素含有材料を除去することができ、フッ化水素酸
エッチングを使用して第1の誘電体材料を除去すること
ができる。エッチングに続き、フォトレジスト領域21
0が除去される。
As shown in FIG. 2, a photoresist layer is deposited, patterned, and washed away in a conventional manner, leaving a patterned photoresist region 210 over low voltage region 125. Photoresist area 2
10 protects the low voltage region 125 from a subsequent oxidation process. The first layer 135 of dielectric material and the diffusion barrier layer 140 (FIG. 1B) are then etched using conventional methods to form the first layer 220 of dielectric material on the low voltage layer 125. A part and a part of the diffusion barrier layer 230 remain. For example, plasma etching can be used to remove nitrogen and oxygen containing materials, and hydrofluoric acid etching can be used to remove the first dielectric material. Following the etching, the photoresist region 21
0 is removed.

【0016】図3を参照すると、誘電体材料の第2層3
10の成長に続く、図2に示す部分的に完成したデュア
ルゲート構造100が示されている。誘電体材料の第2
層310は、図1Aにおける誘電体材料の第1層135
と同様に従来の方法で成長させられる。誘電体材料の第
2層310は、好ましくは誘電体材料の第1層135よ
り厚い厚さまで、より好ましくは約3.5nmの厚さま
で成長させられるが、他の厚さであってもよい。更に、
窒素および酸素含有層である拡散障壁層230の部分が
酸素拡散をブロックするため、拡散障壁層230の部分
と誘電体材料の第1層220の部分との厚さは、誘電体
材料の第2層310によって少しでも影響を受ける場
合、その影響は最小限である。逆に、窒素および酸素含
有層すなわち拡散障壁層230の部分および誘電体材料
の第1層220の部分は、緻密化されてよく、上部にわ
ずかに酸化された部分320を形成してよい。このた
め、誘電体材料の第2層310は、高電圧領域130上
にのみ設けられる。
Referring to FIG. 3, a second layer 3 of dielectric material
Following the growth of 10 is the partially completed dual gate structure 100 shown in FIG. Second of dielectric material
Layer 310 is a first layer 135 of the dielectric material in FIG. 1A.
And grown in a conventional manner. The second layer of dielectric material 310 is preferably grown to a thickness greater than the first layer 135 of dielectric material, more preferably to a thickness of about 3.5 nm, but may be other thicknesses. Furthermore,
Since the portion of the diffusion barrier layer 230, which is a nitrogen and oxygen containing layer, blocks oxygen diffusion, the thickness of the portion of the diffusion barrier layer 230 and the portion of the first layer 220 of the dielectric material is equal to the thickness of the second layer of the dielectric material. If any is affected by layer 310, the effect is minimal. Conversely, portions of the nitrogen and oxygen containing layer or diffusion barrier layer 230 and portions of the first layer 220 of dielectric material may be densified, forming a slightly oxidized portion 320 on top. Therefore, the second layer 310 of the dielectric material is provided only on the high voltage region 130.

【0017】図4を参照すると、ゲート材料410を従
来の方法で堆積した後の、図3に示す部分的に完成した
デュアルゲート半導体装置100が示されている。ゲー
ト材料410は、例えばポリシリコン等、トランジスタ
装置のゲートとして目下使用されあるいは将来使用され
得るあらゆる材料であってよい。窒素および酸素含有層
である拡散障壁層230の部分と誘電体材料の第1層2
20の部分とを含む低電圧領域125へのホウ素の注入
は示されていない。両領域125,130内の全注入ス
テップの完了後、タングステンシリサイド(WSi)等
の薄キャッピング層420が従来の方法で堆積されてよ
い。そして、フォトレジストが、従来の方法で堆積さ
れ、パターン形成され、洗い流されることにより、フォ
トレジスト構造430が形成される。
Referring to FIG. 4, there is shown the partially completed dual gate semiconductor device 100 shown in FIG. 3 after the gate material 410 has been deposited in a conventional manner. The gate material 410 may be any material currently used or future used as a gate of a transistor device, such as polysilicon. Portion of diffusion barrier layer 230 which is a nitrogen and oxygen containing layer and first layer 2 of dielectric material
The implantation of boron into the low voltage region 125, including the 20 portions, is not shown. After completion of all implant steps in both regions 125, 130, a thin capping layer 420, such as tungsten silicide (WSi), may be deposited in a conventional manner. The photoresist is then deposited, patterned, and washed away in a conventional manner to form a photoresist structure 430.

