JP2001357810A - Method of using electron emitting cathode - Google Patents

Method of using electron emitting cathode

Info

Publication number
JP2001357810A
JP2001357810A JP2000174762A JP2000174762A JP2001357810A JP 2001357810 A JP2001357810 A JP 2001357810A JP 2000174762 A JP2000174762 A JP 2000174762A JP 2000174762 A JP2000174762 A JP 2000174762A JP 2001357810 A JP2001357810 A JP 2001357810A
Authority
JP
Japan
Prior art keywords
electron emission
reservoir
temperature
emission cathode
electron emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000174762A
Other languages
Japanese (ja)
Other versions
JP4368501B2 (en
Inventor
Yoshinori Terui
良典 照井
Naoya Kudo
直弥 工藤
Katsuyoshi Tsunoda
勝義 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000174762A priority Critical patent/JP4368501B2/en
Publication of JP2001357810A publication Critical patent/JP2001357810A/en
Application granted granted Critical
Publication of JP4368501B2 publication Critical patent/JP4368501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of using an electron emitting cathode holding a reservoir so as not to easily drop by enduring repeated temperature rises and drops, and having a long life and high reliability. SOLUTION: In this method of using an electron emitting cathode, an electron emitting cathode having a metallic base, a coated layer to lower the work function of the metallic base by coating the surface of the metallic base, and a supply source to supply a substance to compose the coated layer, is operated at a lower temperature than the transformation temperature of the substance composing the supply source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子顕微鏡、電子
ビーム露光機、電子ビームテスター、測長機等の電子ビ
ーム源として用いられる電子放射陰極に関わり、ことに
その長寿命を達成するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron emission cathode used as an electron beam source for an electron microscope, an electron beam exposure device, an electron beam tester, a length measuring device, and the like, and more particularly, to achieving a long life. About the method.

【0002】[0002]

【従来の技術】近年、より高輝度の電子ビームを得るた
めに、タングステン単結晶からなる針状電極を用いた電
子放射陰極が利用されている。この電子放射陰極は、軸
方位が<100>方位からなるタングステン単結晶チッ
プ(以下、単にWチップという)に、ジルコニウム及び
酸素からなる被覆層(以下、ZrO被覆層という)を設
け、該ZrO被覆層の存在によってタングステン単結晶
の(100)面の仕事関数を約2.8eVに低下させた
もので、前記Wチップの先端部に形成された(100)
面に相当する微小な結晶面のみが電子放出領域となるの
で、従来の熱陰極よりも高輝度の電子ビームが得られ、
しかも長寿命である特徴を有する。また冷電界放射陰極
よりも安定で、低い真空度でも動作し、使い易いという
特徴を有している。
2. Description of the Related Art In recent years, an electron emission cathode using a needle-shaped electrode made of tungsten single crystal has been used in order to obtain an electron beam with higher luminance. This electron emission cathode is provided with a coating layer made of zirconium and oxygen (hereinafter, called a ZrO coating layer) on a tungsten single crystal chip (hereinafter, simply called a W chip) having an axial orientation of <100>. The work function of the (100) plane of the tungsten single crystal was reduced to about 2.8 eV due to the presence of the layer, and was formed at the tip of the W chip.
Since only the minute crystal plane corresponding to the plane is the electron emission area, an electron beam with higher brightness than the conventional hot cathode can be obtained,
Moreover, it has a feature of long life. It is also more stable than a cold field emission cathode, operates even at a low vacuum, and is easy to use.

【0003】電子放射陰極は、絶縁碍子に固定された金
属支柱に設けられたタングステンワイヤーの所定の位置
に電子ビームを放射するWチップが溶接等により固着さ
れ、また前記タングステンワイヤー等からの熱電子の放
射を抑制する電界を形成するためのサプレッサー電極等
から構成されている。
The electron emission cathode has a W tip for emitting an electron beam fixed to a predetermined position of a tungsten wire provided on a metal support fixed to an insulator by welding or the like, and thermoelectrons from the tungsten wire or the like. And a suppressor electrode for forming an electric field for suppressing the emission of light.

