JP2001357898A - Electrode for pigment-sensitized solar battery and its manufacturing method - Google Patents

Electrode for pigment-sensitized solar battery and its manufacturing method

Info

Publication number
JP2001357898A
JP2001357898A JP2000180458A JP2000180458A JP2001357898A JP 2001357898 A JP2001357898 A JP 2001357898A JP 2000180458 A JP2000180458 A JP 2000180458A JP 2000180458 A JP2000180458 A JP 2000180458A JP 2001357898 A JP2001357898 A JP 2001357898A
Authority
JP
Japan
Prior art keywords
dye
film
particle film
transparent substrate
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000180458A
Other languages
Japanese (ja)
Inventor
Koji Kishimoto
広次 岸本
孝一 ▲高▼濱
Koichi Takahama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000180458A priority Critical patent/JP2001357898A/en
Publication of JP2001357898A publication Critical patent/JP2001357898A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a pigment-sensitized solar battery capable of enhancing photoelectric conversion efficiency. SOLUTION: This electrode for a pigment-sensitized solar battery is formed by coating a surface of a conductive transparent base material 1 with sol to provide particle films 2 thereon and causing pigment 3 to be adsorbed on or bound to surfaces of the particle films 2. On the surface of the base material 1, the particle films 2 and conductive films 4 with higher conductivity than the base material 1 are respectively provided in electrical contact with the base material 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽光または人工
光のエネルギーを電気エネルギーに変換する色素増感太
陽電池に用いられる電極及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode used in a dye-sensitized solar cell for converting energy of sunlight or artificial light into electric energy, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】太陽電池の一種として、色素増感太陽電
池は従来からよく知られている。そしてB.O’Reg
anとM.Glazelによる1991年の報告(Na
ture、353,737)以来、色素増感太陽電池に
ついて世界中で追試や改良が行なわれており、日本では
通産省工業技術院の色素を用いて増感する特許(特開平
10−92477号公報)等が知られている。
2. Description of the Related Art As a kind of solar cell, a dye-sensitized solar cell has been well known. And B. O'Reg
an and M. 1991 report by Glazel (Na
(Ture, 353, 737), dye-sensitized solar cells have been subjected to additional tests and improvements around the world, and in Japan, a patent sensitized using a dye from the Ministry of International Trade and Industry's Industrial Technology Institute (JP-A-10-92477). Etc. are known.

【0003】これらの色素増感太陽電池の電極は、フッ
素ドープした酸化スズ膜をコートした透明導電ガラスを
透明基材とし、この導電性を有する透明基材の表面に酸
化チタンなどの金属酸化物のゾルをドクターブレード法
などの方法で塗布し、これを500℃程度の温度で焼成
して粒子膜を形成することによって、作製されている。
The electrodes of these dye-sensitized solar cells are made of a transparent conductive glass coated with a fluorine-doped tin oxide film, and a metal oxide such as titanium oxide is formed on the surface of the conductive transparent substrate. Is applied by a method such as a doctor blade method, and is fired at a temperature of about 500 ° C. to form a particle film.

【0004】そして光電変換効率を向上させるために、
この電極を四塩化チタン水溶液に浸漬して処理を施すと
いう報告がある。このように四塩化チタン処理を施すこ
とによって光電変換効率が向上する原因は、粒子膜の表
面が改質されるからであるとされている。またこの粒子
膜の表面の改質が光電変換効率を向上させる原因は、色
素吸着量の増加によるものであるという説と、ゾルを塗
布した粒子膜を構成する粒子の粒子間界面の面積を拡大
することによる粒子膜内の内部抵抗の抑制効果(インタ
ーパーティクルネッキングの拡大効果)であるという説
があるが、どちらが原因の支配因子であるかは報告によ
り様々である。
In order to improve the photoelectric conversion efficiency,
There is a report that this electrode is immersed in an aqueous solution of titanium tetrachloride for treatment. The reason why the photoelectric conversion efficiency is improved by performing the titanium tetrachloride treatment in this way is considered to be that the surface of the particle film is modified. The theory that the surface modification of the particle film improves the photoelectric conversion efficiency is attributed to the increase in the amount of dye adsorbed, and the area of the interface between the particles of the particles forming the sol-coated particle film is increased. There is a theory that this is the effect of suppressing the internal resistance in the particle film (the effect of expanding interparticle necking), but which one is the controlling factor varies depending on the report.

【0005】また、電極の色素増感に用いる色素には、
例えばRu(4,4'-dicarboxil-2-2'-bipyridine)2(NC
S)2などのRu錯体が多く使用されるが、上記の特開
平10−92477号公報の特許は電極のリサイクル性
等を考慮して、この色素を有機色素に置き換えるという
ものである。
[0005] Dyes used for dye sensitization of electrodes include:
For example, Ru (4,4'-dicarboxil-2-2'-bipyridine) 2 (NC
Although Ru complexes such as S) 2 are often used, the above-mentioned patent in Japanese Patent Application Laid-Open No. Hei 10-92477 discloses that this dye is replaced with an organic dye in consideration of the recyclability of the electrode.

【0006】また、上記の電極の対極には上記と同様な
透明導電ガラスに白金を蒸着したものを用いるのが一般
的であるが、実験など簡易的には透明導電ガラスの表面
を鉛筆で黒く塗ることによってカーボンを付着させて用
いることも可能である。
As a counter electrode of the above-mentioned electrode, it is common to use a transparent conductive glass similar to that described above, on which platinum is vapor-deposited. It is also possible to attach carbon by painting and use it.

【0007】さらにこれらの電極が浸漬される電解質に
は、例えばエチレンカーボネートとアセトニトリルの混
合溶液にヨウ化テトラプロピルアンモニウムとヨウ素を
溶解したものなどが一般的に用いられるが、液漏れを防
ぐために電解質を固体化したものも報告されている。
Further, as an electrolyte in which these electrodes are immersed, for example, a solution obtained by dissolving tetrapropylammonium iodide and iodine in a mixed solution of ethylene carbonate and acetonitrile is generally used. Some have been reported to be solidified.

【0008】上記のような構成の色素増感太陽電池は、
一般の太陽電池であるP−N接合型半導体太陽電池に比
べて、製造に真空を必要としないなど、製造に必要なエ
ネルギーが小さく、またシリコン等の資源枯渇の危惧が
指摘される材料を使用する必要がなく、低コストで製造
できる新しい太陽電池として注目されている。
[0008] The dye-sensitized solar cell having the above structure is
Compared to PN junction type semiconductor solar cells, which are general solar cells, use of materials that require less energy for manufacturing, such as not requiring a vacuum for manufacturing, and are also concerned about depletion of resources such as silicon It has attracted attention as a new solar cell that can be manufactured at low cost without the need to perform it.

【0009】[0009]

【発明が解決しようとする課題】しかし、色素増感太陽
電池の光電変換効率は実用化に対して十分なものとはい
えず、さらなる光電変換効率の改善が求められているの
が現状である。
However, the photoelectric conversion efficiency of the dye-sensitized solar cell cannot be said to be sufficient for practical use, and at present it is required to further improve the photoelectric conversion efficiency. .