【0018】そして、図4に示す部分的に完成したデュ
アルゲート半導体装置100が、従来の方法でエッチン
グされ、フォトレジスト430が除去されることによ
り、図5に示す完成したデュアルゲート半導体装置50
0が残る。完成したデュアルゲート半導体装置500
は、それぞれ低電圧領域125および高電圧領域130
に形成された、低電圧トランジスタ装置510と高電圧
トランジスタ装置540と含む。低電圧トランジスタ装
置510は、第1のゲート誘電体515と第1のゲート
誘電体515上に形成された障壁層520とを含む。上
述したように、第1のゲート誘電体は、約1.0nmか
ら約2.0nmに亙る厚さを有し、障壁層520は、約
0.5nmから約1.0nmに亙る厚さを有している。
低電圧トランジスタ装置510は、更に、障壁層520
上に形成された第1のゲート525と第1のゲート52
5上に形成された第1のキャッピング層530とを含
む。第1のゲート525内には、上述したように、ホウ
素が拡散されている。これにより、第1のゲート525
は、P型チャネル金属酸化膜半導体(PMOS)のゲー
トを形成してよい。そのため、障壁層520は、ホウ素
が下にあるチャネル領域に拡散しないようにする。従っ
て、閾値電圧、ゲート漏れ電流およびトランジスタ信頼
性は、影響を受けず、低電圧トランジスタ510は非常
に高速でかつ低電圧で動作することができる。
Then, the partially completed dual gate semiconductor device 100 shown in FIG. 4 is etched by a conventional method, and the photoresist 430 is removed, thereby completing the completed dual gate semiconductor device 50 shown in FIG.
0 remains. Completed dual gate semiconductor device 500
Are the low voltage region 125 and the high voltage region 130, respectively.
, A low-voltage transistor device 510 and a high-voltage transistor device 540. Low voltage transistor device 510 includes a first gate dielectric 515 and a barrier layer 520 formed over first gate dielectric 515. As described above, the first gate dielectric has a thickness ranging from about 1.0 nm to about 2.0 nm, and the barrier layer 520 has a thickness ranging from about 0.5 nm to about 1.0 nm. are doing.
The low voltage transistor device 510 further includes a barrier layer 520
The first gate 525 and the first gate 52 formed thereon
5 formed on the first capping layer 530. As described above, boron is diffused in the first gate 525. Thereby, the first gate 525
May form a gate of a P-type channel metal oxide semiconductor (PMOS). As such, the barrier layer 520 prevents boron from diffusing into the underlying channel region. Thus, threshold voltage, gate leakage current and transistor reliability are not affected, and low voltage transistor 510 can operate at very high speed and low voltage.

【0019】高電圧トランジスタ装置540は、第2の
ゲート誘電体545を含み、第2のゲート誘電体545
の上には第2のゲート550が形成されている。更に、
高電圧トランジスタ装置540には障壁層520が無
い。上述したように、第2のゲート誘電体は好ましくは
約3.5nmの厚さを有している。第1のゲート525
と同様に、第2のゲート550の上には第2のキャッピ
ング層が形成されてよい。高電圧トランジスタ装置54
0は、デュアルゲート半導体装置500を動作させるた
めに適当な量の駆動電流を提供するために、十分な酸化
物厚さを有している。
The high voltage transistor device 540 includes a second gate dielectric 545 and the second gate dielectric 545.
A second gate 550 is formed on the substrate. Furthermore,
The high voltage transistor device 540 does not have a barrier layer 520. As mentioned above, the second gate dielectric preferably has a thickness of about 3.5 nm. First gate 525
Similarly, a second capping layer may be formed on the second gate 550. High voltage transistor device 54
0 has a sufficient oxide thickness to provide an appropriate amount of drive current to operate dual gate semiconductor device 500.