【0004】そして、電子放射陰極においては、Wチッ
プの一部に、ジルコニウム酸化物からなるジルコニウム
と酸素の供給源、即ち、リザーバーが設けられている。
Wチップの表面はZrO被覆層で覆われており、Wチッ
プはタングステンワイヤーにより通電加熱されて、一般
に1800K程度の温度下で使用され、Wチップ表面の
ZrO吸着層は蒸発により消耗する。しかし、リザーバ
ーよりジルコニウム及び酸素が拡散することにより、W
チップの表面に連続的に供給されるので、結果的にZr
O吸着層が維持される。
[0004] In the electron emission cathode, a supply source of zirconium and zirconium made of zirconium oxide, that is, a reservoir is provided in a part of the W chip.
The surface of the W chip is covered with a ZrO coating layer. The W chip is electrically heated by a tungsten wire and is generally used at a temperature of about 1800 K, and the ZrO adsorption layer on the W chip surface is consumed by evaporation. However, since zirconium and oxygen diffuse from the reservoir, W
Since it is continuously supplied to the surface of the chip, as a result, Zr
The O adsorption layer is maintained.

【0005】前述の電子放射陰極の構造と動作説明は、
ジルコニウムと酸素からなるZrO被覆層を設けた電子
放射陰極(ZrO/Wエミッターという)に関するもの
であるが、前記ZrO/Wエミッター以外にも、ハフニ
ウム酸化物をハフニウムと酸素の供給源としてHfO被
覆層を設けた電子放射陰極(HfO/Wエミッターとい
う)が知られている。
The structure and operation of the above-mentioned electron emission cathode are described below.
The present invention relates to an electron emission cathode provided with a ZrO coating layer made of zirconium and oxygen (referred to as a ZrO / W emitter). There is known an electron emission cathode (referred to as HfO / W emitter) provided with.

【0006】[0006]

【発明が解決しようとする課題】半導体検査装置などで
は高輝度で長寿命を有するZrO/Wエミッターが広く
使用されており、前記用途分野に適用した場合には、市
販のZrO/Wエミッターにおいても1800Kの動作
温度で約1年の寿命が得られている。しかしながら、前
記と同じ電子放射陰極を分析用途のSEMやTEMに適
用した場合には、その寿命が2000−5000時間程
度と短く、しかもばらつきが大きく、満足できる結果が
得られない。
A ZrO / W emitter having a high luminance and a long life is widely used in a semiconductor inspection apparatus and the like. When applied to the above-mentioned application field, a ZrO / W emitter is also used in a commercially available ZrO / W emitter. At an operating temperature of 1800K, a life of about one year is obtained. However, when the same electron emission cathode as described above is applied to an SEM or TEM for analytical use, its life is as short as about 2,000 to 5,000 hours, and the dispersion is large, so that satisfactory results cannot be obtained.

【0007】本発明者は、前記の分析用途分野におけ
る、寿命が短く、ばらつくという問題についていろいろ
検討した結果、被覆層の供給源の変態点が動作温度より
も低いために、電子放射陰極の動作温度を設定する際
に、被覆層を構成する物質の温度が変態点を通過し、そ
の時生じる体積変化により、供給源にクラックが入り、
次第に脱落することに原因していること、そして、被覆
層を構成する物質を供給する供給源が常にその物質の変
態点未満の温度に維持するように電子放射陰極を動作さ
せるときに前記問題を解決できることを見出し、本発明
に至ったものである。
The inventor of the present invention has conducted various studies on the problem of short life and variation in the analytical application field, and found that the transformation point of the source of the coating layer is lower than the operating temperature. When setting the temperature, the temperature of the material constituting the coating layer passes through the transformation point, and the volume change that occurs at that time causes cracks in the supply source,
This problem is caused by the fact that the source that supplies the material constituting the coating layer always operates the electron emission cathode so as to maintain the temperature below the transformation point of the material. The inventors have found that the present invention can be solved, and have reached the present invention.

【0008】即ち、本発明は、SEMやTEMなどの分
析用途の如くに、ON−OFF動作の激しい電子線利用
機器に適用しても、繰り返しの昇降温操作に耐えてリザ
ーバーが脱落し難く、その結果、長寿命で、信頼性高く
電子放射陰極を使用することができるという電子放射陰
極の使用方法を提供することを目的としている。
That is, even if the present invention is applied to an electron beam utilizing device having a strong ON-OFF operation, such as an analysis application such as a SEM or a TEM, the reservoir is resistant to repeated temperature rising / falling operations and the reservoir is hardly dropped. As a result, it is an object of the present invention to provide a method of using an electron emission cathode which has a long life and can use the electron emission cathode with high reliability.