【0010】本発明は上記の点に鑑みてなされたもので
あり、光電変換効率を向上することができる色素増感太
陽電池用電極及びその製造方法を提供することを目的と
するものである。
The present invention has been made in view of the above points, and has as its object to provide an electrode for a dye-sensitized solar cell capable of improving photoelectric conversion efficiency and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明の請求項1に係る
色素増感太陽電池用電極は、導電性を有する透明基材の
表面にゾルをコートして粒子膜を設け、粒子膜の表面に
色素を吸着又は結合させて形成される色素増感太陽電池
用電極において、透明基材の表面に、上記粒子膜と、透
明基材より導電性の高い導電膜とが、それぞれ透明基材
と電気的に接した状態で設けられていることを特徴とす
るものである。
According to a first aspect of the present invention, there is provided an electrode for a dye-sensitized solar cell, wherein a sol is coated on the surface of a conductive transparent substrate, and a particle film is provided. In a dye-sensitized solar cell electrode formed by adsorbing or bonding a dye to the surface of a transparent substrate, the particle film, and a conductive film having higher conductivity than the transparent substrate, respectively, the transparent substrate It is characterized by being provided in an electrically contacted state.

【0012】また請求項2の発明は、請求項1におい
て、導電膜が金属膜であることを特徴とするものであ
る。
Further, the invention according to claim 2 is characterized in that, in claim 1, the conductive film is a metal film.

【0013】また請求項3の発明は、請求項1又は2に
おいて、導電膜が集電部に向かって長い形状であること
を特徴とするものである。
According to a third aspect of the present invention, in the first or second aspect, the conductive film has a shape longer toward the current collector.

【0014】また請求項4の発明は、請求項1乃至3の
いずれかにおいて、粒子膜と導電膜が透明基材の表面に
沿って交互に設けられており、隣り合う導電膜間に設け
られた粒子膜の幅が10μm以上10mm以下であるこ
とを特徴とするものである。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the particle film and the conductive film are provided alternately along the surface of the transparent substrate, and are provided between adjacent conductive films. The width of the particle film is 10 μm or more and 10 mm or less.

【0015】また請求項5の発明は、請求項1乃至3の
いずれかにおいて、粒子膜と導電膜が透明基材の表面に
沿って交互に設けられており、隣り合う粒子膜間に設け
られた導電膜の幅が1μm以上1mm以下であることを
特徴とするものである。
According to a fifth aspect of the present invention, in any one of the first to third aspects, the particle film and the conductive film are provided alternately along the surface of the transparent substrate, and are provided between adjacent particle films. The width of the conductive film is 1 μm or more and 1 mm or less.

【0016】また本発明の請求項6に係る色素増感太陽
電池用電極の製造方法は、導電性を有する透明基材の表
面にゾルをコートして粒子膜を設け、粒子膜の表面に色
素を吸着又は結合させて形成される色素増感太陽電池用
電極を製造するにあたって、透明基材の表面にゾルをコ
ートして粒子膜を形成し、この粒子膜の一部を除去した
後、透明基材より導電性の高い導電膜を上記の除去した
部位において透明基材の表面にコートすることを特徴と
するものである。
According to a sixth aspect of the present invention, there is provided a method for producing an electrode for a dye-sensitized solar cell, wherein a sol is coated on the surface of a conductive transparent substrate to form a particle film, and the surface of the particle film is provided with a dye. In producing a dye-sensitized solar cell electrode formed by adsorbing or binding to, a sol is coated on the surface of a transparent substrate to form a particle film, and after a part of the particle film is removed, a transparent film is formed. The method is characterized in that a conductive film having higher conductivity than the base material is coated on the surface of the transparent base material at the removed portion.

【0017】また本発明の請求項7に係る色素増感太陽
電池用電極の製造方法は、導電性を有する透明基材の表
面にゾルをコートして粒子膜を設け、粒子膜の表面に色
素を吸着又は結合させて形成される色素増感太陽電池用
電極を製造するにあたって、透明基材の表面の一部にス
クリーンプリント法でゾルをコートして粒子膜を形成
し、粒子膜が形成されていない部位において透明基材よ
り導電性の高い導電膜を透明基材の表面にコートするこ
とを特徴とするものである。
According to a seventh aspect of the present invention, there is provided a method for producing an electrode for a dye-sensitized solar cell, wherein a sol is coated on the surface of a conductive transparent substrate to form a particle film, and the dye film is provided on the surface of the particle film. In manufacturing a dye-sensitized solar cell electrode formed by adsorbing or bonding a sol, a part of the surface of the transparent substrate is coated with a sol by a screen printing method to form a particle film, and the particle film is formed. The method is characterized in that a conductive film having higher conductivity than the transparent base material is coated on the surface of the transparent base material in a portion not provided.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0019】本発明において導電性を有する透明基材と
しては、導電性及び透明性を有しているものであればど
のようなものでも採用することができるが、導電性、透
明性、さらに耐熱性を高いレベルで併せ持つ点から、透
明ガラス板の表面にスズ系酸化物などをコートしたもの
が好ましい。スズ系酸化物にはインジウム/スズ複合酸
化物(ITO)、アンチモン/スズ複合酸化物(AT
O)、フッ素ドープ酸化スズなどがあるが、数百℃の熱
によっても導電性が低下しない点や有害物質でない点な
どからフッ素ドープ酸化スズをコートしたガラスが特に
好ましい。またコストが低い点からはITOをコートし
たガラスが好ましい。
In the present invention, as the transparent base material having conductivity, any material having conductivity and transparency can be employed. It is preferable that the surface of a transparent glass plate is coated with a tin-based oxide or the like, in view of having a high level of property. Tin-based oxides include indium / tin composite oxide (ITO) and antimony / tin composite oxide (AT
O), fluorine-doped tin oxide, etc., and glass coated with fluorine-doped tin oxide is particularly preferred because conductivity is not reduced even by heat of several hundred degrees Celsius, and it is not a harmful substance. Glass coated with ITO is preferred from the viewpoint of low cost.