【0020】図6を簡単に参照すると、本発明の原理に
従って製造されてよい、従来からの集積回路600の断
面図が示されている。集積回路600は、CMOS装
置、BiCMOS装置、バイポーラ装置または他のあら
ゆるタイプの同様な装置であってよい。また、図6に
は、低電圧トランジスタ510、高電圧トランジスタ5
40、第1のゲート誘電体515、第2のゲート誘電体
545、障壁層520および誘電体層615を含む、従
来からの集積回路600のコンポーネントが示されてい
る。誘電体層615内には相互接続構造620が形成さ
れてよい。相互接続構造620は、トランジスタ51
0,540を集積回路600の他の領域と接続する。ま
た、従来の方法で形成されたタブ623,625、ソー
ス領域633およびドレイン領域635が示されてお
り、それらはすべて基板640上に形成されている。
Referring briefly to FIG. 6, there is shown a cross-sectional view of a conventional integrated circuit 600 that may be manufactured in accordance with the principles of the present invention. Integrated circuit 600 may be a CMOS device, a BiCMOS device, a bipolar device, or any other type of similar device. FIG. 6 shows a low-voltage transistor 510 and a high-voltage transistor 5.
The components of a conventional integrated circuit 600 are shown, including 40, a first gate dielectric 515, a second gate dielectric 545, a barrier layer 520 and a dielectric layer 615. An interconnect structure 620 may be formed in the dielectric layer 615. The interconnect structure 620 includes the transistor 51
0,540 are connected to other areas of the integrated circuit 600. Also shown are tabs 623, 625, source region 633, and drain region 635 formed in a conventional manner, all of which are formed on substrate 640.

【0021】本発明を詳細に説明したが、当業者は、そ
の最も広い形態で本発明の精神および範囲を逸脱するこ
となく、本明細書において種々の変更および置換を行う
ことができる、ということを理解するはずである。
Having described the invention in detail, those skilled in the art will appreciate that various modifications and substitutions can be made in this specification without departing from the spirit and scope of the invention in its broadest form. You should understand.

【図面の簡単な説明】[Brief description of the drawings]

【図1A】製造の初期段階におけるデュアルゲート半導
体装置の部分断面図を示す。
FIG. 1A shows a partial cross-sectional view of a dual gate semiconductor device at an early stage of manufacturing.

【図1B】誘電体材料の第1層上に窒素および酸素含有
層を従来からの方法で堆積した後の、図1Aに示す部分
的に完成したデュアルゲート半導体装置を示す。
FIG. 1B shows the partially completed dual-gate semiconductor device shown in FIG. 1A after a conventional method of depositing a nitrogen and oxygen containing layer on a first layer of dielectric material.

【図2】窒素および酸素含有層と誘電体材料の第1層と
をエッチングするプロセスを示す。
FIG. 2 illustrates a process for etching a nitrogen and oxygen containing layer and a first layer of a dielectric material.

【図3】誘電体材料の第2の層の成長につづく、図2に
示す部分的に完成したデュアルゲート構造を示す。
FIG. 3 shows the partially completed dual gate structure shown in FIG. 2 following the growth of a second layer of dielectric material.

【図4】ゲート材料を従来からの方法で堆積した後の、
図3に示す部分的に完成したデュアルゲート半導体装置
を示す。
FIG. 4 after deposition of the gate material in a conventional manner;
4 shows the partially completed dual gate semiconductor device shown in FIG.