【0009】[0009]

【課題を解決するための手段】本発明は、金属基体と、
前記金属基体の表面を被覆し、金属基体の仕事関数を低
下させるための被覆層と、前記被覆層を構成する物質を
供給するための供給源とを有する電子放射陰極の使用方
法であって、前記供給源を構成する物質の変態点より
も、低い温度で動作させることを特徴とする電子放射陰
極の使用方法であり、好ましくは、金属基体がタングス
テン、モリブデン、タンタルまたはレニウムから選ばれ
た一つであることを特徴とする前記の電子放射陰極の使
用方法であり、更に好ましくは、供給源が、酸化ジルコ
ニウム又は酸化ハフニウムであることを特徴とする前記
の電子放射陰極の使用方法である。
The present invention comprises a metal substrate,
A method for using an electron emission cathode having a coating layer for coating the surface of the metal substrate and reducing a work function of the metal substrate, and a supply source for supplying a material constituting the coating layer, A method of using an electron emission cathode, wherein the electron emission cathode is operated at a temperature lower than the transformation point of a material constituting the supply source. Preferably, the metal substrate is selected from tungsten, molybdenum, tantalum, and rhenium. The use of the above-mentioned electron emission cathode, and more preferably the use of the above-mentioned electron emission cathode, wherein the supply source is zirconium oxide or hafnium oxide.

【0010】[0010]

【発明の実施の形態】本発明によれば、供給源(リザー
バー)を構成する物質の変態点よりも、低い温度で動作
することにより、昇降温の際に変態温度を通過すること
がないので、反復昇降温を行ってもリザーバーにクラッ
クが入ることなく、脱落を防ぐことが出来る。
According to the present invention, by operating at a temperature lower than the transformation point of the material constituting the supply source (reservoir), the material does not pass through the transformation temperature when the temperature rises and falls. Even if the temperature is repeatedly raised and lowered, the reservoir can be prevented from falling without cracking.

【0011】ZrO/Wエミッターにおいてはリザーバ
ーを構成する物質の変態点は1200−1500Kであ
り、HfO/Wエミッターにおいてはリザーバーを構成
する物質の変態点は1900−2100Kである。従っ
て、本発明の実施態様として、ZrO/Wエミッターに
おいては1200K未満、HfO/Wエミッターにおい
ては1900K未満の動作温度に設定することにより、
反復昇降温を行っても、リザーバーが脱落することを防
止でき、高い信頼性を得ることが出来る。また、Zr、
Hfの酸化物は相互に全率で固溶するので、混合して用
いることもできるが、電子放射特性の均一性の上から、
なるべく単独で用いることが望ましい。
In the case of the ZrO / W emitter, the transformation point of the material constituting the reservoir is 1200-1500K, and in the case of the HfO / W emitter, the transformation point of the substance constituting the reservoir is 1900-2100K. Therefore, as an embodiment of the present invention, by setting the operating temperature to less than 1200K for the ZrO / W emitter and to less than 1900K for the HfO / W emitter,
Even if the temperature is repeatedly raised and lowered, it is possible to prevent the reservoir from falling off, and to obtain high reliability. Also, Zr,
Since the oxides of Hf are mutually dissolved at a total rate, they can be used as a mixture, but from the viewpoint of uniformity of the electron emission characteristics,
It is desirable to use it alone as much as possible.

【0012】本発明に用いる金属基体については、一般
的にタングステンが選択されるが、タングステン以外に
モリブデン、タンタル、レニウムも用いることができ
る。また、前記金属基体の被覆層を設ける部分は、タン
グステン、モリブデンの場合その(100)面が一般的
である。
As the metal substrate used in the present invention, tungsten is generally selected, but molybdenum, tantalum and rhenium can also be used in addition to tungsten. In the case where the coating layer of the metal base is provided with tungsten or molybdenum, its portion (100) is generally used.

【0013】[0013]

【実施例】〔実施例1、2、比較例1、2〕絶縁碍子に
ロウ付けされた金属支柱にタングステンワイヤーをスポ
ット溶接により固定した後、<100>方位の単結晶タ
ングステン細線を寸断したWチップを前記タングステン
ワイヤーにスポット溶接して取り付け、更に、Wチップ
の先端を電解研磨して鋭利な先端とすることで、電子放
射陰極中間体を得た。
Examples [Examples 1 and 2 and Comparative Examples 1 and 2] After fixing a tungsten wire to a metal support brazed to an insulator by spot welding, W was cut into single-crystal tungsten thin wires of <100> orientation. The tip was attached to the tungsten wire by spot welding, and the tip of the W tip was electrolytically polished to a sharp tip to obtain an electron emission cathode intermediate.