【0020】また本発明において、粒子膜2の作製に用
いるゾルとしては、溶剤中に固体成分である粒子(粉
体)が分散されたものを用いることができる。この溶剤
としては有機溶媒あるいは水を単独で使用してもよく、
有機溶媒と水との混合物を用いてもよい。分散される固
体の粒子としては色素吸着液や電池を構成する電解質と
反応しないか反応しにくいものであって、色素からの電
子注入が可能なものであれば、どのようなものでも採用
することができるものであり、例えば金属酸化物の粒子
を用いることができる。具体的には、例えば、チタニ
ア、アンチモン/スズ複合酸化物(ATO)、酸化ス
ズ、酸化亜鉛などをそれぞれ単独で用いることができ、
またこれらのうちの2種類以上を複合したり混合したり
して用いることもできる。これらの中では、電池の光電
変換効率が高いという点から、チタニアまたは酸化スズ
と酸化亜鉛の混合物の粒子を用いるのが特に好ましい。
粒子の粒径は任意に設定することができるが、粒子膜の
表面積を大きくして色素の吸着量を増加させるという理
由から、粒子の粒径は小さい程好ましい。しかし粒子が
小さ過ぎると、ゾルをコートすることが難しくなって粒
子膜を形成するのが困難になるおそれがある。そこで粒
子の粒径は5〜100nmの範囲に設定するのが好まし
い。
In the present invention, as the sol used for producing the particle film 2, a sol in which particles (powder) as a solid component are dispersed in a solvent can be used. As this solvent, an organic solvent or water may be used alone,
A mixture of an organic solvent and water may be used. As the solid particles to be dispersed, any material that does not react with or hardly react with the dye adsorbing liquid or the electrolyte constituting the battery and that can inject electrons from the dye should be used. For example, metal oxide particles can be used. Specifically, for example, titania, antimony / tin composite oxide (ATO), tin oxide, zinc oxide and the like can be used alone,
Also, two or more of these can be used as a composite or a mixture. Among these, it is particularly preferable to use particles of titania or a mixture of tin oxide and zinc oxide from the viewpoint that the photoelectric conversion efficiency of the battery is high.
Although the particle size of the particles can be set arbitrarily, the smaller the particle size of the particles is, the better, because the surface area of the particle film is increased to increase the amount of dye adsorbed. However, if the particles are too small, it may be difficult to coat the sol, and it may be difficult to form a particle film. Therefore, the particle size is preferably set in the range of 5 to 100 nm.

【0021】尚、粒子膜内部での光の散乱を利用してさ
らに光電変換効率を上げるために、上記のゾルに光を散
乱する粒径1μm以上の粒子を添加してもよい。またこ
のゾルに異なる粒径で異なるバンドギャップエネルギー
を持つ金属酸化物を添加すると電池から取り出される電
流及び電圧が増加するという報告がなされているので、
本発明の電極に粒子膜を形成するゾルにもこのような添
加物を添加してもよい。さらに、粒子膜の多孔性を制御
するために、ゾルにポリエチレングリコール等の有機高
分子を添加してもよい。この有機高分子はゾルをコート
した後に数百℃の温度で焼成することによって炭酸ガス
等に酸化分解され、粒子膜の多孔度を増加させることが
でき、結果的に色素増感太陽電池の光電変換効率を向上
させることができるものである。
In order to further increase the photoelectric conversion efficiency by utilizing light scattering inside the particle film, particles having a particle diameter of 1 μm or more that scatter light may be added to the sol. Also, it has been reported that adding a metal oxide having a different particle size and a different band gap energy to this sol increases the current and voltage taken out of the battery,
Such an additive may be added to a sol that forms a particle film on the electrode of the present invention. Further, an organic polymer such as polyethylene glycol may be added to the sol to control the porosity of the particle membrane. This organic polymer is oxidized and decomposed into carbon dioxide and the like by baking at a temperature of several hundred degrees Celsius after coating the sol, thereby increasing the porosity of the particle film. As a result, the photoelectric conversion of the dye-sensitized solar cell The conversion efficiency can be improved.

【0022】ゾルを調製する方法としては、溶媒中に粒
子をほぼ均一に分散できるのであれば、どのような方法
を用いてもよいが、例えば、粒子を空気中や不活性ガス
中で焼成することによって結晶化させ、この結晶化した
粒子を溶媒に配合してペイントシェーカー等の攪拌器で
攪拌することによって、溶液中に粒子が分散したゾルを
調製することができる。また、結晶化する前の粒子を溶
媒に配合してペイントシェーカーなどの攪拌器で攪拌し
て溶液中に粒子を分散させ、この後、溶液中の粒子をオ
ートクレーブ中で結晶化させるようにしてゾルを調製す
るようにしてもよい。ここで、ゾルをコートして形成さ
れる粒子膜の透明性をより高くしたり表面積をより大き
くしたりする場合には、溶液中の粒子をオートクレーブ
処理して結晶化させる方法が好ましく、ゾルをコートし
て形成される粒子膜を安価に作製する場合には、空気中
や不活性ガス中で焼成して結晶化させた粒子を溶媒に分
散させる方法を採用するのが好ましい。
As a method for preparing the sol, any method may be used as long as the particles can be substantially uniformly dispersed in the solvent. For example, the particles are calcined in air or an inert gas. Thus, a sol in which particles are dispersed in a solution can be prepared by mixing the crystallized particles with a solvent and stirring the mixture with a stirrer such as a paint shaker. Also, the particles before crystallization are mixed with a solvent and stirred with a stirrer such as a paint shaker to disperse the particles in the solution, and then the particles in the solution are crystallized in an autoclave. May be prepared. Here, in order to increase the transparency or increase the surface area of the particle film formed by coating the sol, a method of autoclaving the particles in the solution and crystallizing the particles is preferable. When a particle film formed by coating is produced at low cost, it is preferable to adopt a method of dispersing particles crystallized by firing in air or an inert gas in a solvent.

【0023】次に、本発明に係る色素増感太陽電池用の
電極の製造について説明する。まず、透明ガラス10の
表面にスズ系酸化物などの透明導電膜11をコートして
作製される導電性の透明基材1を用い、この導電性の透
明基材1の表面にゾルをコートすることによって、図1
(a)に示すように粒子2aが積み重なった粒子膜2を
形成する。透明基材1にゾルをコートする方法として
は、グラビアコート法、スピンコート法、ドクターブレ
ード法、ディップコーティング法、スクリーンプリント
法など、従来から行なわれている任意の方法を採用する
ことができる。粒子膜2の膜厚は2μm以上に設定する
のが好ましく、これを考慮してゾルの塗布量を調節する
のがよい。粒子膜2の膜厚が2μmより小さいと光電変
換効率が小さくなるおそれがあるからである。粒子膜2
の膜厚の上限は、透明基材1との密着性が低下しない程
度であればよく、例えば20μmに設定することができ
る。またこのように粒子膜2を形成した後、透明基材1
と粒子膜2の密着性を高めるために、必要に応じて焼成
を行なってもよい。
Next, the production of the electrode for a dye-sensitized solar cell according to the present invention will be described. First, a conductive transparent substrate 1 produced by coating a transparent conductive film 11 such as a tin-based oxide on the surface of a transparent glass 10 is used, and the surface of the conductive transparent substrate 1 is coated with a sol. FIG. 1
As shown in (a), a particle film 2 in which particles 2a are stacked is formed. As a method of coating the transparent substrate 1 with the sol, any conventional method such as a gravure coating method, a spin coating method, a doctor blade method, a dip coating method, and a screen printing method can be adopted. The thickness of the particle film 2 is preferably set to 2 μm or more, and the sol application amount is preferably adjusted in consideration of this. If the film thickness of the particle film 2 is smaller than 2 μm, the photoelectric conversion efficiency may be reduced. Particle membrane 2
The upper limit of the film thickness may be such that the adhesion to the transparent substrate 1 is not reduced, and may be set to, for example, 20 μm. After forming the particle film 2 in this manner, the transparent substrate 1
In order to enhance the adhesion between the particles and the particle film 2, baking may be performed as necessary.