【図5】完成したデュアルゲート半導体装置を示す。FIG. 5 shows a completed dual gate semiconductor device.

【図6】本発明の原理に従って製造されてよい、従来か
らの集積回路の断面図を示す。
FIG. 6 illustrates a cross-sectional view of a conventional integrated circuit that may be manufactured in accordance with the principles of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 サイレッシュ チッティペッディ アメリカ合衆国 18104 ペンシルヴァニ ア,アレンタウン,レネイプ トレイル 308 (72)発明者 イー マ アメリカ合衆国 32837 フロリダ,オー ランド,ランヨン サークル 2569 (72)発明者 プラディップ ケー.ロイ アメリカ合衆国 32819 フロリダ,オー ランド,ヒデン アイビー コート 7706 Fターム(参考) 4M104 AA01 BB01 CC05 EE03 EE14 FF14 GG09 GG10 GG13 GG14 GG15 GG16 HH04 5F048 AA07 AC01 AC03 AC05 BA01 BB01 BB07 BB08 BB11 BB12 BB16 BB17 BC15 BG13 BG14 5F058 BA05 BD01 BD04 BD15 BF04 BF07 BF25 BF29 BF30 BJ01 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Silesh Chitipeddi United States 18104 Pennsylvania, Allentown, Leneip Trail 308 (72) Inventor Ema United States 32837 Florida, Orlando, Runyon Circle 2569 (72) Inventor Plastic Dip K. Roy United States 32819 Florida, Orlando, Hidden Ivy Court 7706 F-term (reference) 4M104 AA01 BB01 CC05 EE03 EE14 FF14 GG09 GG10 GG13 GG14 GG15 GG16 HH04 5F048 AA07 AC01 AC03 AC05 BA01 BB01 BB07 BB08 BB11 BB11 BB11 BB11 BB11 BB11 BB11 BB11 BB11 BD04 BD15 BF04 BF07 BF25 BF29 BF30 BJ01

Claims (34)

【特許請求の範囲】[Claims] 【請求項1】 デュアルゲート半導体装置であって、 上に第1のゲート誘電体が形成されており、該第1のゲ
ート誘電体の上に窒素および酸素を含む拡散障壁層が形
成されている低電圧領域と、 該第1のゲート誘電体より厚い厚さを有する第2のゲー
ト誘電体が上に形成されており、前記拡散障壁層が無い
高電圧領域と、を具備することを特徴とするデュアルゲ
ート半導体装置。
1. A dual-gate semiconductor device, wherein a first gate dielectric is formed thereon, and a diffusion barrier layer containing nitrogen and oxygen is formed on the first gate dielectric. A low-voltage region and a high-voltage region having a second gate dielectric having a greater thickness than the first gate dielectric formed thereon and without the diffusion barrier layer. Dual-gate semiconductor device.
【請求項2】 前記第2のゲート誘電体は、約3.5n
mの厚さを有し、前記第1のゲート誘電体は、約1.0
nmから約2.0nmに亙る厚さを有する請求項1記載
のデュアルゲート半導体装置。
2. The method of claim 2, wherein the second gate dielectric has a thickness of about 3.5n.
m, and the first gate dielectric has a thickness of about 1.0 m.
The dual gate semiconductor device according to claim 1, having a thickness ranging from about nm to about 2.0 nm.
【請求項3】 前記拡散障壁層は、一般式SiOXY
有する酸窒化物障壁層であり、XおよびYはガス流量お
よび温度を変えることによって変化する可能性がある請
求項1記載のデュアルゲート半導体装置。
3. The diffusion barrier layer according to claim 1, wherein the diffusion barrier layer is an oxynitride barrier layer having the general formula SiO X N Y , wherein X and Y may be changed by changing a gas flow rate and a temperature. Dual gate semiconductor device.
【請求項4】 前記酸窒化物障壁層は、約0.5nmか
ら約1.0nmに亙る厚さを有する請求項3記載のデュ
アルゲート半導体装置。
4. The dual gate semiconductor device according to claim 3, wherein said oxynitride barrier layer has a thickness ranging from about 0.5 nm to about 1.0 nm.
【請求項5】 前記第1および第2のゲート誘電体は酸
化物である請求項1記載のデュアルゲート半導体装置。
5. The dual gate semiconductor device according to claim 1, wherein said first and second gate dielectrics are oxides.
【請求項6】 前記酸化物は二酸化珪素である請求項5
記載のデュアルゲート半導体装置。
6. The method according to claim 5, wherein the oxide is silicon dioxide.
The dual gate semiconductor device according to the above.
【請求項7】 前記拡散障壁層の上に形成された第1の
ゲートを更に含むことを特徴とする請求項1記載のデュ
アルゲート半導体装置。
7. The dual gate semiconductor device according to claim 1, further comprising a first gate formed on said diffusion barrier layer.
【請求項8】 前記第2のゲート誘電体の上に形成され
た第2のゲートを更に含むことを特徴とする請求項7記
載のデュアルゲート半導体装置。
8. The dual gate semiconductor device according to claim 7, further comprising a second gate formed on said second gate dielectric.
【請求項9】 前記第1のゲートは、P型チャネル金属
酸化膜半導体(PMOS)装置のゲートを形成する請求
項7記載のデュアルゲート半導体装置。
9. The dual gate semiconductor device according to claim 7, wherein said first gate forms a gate of a P-type channel metal oxide semiconductor (PMOS) device.
【請求項10】 前記第1のゲートに関連しホウ素がド
ープされたソース/ドレイン領域を更に含むことを特徴
とする請求項9記載のデュアルゲート半導体装置。
10. The dual gate semiconductor device of claim 9, further comprising a boron doped source / drain region associated with said first gate.
【請求項11】 前記拡散障壁層はホウ素注入を抑制す
る請求項10記載のデュアルゲート半導体装置。
11. The dual gate semiconductor device according to claim 10, wherein said diffusion barrier layer suppresses boron implantation.
【請求項12】 前記第1のゲート誘電体は緻密化され
た酸化物である請求項1記載のデュアルゲート半導体装
置。
12. The dual gate semiconductor device according to claim 1, wherein said first gate dielectric is a densified oxide.
【請求項13】 デュアルゲート半導体装置を形成する
方法であって、 該デュアルゲート半導体装置の低電圧領域の少なくとも
一部に亙って第1のゲート誘電体を形成することと、 該第1のゲート誘電体上に窒素および酸素を含む拡散障
壁層を形成することと、 デュアルゲート半導体装置の高電圧領域の少なくとも一
部の上に、該第1のゲート誘電体の厚さより厚い第2の
ゲート誘電体を形成し、該高電圧領域には前記拡散障壁