【0024】尚、上記のように粒子2aが積み重なった
粒子膜2を形成した後、粒子膜2の粒子2aの表面にチ
タニアやシリカなどの金属酸化物膜を形成するようにし
てもよい。金属酸化物膜の形成は、特開平11−171
537号公報に開示されているように、金属のフッ化物
溶液又はフッ化錯体溶液と粒子膜2を接触させて粒子2
aの表面に金属酸化物膜を析出させることによって行な
うことができる。
After forming the particle film 2 in which the particles 2a are stacked as described above, a metal oxide film such as titania or silica may be formed on the surface of the particles 2a of the particle film 2. The formation of the metal oxide film is described in JP-A-11-171.
As disclosed in Japanese Patent Publication No. 537, a metal fluoride solution or a complex fluoride solution is brought into contact with the particle
This can be performed by depositing a metal oxide film on the surface of a.

【0025】上記のように透明基材1の表面に粒子膜2
を形成するにあたって、ドクターブレード法などでゾル
をコートして粒子膜2を形成する場合には、導電膜4を
形成する部位にも粒子膜2が形成されているので、導電
膜4を形成する部位の粒子膜2を除去する。粒子膜2を
部分的に除去する方法は、透明基材1の光透過性や導電
性を低下させずに粒子膜2を除去できる方法であれば何
でもよい。例えばカッターの刃など鋭利物で切り取るよ
うにして除去してもよく、レーザ光を照射して除去する
ようにしてもよく、あるいは残しておく部分の粒子膜2
をマスキングして酸によるエッチングなど化学的な方法
で溶解して除去するようにしてもよい。鋭利物で除去す
る方法が、簡便で低コストに実施できるので好ましい。
As described above, the particle film 2 is formed on the surface of the transparent substrate 1.
When forming the particle film 2 by coating the sol with a doctor blade method or the like, the conductive film 4 is formed because the particle film 2 is also formed at the portion where the conductive film 4 is formed. The particle film 2 at the site is removed. Any method of partially removing the particle film 2 may be used as long as the method can remove the particle film 2 without lowering the light transmittance and conductivity of the transparent substrate 1. For example, it may be removed by cutting with a sharp object such as a blade of a cutter, or may be removed by irradiating a laser beam, or the particle film 2 in a portion to be left.
May be masked and dissolved and removed by a chemical method such as etching with an acid. The method of removing with a sharp object is preferable because it can be carried out simply and at low cost.

【0026】またスクリーンプリント法で透明基材1の
表面の粒子膜2を形成する場合には、ゾルを部分的にコ
ートして透明基材1の表面の一部に粒子膜2の形成がで
きるので、図2に示すように、導電膜4を形成する部位
には粒子膜2が形成されないようにしておくものであ
る。
When the particle film 2 on the surface of the transparent substrate 1 is formed by the screen printing method, the particle film 2 can be formed on a part of the surface of the transparent substrate 1 by partially coating the sol. Therefore, as shown in FIG. 2, the particle film 2 is not formed at the portion where the conductive film 4 is formed.

【0027】次に、透明基材1に導電膜4をコートす
る。導電膜4としては透明基材1の透明導電膜11より
導電性の高いものを用いるものであり、例えば金などの
金属膜を用いることができる。導電膜4をコートするに
あたって、粒子膜2の表面を含めた全面に導電膜4を形
成すると、色素増感太陽電池を組み立てる際に電解質が
粒子膜2に到達しなくなるので、導電膜4で粒子膜2の
表面の全面が被覆されないようにする必要がある。図1
(b)に示すように、導電膜4は粒子膜2が形成されて
いない部位のみにおいて透明基材1の表面に形成するよ
うにするのが好ましいが、色素増感太陽電池の光電変換
効率を低下させない範囲で粒子膜2の表面にも導電膜4
がコートされていても構わない。導電膜4のコートは、
例えば、粒子膜2の表面をマスキングした状態で金属を
蒸着することによって行なうことができる。また導電膜
4の厚みは特に限定されるものではないが、0.2μm
〜5μm程度の範囲が好ましい。
Next, the transparent substrate 1 is coated with the conductive film 4. As the conductive film 4, a material having higher conductivity than the transparent conductive film 11 of the transparent substrate 1 is used. For example, a metal film such as gold can be used. When the conductive film 4 is formed on the entire surface including the surface of the particle film 2 in coating the conductive film 4, the electrolyte does not reach the particle film 2 when assembling the dye-sensitized solar cell. It is necessary to prevent the entire surface of the film 2 from being covered. FIG.
As shown in (b), the conductive film 4 is preferably formed on the surface of the transparent substrate 1 only at the portion where the particle film 2 is not formed, but the photoelectric conversion efficiency of the dye-sensitized solar cell is reduced. The conductive film 4 is also provided on the surface of the particle film 2 as long as it does not decrease.
May be coated. The coat of the conductive film 4 is
For example, it can be performed by depositing a metal while the surface of the particle film 2 is masked. The thickness of the conductive film 4 is not particularly limited, but may be 0.2 μm
A range of about 5 μm is preferable.

【0028】ここで、粒子膜2と導電膜4はそれぞれ細
長い矩形状に形成するようにしてあり、粒子膜2と導電
膜4は複数本ずつその幅方向(短手方向)で、透明基材
1の表面に沿って交互に設けるようにしてある。そして
隣り合う導電膜4間に設けられた各粒子膜2の大きさは
発電効率が高くなるため小さい程好ましい。しかし各粒
子膜2の幅寸法(短手方向の寸法)が小さくなり過ぎる
と、導電膜4の幅寸法の下限には限界があるので、電極
の面積に対する粒子膜2の面積の割合が小さくなって、
光電変換効率が低下する。これらの理由から、粒子膜2
の幅寸法は10μm以上10mm以下であることが好ま
しく、さらに100μm以上5mm以下であるのがより
好ましい。
Here, the particle film 2 and the conductive film 4 are each formed in an elongated rectangular shape, and a plurality of the particle films 2 and the conductive film 4 are arranged in the width direction (transverse direction) in the transparent substrate. 1 are provided alternately along the surface. The size of each particle film 2 provided between the adjacent conductive films 4 is preferably as small as possible because the power generation efficiency increases. However, if the width dimension (dimension in the lateral direction) of each particle film 2 becomes too small, the lower limit of the width dimension of the conductive film 4 is limited, so that the ratio of the area of the particle film 2 to the electrode area decreases. hand,
The photoelectric conversion efficiency decreases. For these reasons, the particle membrane 2
Is preferably 10 μm or more and 10 mm or less, and more preferably 100 μm or more and 5 mm or less.