層を形成しないことと、を含むことを特徴とする方法。
13. A method for forming a dual gate semiconductor device, comprising: forming a first gate dielectric over at least a portion of a low voltage region of the dual gate semiconductor device; Forming a diffusion barrier layer comprising nitrogen and oxygen on the gate dielectric; and forming a second gate over at least a portion of the high voltage region of the dual gate semiconductor device, the second gate being thicker than the first gate dielectric. Forming a dielectric and not forming said diffusion barrier layer in said high voltage region.
【請求項14】 前記第1および第2のゲート誘電体を
形成することは、該第1のゲート誘電体を約1.0nm
から約2.0nmに亙る厚さに形成することと、該第2
のゲート誘電体を約3.5nmの厚さに形成すること
と、を含む請求項13記載の方法。
14. The method of claim 1, wherein forming the first and second gate dielectrics comprises removing the first gate dielectric by about 1.0 nm.
To a thickness ranging from about 2.0 nm to about 2.0 nm;
Forming said gate dielectric to a thickness of about 3.5 nm.
【請求項15】 拡散障壁層を形成することは、一般式
SiOXYを有する酸窒化物拡散障壁層を形成すること
を含み、XおよびYはガス流量および温度を変えること
によって変化する可能性がある請求項13記載の方法。
15. Forming a diffusion barrier layer comprises forming an oxynitride diffusion barrier layer having the general formula SiO x N Y , wherein X and Y can be changed by changing gas flow rates and temperatures. 14. The method according to claim 13, wherein the method comprises:
【請求項16】 酸窒化物拡散障壁層を形成すること
は、該酸窒化物膜拡散障壁層を約0.5nmから約1.
0nmに亙る厚さに形成することを含む請求項15記載
の方法。
16. The step of forming an oxynitride diffusion barrier layer comprises forming the oxynitride film diffusion barrier layer from about 0.5 nm to about 1.
The method of claim 15 including forming to a thickness of over 0 nm.
【請求項17】 拡散障壁層を形成することは、該拡散
障壁層を約0.5nmから約1.0nmに亙る厚さに形
成することを含む請求項13記載の方法。
17. The method of claim 13, wherein forming the diffusion barrier layer comprises forming the diffusion barrier layer to a thickness ranging from about 0.5 nm to about 1.0 nm.
【請求項18】 第1および第2のゲート誘電体を形成
することは、酸化物を形成することを含む請求項13記
載の方法。
18. The method of claim 13, wherein forming the first and second gate dielectrics comprises forming an oxide.
【請求項19】 酸化物を形成することは、二酸化珪素
を形成することを含む請求項18記載の方法。
19. The method of claim 18, wherein forming an oxide comprises forming silicon dioxide.
【請求項20】 前記拡散障壁層の上に第1のゲートを
形成することを更に含むことを特徴とする請求項13記
載の方法。
20. The method of claim 13, further comprising forming a first gate over said diffusion barrier layer.
【請求項21】 前記第2のゲート誘電体の上に第2の
ゲートを形成することを更に含むことを特徴とする請求
項13記載の方法。
21. The method of claim 13, further comprising forming a second gate over said second gate dielectric.
【請求項22】 第1のゲートを形成することは、P型
チャネル金属酸化膜半導体(PMOS)装置を形成する
ことを含む請求項20記載の方法。
22. The method of claim 20, wherein forming the first gate comprises forming a P-type channel metal oxide semiconductor (PMOS) device.
【請求項23】 前記第1のゲートに関連する、ホウ素
がドープされたソース/ドレイン領域を形成することを
更に含むことを特徴とする請求項22記載の方法。
23. The method of claim 22, further comprising forming a boron-doped source / drain region associated with the first gate.
【請求項24】 前記拡散障壁層を形成することは、ゲ
ート漏れを低下させ、ホウ素注入を抑制する請求項13
記載の方法。
24. The method of claim 13, wherein forming the diffusion barrier layer reduces gate leakage and suppresses boron implantation.
The described method.
【請求項25】 拡散障壁層を形成することは、低圧化
学気相成長(LPCVD)プロセスかまたはプラズマ化
学気相成長(PECVD)プロセスを用いて拡散障壁層
を形成することを含む請求項13記載の方法。
25. The method of claim 13, wherein forming the diffusion barrier layer comprises forming the diffusion barrier layer using a low pressure chemical vapor deposition (LPCVD) process or a plasma chemical vapor deposition (PECVD) process. the method of.
【請求項26】 前記第2のゲート誘電体の形成中に前
記第1のゲート誘電体を緻密化することを更に含むこと
を特徴とする請求項13記載の方法。
26. The method of claim 13, further comprising densifying said first gate dielectric during formation of said second gate dielectric.
【請求項27】 上に第1のゲート誘電体が形成されて
おり、該第1のゲート誘電体の上に窒素および酸素を含
む拡散障壁層が形成されている低電圧領域と、 該第1のゲート誘電体より厚い厚さを有する第2のゲー
ト誘電体が上に形成されており、前記拡散障壁層が無い
高電圧領域と、を含む基板上に設けられたデュアルゲー
トトランジスタと、該デュアルゲートトランジスタ上に
形成された誘電体層と、該誘電体層内に形成され、前記
デュアルゲートトランジスタを相互接続することにより
演算集積回路を形成する、相互接続構造と、を具備する
ことを特徴とする集積回路。
27. A low-voltage region having a first gate dielectric formed thereon, and a diffusion barrier layer comprising nitrogen and oxygen formed on the first gate dielectric; A dual gate transistor provided on a substrate having a second gate dielectric having a thickness greater than the thickness of the gate dielectric formed thereon and including a high voltage region without the diffusion barrier layer; A dielectric layer formed on the gate transistor, and an interconnect structure formed in the dielectric layer and interconnecting the dual gate transistors to form an arithmetic integrated circuit. Integrated circuit.
【請求項28】 前記第1のゲート誘電体は、約1.0
nmから約2.0nmに亙る厚さを有し、前記第2のゲ
ート誘電体は、約3.5nmの厚さを有する請求項27
記載の集積回路。
28. The method of claim 28, wherein the first gate dielectric has a thickness of about 1.0.
28. The semiconductor device of claim 27, wherein the second gate dielectric has a thickness ranging from about 3.5 nm to about 2.0 nm and the second gate dielectric has a thickness of about 3.5 nm.
An integrated circuit as described.
【請求項29】 前記拡散障壁層は、一般式SiOXY
を有する酸窒化物障壁層であり、XおよびYはガス流量
および温度を変えることによって変化する可能性がある
請求項27記載の集積回路。
29. The diffusion barrier layer of the general formula SiO x N Y
28. The integrated circuit according to claim 27, wherein the oxynitride barrier layer comprises: X and Y can be varied by changing gas flow rates and temperatures.
【請求項30】 前記第2のゲート誘電体の上に形成さ
れた第2のゲートを更に含むことを特徴とする請求項2
7載の集積回路。
30. The semiconductor device of claim 2, further comprising a second gate formed over the second gate dielectric.
7. Integrated circuit.
【請求項31】 前記拡散障壁層の上に形成された第1
のゲートを更に含むことを特徴とする請求項27記載の
集積回路。
31. A first electrode formed on the diffusion barrier layer.
28. The integrated circuit according to claim 27, further comprising a gate.
【請求項32】 前記第1のゲートは、P型チャネル金
属酸化膜半導体(PMOS)装置のゲートを形成する請
求項31記載の集積回路。
32. The integrated circuit of claim 31, wherein said first gate forms a gate of a P-type channel metal oxide semiconductor (PMOS) device.
【請求項33】 前記拡散障壁層は、ゲート漏れを低下
させ、ホウ素注入を抑制する請求項27記載の集積回
路。
33. The integrated circuit of claim 27, wherein said diffusion barrier layer reduces gate leakage and suppresses boron implantation.
【請求項34】 CMOS装置、BiCOMS装置およ
びバイポーラ装置からなるグループから選択された装置
を更に含むことを特徴とする請求項27記載の集積回
路。
34. The integrated circuit of claim 27, further comprising a device selected from the group consisting of a CMOS device, a BiCOMS device, and a bipolar device.
JP2001105631A 2000-04-04 2001-04-04 Dual-gate semiconductor device having barrier layer containing nitrogen and oxygen and method of manufacturing the same Pending JP2001358225A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54276300A 2000-04-04 2000-04-04
US09/542763 2000-04-04