【0029】また隣り合う粒子膜2間に設けられた各導
電膜4の大きさは小さいほうが、粒子膜2の全体の大き
さを大きくして入射光への開口面積を大きくすることが
できる点で好ましい。しかし導電膜4の幅寸法(短手方
向の寸法)が小さくなり過ぎると、コートして導電膜4
を形成すること難しくなる。これらの理由から、導電膜
4の幅寸法は1μm以上1mm以下であることが好まし
く、さらに1μm以上100μm以下であるのがより好
ましい。ここで、後述の図3に示すように、導電膜4と
接続される集電部12を電極の表面に形成するにあたっ
て、この集電部12に向かって長い形状になるように導
電膜4を形成するのが好ましい。集電部12はこの部分
に導線を接続して、発電された電気を外部に出力するパ
ッドとなるものであり、導電膜4をこのように集電部1
2に向かって長い形状になるように形成することによっ
て、発生した電気が効率良く移動することができるよう
になり、光電変換効率を高めることができるものであ
る。
Also, the smaller the size of each conductive film 4 provided between the adjacent particle films 2, the larger the size of the entire particle film 2 and the larger the opening area to the incident light. Is preferred. However, when the width dimension (dimension in the lateral direction) of the conductive film 4 becomes too small, the conductive film 4 is coated and coated.
Is difficult to form. For these reasons, the width dimension of the conductive film 4 is preferably 1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less. Here, as shown in FIG. 3 to be described later, when forming a current collector 12 connected to the conductive film 4 on the surface of the electrode, the conductive film 4 is formed so as to have a longer shape toward the current collector 12. Preferably, it is formed. The current collector 12 is connected to a conducting wire to serve as a pad for outputting the generated electricity to the outside.
By forming it to have a long shape toward 2, the generated electricity can move efficiently and the photoelectric conversion efficiency can be increased.

【0030】上記のようにして導電性の透明基材1の表
面に粒子膜2と導電膜4を、それぞれ透明基材1に電気
的に接した状態で設けた後、図1(c)のように粒子膜
2の表面に色素3を吸着させ、あるいは結合させること
によって、色素増感太陽電池用の電極を得ることができ
るものである。色素3としては色素増感太陽電池に使用
される任意のものを用いることができるものであり、例
えばルテニウム錯体などを使用することができる。また
色素の吸着や結合は、色素を溶解した色素吸着液に浸漬
することによって行なうことができるものであり、色素
は粒子膜2の表面以外に導電膜4の表面などに吸着・結
合されていても差し支えない。
After the particle film 2 and the conductive film 4 are respectively provided on the surface of the conductive transparent substrate 1 in a state of being in electrical contact with the transparent substrate 1, as shown in FIG. By adsorbing or binding the dye 3 to the surface of the particle film 2 as described above, an electrode for a dye-sensitized solar cell can be obtained. As the dye 3, any one used for a dye-sensitized solar cell can be used, and for example, a ruthenium complex or the like can be used. The adsorption and binding of the dye can be performed by immersing the dye in a dye adsorption solution in which the dye is dissolved. The dye is adsorbed and bound to the surface of the conductive film 4 in addition to the surface of the particle film 2. No problem.

【0031】この電極にあって、導電性を有する透明基
材1の表面の一部が粒子膜2ではなく導電膜4で覆われ
ているので、従来の色素増感太陽電池よりも光電変換効
率を高くすることができるものである。このように光電
変換効率を高めることができる理由としては、透明基材
1の透明導電膜11の抵抗が十分でないものを導電膜4
が補って十分な低抵抗にしているから、粒子膜2の端部
で光の乱反射が起こるために入射光がより有効に利用で
きるから、粒子膜2の端部が導電膜4の端部と接してい
る部位でより有効な乱反射が粒子膜2内部に生じている
から、などが考えられるが、明らかではない。
In this electrode, since a part of the surface of the transparent substrate 1 having conductivity is covered with the conductive film 4 instead of the particle film 2, the photoelectric conversion efficiency is higher than that of the conventional dye-sensitized solar cell. Can be increased. The reason why the photoelectric conversion efficiency can be improved in this way is that the transparent conductive film 11 of the transparent base material 1 having insufficient resistance
Is sufficiently low to compensate for the incident light, so that the diffused reflection of light occurs at the end of the particle film 2 and the incident light can be used more effectively. It is possible, but not evident, that more effective diffuse reflection occurs inside the particle film 2 at the contacting part.

【0032】[0032]

【実施例】以下、本発明を実施例によって具体的に説明
する。
The present invention will be specifically described below with reference to examples.

【0033】(実施例1)透明ガラス板10の表面にI
TO膜からなる透明導電膜11を設けて形成した40m
m×35mm×厚み1.1mmの導電性を有する透明基
材1を用い、十分に洗浄して乾燥した。そしてこの透明
基材1の表面にSolaronix社製酸化チタンゾル「TiNan
oxide-T」をグラビアコート法で、20mm×20mm
の範囲に膜厚が5μmとなるようにコートした。次にこ
れを室温で乾燥した後、空気中で、500℃の温度で1
時間焼成して、透明基材1の表面に酸化チタンの粒子か
らなる粒子膜2を形成した(図1(a)参照)。
(Example 1) The surface of a transparent glass plate 10
40 m formed by providing a transparent conductive film 11 made of a TO film
Using a transparent base material 1 having a size of mx 35 mm x thickness of 1.1 mm and having conductivity, it was sufficiently washed and dried. Then, a titanium oxide sol “TiNan” manufactured by Solaronix is applied to the surface of the transparent substrate 1.
oxide-T is gravure coated by 20mm x 20mm
Was coated so as to have a thickness of 5 μm. Next, this is dried at room temperature and then dried in air at a temperature of 500 ° C. for 1 hour.
By firing for a time, a particle film 2 made of titanium oxide particles was formed on the surface of the transparent substrate 1 (see FIG. 1A).

【0034】次に、市販のカッターナイフを用い、粒子
膜2が5mm×20mmの四つの長方形となるように切
り目を入れ、切り目の部分の粒子膜2を除去した。この
切り目の部分の幅は0.1mmであり、試験後の断面の
SEM観察により、この切れ目は粒子膜2のみが除去さ
れていて透明導電膜11は除去されていないことが確認
された。
Next, a cut was made using a commercially available cutter knife so that the particle film 2 was formed into four rectangles of 5 mm × 20 mm, and the particle film 2 at the cut portion was removed. The width of the cut portion was 0.1 mm, and SEM observation of the cross section after the test confirmed that only the particle film 2 was removed from the cut, and the transparent conductive film 11 was not removed.

【0035】次に、粒子膜2及び透明基材1の表面をマ
スキングし、金の真空蒸着を行なうことによって、粒子
膜2間の切り目の部分において透明基材1の表面に導電
膜4を形成した(図2(b)参照)。導電膜4の厚みは
4μmであり、隣り合う粒子膜2間での導電膜4の幅は
0.1mmであった。また導電膜4は、図3に示すよう
に、隣り合う粒子膜2間の部分の他に、透明基板1の一
方の端部の表面にも形成するようにしてあり、この透明
基板1の端部の表面に形成される導電膜4で集電部12
が形成されるものである。
Next, the surface of the particle film 2 and the surface of the transparent substrate 1 are masked, and a vacuum deposition of gold is performed to form a conductive film 4 on the surface of the transparent substrate 1 at the cuts between the particle films 2. (See FIG. 2B). The thickness of the conductive film 4 was 4 μm, and the width of the conductive film 4 between adjacent particle films 2 was 0.1 mm. Further, as shown in FIG. 3, the conductive film 4 is formed on the surface of one end of the transparent substrate 1 in addition to the portion between the adjacent particle films 2. Current collecting portion 12 with conductive film 4 formed on the surface of the portion.
Is formed.