Publications (1)

Publication Number Publication Date
JP2001358225A true JP2001358225A (en) 2001-12-26

Family

ID=24165182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105631A Pending JP2001358225A (en) 2000-04-04 2001-04-04 Dual-gate semiconductor device having barrier layer containing nitrogen and oxygen and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP2001358225A (en)
KR (1) KR20010095299A (en)
TW (1) TW552672B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408001B1 (en) * 2001-12-28 2003-12-01 주식회사 하이닉스반도체 Method for forming gate isolation film of semiconductor
JP2005051178A (en) * 2003-07-31 2005-02-24 Semiconductor Leading Edge Technologies Inc Semiconductor device and method for manufacturing the semiconductor device
US8125016B2 (en) 2002-06-27 2012-02-28 Renesas Electronics Corporation Semiconductor device and its manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152102A (en) * 2001-11-15 2003-05-23 Hitachi Ltd Method of manufacturing semiconductor integrated circuit device
US20150043162A1 (en) * 2013-08-12 2015-02-12 Wah Hong Industrial Corp. Central processing unit casing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408001B1 (en) * 2001-12-28 2003-12-01 주식회사 하이닉스반도체 Method for forming gate isolation film of semiconductor
US8125016B2 (en) 2002-06-27 2012-02-28 Renesas Electronics Corporation Semiconductor device and its manufacturing method
US8575677B2 (en) 2002-06-27 2013-11-05 Renesas Electronics Corporation Semiconductor device and its manufacturing method
JP2005051178A (en) * 2003-07-31 2005-02-24 Semiconductor Leading Edge Technologies Inc Semiconductor device and method for manufacturing the semiconductor device
JP4575653B2 (en) * 2003-07-31 2010-11-04 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
KR20010095299A (en) 2001-11-03
TW552672B (en) 2003-09-11

Similar Documents

Publication Publication Date Title
US6624032B2 (en) Structure and process flow for fabrication of dual gate floating body integrated MOS transistors
US6551884B2 (en) Semiconductor device including gate insulation films having different thicknesses
US7592209B2 (en) Integration of a floating body memory on SOI with logic transistors on bulk substrate
JP3944367B2 (en) Method for forming insulating film and method for manufacturing semiconductor device
US8716828B2 (en) Semiconductor device with isolation trench liner
JP2010525590A (en) Threshold adjustment for high-K gate dielectric CMOS
JP2010525591A (en) CMOS circuit with high-k gate dielectric
US7459390B2 (en) Method for forming ultra thin low leakage multi gate devices
US20010025997A1 (en) Semiconductor integrated circuit device and fabrication method
KR20040071148A (en) Semiconductor integrated circuit device and manufacturing method thereof
US8492291B2 (en) Formation of gate dielectrics with uniform nitrogen distribution
WO2009049050A2 (en) Formation of nitrogen containing dielectric layers having an improved nitrogen distribution
US6548369B1 (en) Multi-thickness silicon films on a single semiconductor-on-insulator (SOI) chip using simox
JP2001358225A (en) Dual-gate semiconductor device having barrier layer containing nitrogen and oxygen and method of manufacturing the same
JP4381491B2 (en) Method of manufacturing an integrated circuit with insulated gate field effect transistors having different gate capacitances
US20080265337A1 (en) Semiconductor device fabrication method and semiconductor device
US7393787B2 (en) Formation of nitrogen containing dielectric layers having a uniform nitrogen distribution therein using a high temperature chemical treatment
JP3916536B2 (en) LSI device manufacturing method
US20070218636A1 (en) Method for forming ultra thin low leakage multi gate devices using a masking layer over the semiconductor substrate
JP3943881B2 (en) Semiconductor device and manufacturing method thereof
US20030124793A1 (en) Method of manufacturing semiconductor device
JPH07176606A (en) Semiconductor device and fabrication thereof
US7790620B2 (en) Method for fabricating semiconductor device
JP2005537652A (en) Semiconductor device having field effect transistor and passive capacitor with reduced leakage current and improved capacitance per unit area
JPH06104259A (en) Semiconductor device