【0036】次に、色素3としてSolaronix社製ルテニ
ウム色素「Ruthenium535」を用い、これを1リット
ルのエタノールに0.135g溶解させて色素吸着液を
調製し、この色素吸着液に上記の粒子膜2と導電膜4を
形成した透明基材1を1昼夜浸漬し、表面に色素3を吸
着させ(図1(c)参照)、その後、これをエタノール
で洗浄して室温で乾燥した。このようにして色素増感太
陽電池用の電極を得た。
Next, a ruthenium dye "Ruthenium 535" manufactured by Solaronix Co. was used as the dye 3, and 0.135 g of this was dissolved in 1 liter of ethanol to prepare a dye adsorption solution. The transparent substrate 1 on which the conductive film 4 was formed was immersed day and night to adsorb the dye 3 on the surface (see FIG. 1 (c)), and then washed with ethanol and dried at room temperature. Thus, an electrode for a dye-sensitized solar cell was obtained.

【0037】(実施例2)実施例1と同じ導電性の透明
基材1の表面に、実施例1と同じ酸化チタンゾルをスク
リーンプリント法で厚み5μmにコートし、実施例1と
同様に乾燥・焼成して粒子膜2を形成した。このとき、
粒子膜2は5mm×20mmの四つの長方形が幅0.1
mmの隙間を介して並列するように形成した(図2参
照)。後は実施例1と同様にして導電膜4の形成、色素
3の吸着を行なって、色素増感太陽電池用の電極を得
た。
Example 2 The same conductive titanium oxide sol as in Example 1 was coated on the surface of the same transparent substrate 1 as in Example 1 to a thickness of 5 μm by screen printing, and dried and dried in the same manner as in Example 1. By firing, a particle film 2 was formed. At this time,
The particle membrane 2 has four rectangles of 5 mm × 20 mm each having a width of 0.1.
It was formed so as to be juxtaposed with a gap of mm (see FIG. 2). Thereafter, the conductive film 4 was formed and the dye 3 was adsorbed in the same manner as in Example 1 to obtain an electrode for a dye-sensitized solar cell.

【0038】(比較例1)実施例1と同じ導電性の透明
基材1の表面に、実施例1と同じ酸化チタンゾルを、ド
クターブレード法で実施例1と同様にしてコートし、さ
らに実施例1と同様に乾燥・焼成して粒子膜2を形成し
た。次に、導電膜4の形成を行なうことなく、実施例1
と同様にして色素3の吸着を行なって、色素増感太陽電
池用の電極を得た。
Comparative Example 1 The same titanium oxide sol as in Example 1 was coated on the surface of the same transparent transparent substrate 1 as in Example 1 by a doctor blade method in the same manner as in Example 1. Drying and baking were performed in the same manner as in Example 1 to form a particle film 2. Next, Example 1 was performed without forming the conductive film 4.
The dye 3 was adsorbed in the same manner as described above to obtain an electrode for a dye-sensitized solar cell.

【0039】上記のようにして作製した電極を用いて色
素増感太陽電池を組み立てた。まず電解液を、エチレン
カーボネート80容量%とアセトニトリル20容量%の
混合溶液にヨウ化テトラプロピルアンモニウム及びヨウ
素をそれぞれ0.46モル/リットル、0.06モル/
リットルとなるように溶解して調製した。また、30m
m×30mm×厚み0.5mmのシリコーンゴム板の中
心部を、周囲を幅5mmで残して、20mm×20mm
の窓を切り抜くことによって、枠状のスペーサを作製し
た。さらに、対極を作製した。すなわち、40mm×3
5mm×厚み1.1mmのITO膜付き透明ガラス板を
十分に洗浄して乾燥し、このガラス板の表面を2Bの鉛
筆で黒く塗りつぶすことによってITO膜の表面にカー
ボンを付着させ、対極とした。
A dye-sensitized solar cell was assembled using the electrodes manufactured as described above. First, an electrolytic solution was prepared by mixing tetrapropylammonium iodide and iodine in a mixed solution of 80% by volume of ethylene carbonate and 20% by volume of acetonitrile, at 0.46 mol / liter and 0.06 mol / liter, respectively.
It was prepared by dissolving to a liter. Also, 30m
The center of a silicone rubber plate having a size of mx 30 mm x thickness 0.5 mm is left with a width of 5 mm, and a width of 20 mm x 20 mm
A frame-shaped spacer was produced by cutting out the window of the above. Further, a counter electrode was prepared. That is, 40 mm × 3
A 5 mm × 1.1 mm thick transparent glass plate with an ITO film was sufficiently washed and dried, and the surface of this glass plate was painted black with a 2B pencil to attach carbon to the surface of the ITO film to serve as a counter electrode.

【0040】そして、実施例1,2及び比較例1で得た
各電極の上に、粒子膜2や導電膜4が窓内に見えるよう
にスペーサを置き、スペーサの窓部分に電解液を入れ、
さらにその上に空気が入らないにように置き、電極と対
極をクリップで挟んで固定することによって、色素増感
太陽電池を組み立てた。
A spacer is placed on each of the electrodes obtained in Examples 1 and 2 and Comparative Example 1 so that the particle film 2 and the conductive film 4 can be seen in the window. ,
Further, the dye-sensitized solar cell was assembled by placing it so that air did not enter therein, and fixing the electrode and the counter electrode with clips.

【0041】上記のように組み立てた色素増感太陽電池
を蛍光灯(松下電工社製「SQ982F」、54W)の
下に置き、電極と対極の間の解放電圧と短絡電流を測定
した。結果を表1に示す。
The dye-sensitized solar cell assembled as described above was placed under a fluorescent lamp ("SQ982F", 54W, manufactured by Matsushita Electric Works, Ltd.), and the open-circuit voltage and short-circuit current between the electrode and the counter electrode were measured. Table 1 shows the results.

【0042】[0042]

【表1】 [Table 1]

【0043】表1にみられるように、実施例1,2のも
のは短絡電流が比較例1のものよりも1.5倍近くに増
加しており、光電変換効率が向上していることが確認さ
れる。
As can be seen from Table 1, the short-circuit currents of Examples 1 and 2 are nearly 1.5 times larger than those of Comparative Example 1, indicating that the photoelectric conversion efficiency is improved. It is confirmed.

【0044】[0044]

【発明の効果】上記のように本発明の請求項1に係る色
素増感太陽電池用電極は、導電性を有する透明基材の表
面にゾルをコートして粒子膜を設け、粒子膜の表面に色
素を吸着又は結合させて形成される色素増感太陽電池用
電極において、透明基材の表面に、上記粒子膜と、透明
基材より導電性の高い導電膜とが、それぞれ透明基材と
電気的に接した状態で設けられていることを特徴とする
ので、導電性を有する透明基材の表面の一部が粒子膜で
はなく導電膜で覆われており、従来の色素増感太陽電池
よりも光電変換効率を高めることができるものである。
As described above, the dye-sensitized solar cell electrode according to the first aspect of the present invention provides a particle film by coating sol on the surface of a conductive transparent substrate. In a dye-sensitized solar cell electrode formed by adsorbing or bonding a dye to the surface of a transparent substrate, the particle film, and a conductive film having higher conductivity than the transparent substrate, respectively, the transparent substrate It is characterized in that it is provided in an electrically contacting state, so that a part of the surface of the conductive transparent substrate is covered with a conductive film instead of a particle film, so that a conventional dye-sensitized solar cell Thus, the photoelectric conversion efficiency can be higher than that.

【0045】また請求項2の発明は、導電膜が金属膜で
あるので、導電性が高い導電膜を形成することができ、
光電変換効率を高めることができるものである。
According to the second aspect of the present invention, since the conductive film is a metal film, a conductive film having high conductivity can be formed.
The photoelectric conversion efficiency can be improved.

【0046】また請求項3の発明は、導電膜が集電部に
向かって長い形状であるので、発生した電気が集電部に
効率良く移動することができるようになり、光電変換効
率を高めることができるものである。
According to the third aspect of the present invention, since the conductive film has a long shape toward the current collecting portion, the generated electricity can be efficiently transferred to the current collecting portion, and the photoelectric conversion efficiency is improved. Is what you can do.

【0047】また請求項4の発明は、粒子膜と導電膜が
透明基材の表面に沿って交互に設けられており、隣り合
う導電膜間に設けられた粒子膜の幅が10μm以上10
mm以下であることを特徴とするので、光電変換効率を
高めることができるものである。
According to a fourth aspect of the present invention, the particle film and the conductive film are alternately provided along the surface of the transparent substrate, and the width of the particle film provided between the adjacent conductive films is 10 μm or more.
mm or less, the photoelectric conversion efficiency can be increased.

【0048】また請求項5の発明は、粒子膜と導電膜が
透明基材の表面に沿って交互に設けられており、隣り合
う粒子膜間に設けられた導電膜の幅が1μm以上1mm
以下であることを特徴とするので、光電変換効率を高め
ることができるものである。
According to a fifth aspect of the present invention, the particle film and the conductive film are alternately provided along the surface of the transparent substrate, and the width of the conductive film provided between adjacent particle films is 1 μm to 1 mm.
Since the following characteristics are obtained, photoelectric conversion efficiency can be increased.

【0049】また本発明の請求項6に係る色素増感太陽
電池用電極の製造方法は、導電性を有する透明基材の表
面にゾルをコートして粒子膜を設け、粒子膜の表面に色
素を吸着又は結合させて形成される色素増感太陽電池用
電極を製造するにあたって、透明基材の表面にゾルをコ
ートして粒子膜を形成し、この粒子膜の一部を除去した
後、透明基材より導電性の高い導電膜を上記の除去した
部位において透明基材の表面にコートするようにしたの
で、透明基材の表面に粒子膜と導電膜とをそれぞれ透明
基材と電気的に接した状態で設けることができるもので
ある。
According to a sixth aspect of the present invention, there is provided a method for producing an electrode for a dye-sensitized solar cell, wherein a sol is coated on the surface of a conductive transparent substrate to form a particle film, and the dye film is formed on the surface of the particle film. In producing a dye-sensitized solar cell electrode formed by adsorbing or binding to, a sol is coated on the surface of a transparent substrate to form a particle film, and after a part of the particle film is removed, a transparent film is formed. Since the conductive film having a higher conductivity than the base material is coated on the surface of the transparent base material at the removed portion, the particle film and the conductive film are electrically connected to the transparent base material, respectively. They can be provided in contact with each other.

【0050】また本発明の請求項7に係る色素増感太陽
電池用電極の製造方法は、導電性を有する透明基材の表
面にゾルをコートして粒子膜を設け、粒子膜の表面に色
素を吸着又は結合させて形成される色素増感太陽電池用
電極を製造するにあたって、透明基材の表面の一部にス
クリーンプリント法でゾルをコートして粒子膜を形成
し、粒子膜が形成されていない部位において透明基材よ
り導電性の高い導電膜を透明基材の表面にコートするよ
うにしたので、透明基材の表面に粒子膜と導電膜とをそ
れぞれ透明基材と電気的に接した状態で設けることがで
きるものである。
According to a seventh aspect of the present invention, there is provided a method for producing an electrode for a dye-sensitized solar cell, wherein a sol is coated on the surface of a conductive transparent substrate to form a particle film, and the surface of the particle film is provided with a dye. In manufacturing a dye-sensitized solar cell electrode formed by adsorbing or bonding a sol, a part of the surface of the transparent substrate is coated with a sol by a screen printing method to form a particle film, and the particle film is formed. Since the surface of the transparent substrate is coated with a conductive film having higher conductivity than that of the transparent substrate in a portion that is not present, the particle film and the conductive film are respectively electrically connected to the transparent substrate on the surface of the transparent substrate. It can be provided in a state where it is set.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示すものであり、
(a),(b),(c)はそれぞれ断面図である。
FIG. 1 shows an example of an embodiment of the present invention,
(A), (b), (c) are sectional views, respectively.

【図2】本発明の実施の形態の他の一例を示す断面図で
ある。
FIG. 2 is a sectional view showing another example of the embodiment of the present invention.

【図3】本発明の実施の形態の他の一例を示す平面図で
ある。
FIG. 3 is a plan view showing another example of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 透明基材 2 粒子膜 3 色素 4 導電膜 DESCRIPTION OF SYMBOLS 1 Transparent base material 2 Particle film 3 Dye 4 Conductive film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 AA11 AA14 CB13 EA16 FA03 FA04 FA08 GA03 5H032 AA06 AS16 BB05 CC11 EE01 EE07 EE16 EE18 HH04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F051 AA11 AA14 CB13 EA16 FA03 FA04 FA08 GA03 5H032 AA06 AS16 BB05 CC11 EE01 EE07 EE16 EE18 HH04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導電性を有する透明基材の表面にゾルを
コートして粒子膜を設け、粒子膜の表面に色素を吸着又
は結合させて形成される色素増感太陽電池用電極におい
て、透明基材の表面に、上記粒子膜と、透明基材より導
電性の高い導電膜とが、それぞれ透明基材と電気的に接
した状態で設けられていることを特徴とする色素増感太
陽電池用電極。
1. A dye-sensitized solar cell electrode formed by coating a sol on a surface of a transparent base material having conductivity to form a particle film, and adsorbing or binding a dye to the surface of the particle film. A dye-sensitized solar cell, wherein the particle film and a conductive film having higher conductivity than the transparent substrate are provided on the surface of the substrate, respectively, in a state of being in electrical contact with the transparent substrate. Electrodes.
【請求項2】 導電膜が金属膜であることを特徴とする
請求項1に記載の色素増感太陽電池用電極。
2. The electrode for a dye-sensitized solar cell according to claim 1, wherein the conductive film is a metal film.
【請求項3】 導電膜が集電部に向かって長い形状であ
ることを特徴とする請求項1又は2に記載の色素増感太
陽電池用電極。
3. The electrode for a dye-sensitized solar cell according to claim 1, wherein the conductive film has a shape that is longer toward the current collector.
【請求項4】 粒子膜と導電膜が透明基材の表面に沿っ
て交互に設けられており、隣り合う導電膜間に設けられ
た粒子膜の幅が10μm以上10mm以下であることを
特徴とする請求項1乃至3のいずれかに記載の色素増感
太陽電池用電極。
4. The method according to claim 1, wherein the particle film and the conductive film are alternately provided along the surface of the transparent substrate, and the width of the particle film provided between the adjacent conductive films is 10 μm or more and 10 mm or less. The electrode for a dye-sensitized solar cell according to claim 1.
【請求項5】 粒子膜と導電膜が透明基材の表面に沿っ
て交互に設けられており、隣り合う粒子膜間に設けられ
た導電膜の幅が1μm以上1mm以下であることを特徴
とする請求項1乃至3のいずれかに記載の色素増感太陽
電池用電極。
5. The method according to claim 1, wherein the particle film and the conductive film are provided alternately along the surface of the transparent substrate, and the width of the conductive film provided between the adjacent particle films is 1 μm or more and 1 mm or less. The electrode for a dye-sensitized solar cell according to claim 1.
【請求項6】 導電性を有する透明基材の表面にゾルを
コートして粒子膜を設け、粒子膜の表面に色素を吸着又
は結合させて形成される色素増感太陽電池用電極を製造
するにあたって、透明基材の表面にゾルをコートして粒
子膜を形成し、この粒子膜の一部を除去した後、透明基
材より導電性の高い導電膜を上記の除去した部位におい
て透明基材の表面にコートすることを特徴とする色素増
感太陽電池用電極の製造方法。
6. A method for producing an electrode for a dye-sensitized solar cell formed by coating a sol on a surface of a transparent base material having conductivity, providing a particle film, and adsorbing or binding a dye to the surface of the particle film. In this case, the surface of the transparent substrate is coated with a sol to form a particle film, and after a part of the particle film is removed, a conductive film having higher conductivity than the transparent substrate is applied to the transparent substrate at the above-mentioned removed portion. A method for producing an electrode for a dye-sensitized solar cell, characterized by coating the surface of a dye.
【請求項7】 導電性を有する透明基材の表面にゾルを
コートして粒子膜を設け、粒子膜の表面に色素を吸着又
は結合させて形成される色素増感太陽電池用電極を製造
するにあたって、透明基材の表面の一部にスクリーンプ
リント法でゾルをコートして粒子膜を形成し、粒子膜が
形成されていない部位において透明基材より導電性の高
い導電膜を透明基材の表面にコートすることを特徴とす
る色素増感太陽電池用電極の製造方法。
7. A method for producing a dye-sensitized solar cell electrode formed by coating a sol on the surface of a conductive transparent substrate to form a particle film and adsorbing or binding a dye to the surface of the particle film. In doing so, a part of the surface of the transparent substrate is coated with a sol by a screen printing method to form a particle film, and a conductive film having higher conductivity than the transparent substrate is formed on a portion where the particle film is not formed. A method for producing an electrode for a dye-sensitized solar cell, comprising coating the surface.
JP2000180458A 2000-06-15 2000-06-15 Electrode for pigment-sensitized solar battery and its manufacturing method Withdrawn JP2001357898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000180458A JP2001357898A (en) 2000-06-15 2000-06-15 Electrode for pigment-sensitized solar battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000180458A JP2001357898A (en) 2000-06-15 2000-06-15 Electrode for pigment-sensitized solar battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001357898A true JP2001357898A (en) 2001-12-26

Family

ID=18681547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000180458A Withdrawn JP2001357898A (en) 2000-06-15 2000-06-15 Electrode for pigment-sensitized solar battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001357898A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273381A (en) * 2002-03-12 2003-09-26 Japan Science & Technology Corp Totally solid dye sensitizing solar cell
WO2004023594A1 (en) * 2002-09-09 2004-03-18 Sony Corporation Photoelectric transducer
JP2005129933A (en) * 2003-10-20 2005-05-19 General Electric Co <Ge> Electrically active device having metal-containing layer
JP2008063390A (en) * 2006-09-05 2008-03-21 Gunma Univ Dye for dye-sensitized solar battery, photoelectric transfer element using the dye, and dye-sensitized solar battery
JP2008541376A (en) * 2005-11-30 2008-11-20 コリア エレクトロテクノロジー リサーチ インスティテュート Dye-sensitized solar cell module using carbon nanotube electrode and manufacturing method thereof
JP2009043481A (en) * 2007-08-07 2009-02-26 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273381A (en) * 2002-03-12 2003-09-26 Japan Science & Technology Corp Totally solid dye sensitizing solar cell
WO2004023594A1 (en) * 2002-09-09 2004-03-18 Sony Corporation Photoelectric transducer
JP2005129933A (en) * 2003-10-20 2005-05-19 General Electric Co <Ge> Electrically active device having metal-containing layer
JP2008541376A (en) * 2005-11-30 2008-11-20 コリア エレクトロテクノロジー リサーチ インスティテュート Dye-sensitized solar cell module using carbon nanotube electrode and manufacturing method thereof
JP2008063390A (en) * 2006-09-05 2008-03-21 Gunma Univ Dye for dye-sensitized solar battery, photoelectric transfer element using the dye, and dye-sensitized solar battery
JP4644818B2 (en) * 2006-09-05 2011-03-09 国立大学法人群馬大学 Dye for dye-sensitized solar cell, photoelectric conversion element using the dye, and dye-sensitized solar cell
JP2009043481A (en) * 2007-08-07 2009-02-26 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module

Similar Documents

Publication Publication Date Title
Miyasaka et al. Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania
Li et al. High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells
ES2475730T3 (en) Module of solar cells sensitized by dye and method to manufacture the same
JP4507306B2 (en) Oxide semiconductor electrode and dye-sensitized solar cell using the same
JP5150818B2 (en) Dye-sensitized solar cell and method for producing the same
WO2010119775A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
KR101297885B1 (en) Counter electrode with graphene and metal hybrid film for dye sensitized solar cell and dye sensitized solar cell comprising the same
JP4461657B2 (en) Photoelectric conversion element
JP2004241228A (en) Plastic film electrode and photoelectric cell using it
JP5361612B2 (en) Photoelectric conversion element
Bonomo et al. Nanocomposites of nickel oxide and zirconia for the preparation of photocathodes with improved performance in p-type dye-sensitized solar cells
JP2001196104A (en) Photoelectric transducer, its manufacturing method and porous titanium oxide semiconductor electrode
JP2001357898A (en) Electrode for pigment-sensitized solar battery and its manufacturing method
JP2000319018A (en) Porous titanium oxide thin film md photoelectric convertor using the film
JP4334960B2 (en) Carbon electrode and electrode and dye-sensitized solar cell comprising the same
WO2009048267A2 (en) Photoelectrode of dye-sensitized solar cell containing glass powder
JP2006073488A (en) Dye-sensitized solar cell and manufacturing method thereof
JP2002075476A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
Huang et al. Photoelectrochemical properties of CuS-TiO2 composite coating electrode and its preparation via electrophoretic deposition
JP2003282162A (en) Composition of metal oxide semiconductor dispersed liquid and dye-sensitized optical semiconductor electrode using the same
US20110232742A1 (en) Systems and Methods for Preparing Components of Photovoltaic Cells
JP2004253331A (en) Reforming method of semiconductor electrode film
JP2009009740A (en) Dye- sensitized solar cell
JP4380214B2 (en) Method for producing dye-sensitized solar cell
JP2003249277A (en) Dye sensitized solar cell electrode

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904