【0014】市販水素化ジルコニウム粉末を、酢酸イソ
アミルを分散媒として、乳鉢上で粉砕、混合してスラリ
ーを得た。前記スラリーを前記電子放射陰極中間体のW
チップ(Wチップのタングステンワイヤーへの固定位置
とWチップ先端との中央の位置)に塗布して、リザーバ
を予備形成した。スラリー中の酢酸イソアミルが蒸発し
た後、1×10-9Torr(1.3×10-7Pa)の超
高真空中でタングステンワイヤーに通電してWチップを
1800Kに加熱し、水素化ジルコニウムをジルコニウ
ムと水素に熱分解してリザーバを焼成、固化した。更
に、酸素雰囲気下3×10-6Torr(4.0×10-4
Pa)で20時間加熱し、リザーバ中のジルコニウムを
酸化、焼成並びに拡散をさせて、Wチップの表面にZr
O被覆層を形成してZrO/Wエミッターを作製した。
A commercially available zirconium hydride powder was pulverized and mixed in a mortar with isoamyl acetate as a dispersion medium to obtain a slurry. The slurry is mixed with W of the electron emission cathode intermediate.
It was applied to the chip (the position where the W chip was fixed to the tungsten wire and the center of the tip of the W chip) to form a reservoir in advance. After the isoamyl acetate in the slurry evaporates, the tungsten tip is heated to 1800K by applying a current to the tungsten wire in an ultra-high vacuum of 1 × 10 −9 Torr (1.3 × 10 −7 Pa) to remove zirconium hydride. The reservoir was calcined by thermal decomposition into zirconium and hydrogen, and solidified. Further, under an oxygen atmosphere, 3 × 10 −6 Torr (4.0 × 10 −4 Torr)
Pa) for 20 hours to oxidize, bake and diffuse the zirconium in the reservoir, and to deposit Zr on the surface of the W chip.
An O coating layer was formed to produce a ZrO / W emitter.

【0015】上記手順で得られた5個の電子放射陰極の
それぞれについて、1×10-9Torr(1.3×10
-7Pa)の超高真空下で、通電加熱により1800Kま
で昇温と冷却(通電の停止)とを200回繰り返した
後、リザーバの状態を観察した(比較例1)。また、
上記と同じ操作で得た5個の電子放射陰極について1×
10-9Torr(1.3×10-7Pa)の超高真空下
で、通電加熱により1150Kまで昇温と冷却(通電の
停止)とを200回繰り返した後、リザーバの状態を観
察した(実施例1)。
For each of the five electron emission cathodes obtained by the above procedure, 1 × 10 −9 Torr (1.3 × 10
Under an ultra-high vacuum of -7 Pa), heating and cooling (stopping the current supply) up to 1800 K by current heating were repeated 200 times, and then the state of the reservoir was observed (Comparative Example 1). Also,
1 × for 5 electron emission cathodes obtained by the same operation as above
Under an ultra-high vacuum of 10 −9 Torr (1.3 × 10 −7 Pa), heating and cooling to 1150 K by applying current and repeating cooling (stopping the current) were repeated 200 times, and the state of the reservoir was observed ( Example 1).

【0016】また、水素化ジルコニウムを水素化ハフニ
ウムに代えることでHfO/Wエミッターを作製して、
同様の実験を行った。ただし、被覆層形成と加熱冷却す
る際の昇温時の温度をそれぞれ、2150K(比較例
2)及び1800K(実施例2)とした。
Further, an HfO / W emitter is manufactured by replacing zirconium hydride with hafnium hydride.
A similar experiment was performed. However, the temperatures at the time of heating when forming the coating layer and heating and cooling were 2150 K (Comparative Example 2) and 1800 K (Example 2), respectively.

【0017】表1に実施例1、2、比較例1、2の結果
を示す。昇温温度がリザーバーの変態点より高い比較例
1、比較例2では70回以下の昇降温回数でリザーバー
が脱落したが、昇温温度がリザーバーの変態点より低い
実施例1、実施例2では200回の昇降温でも脱落は認
められなかった。
Table 1 shows the results of Examples 1 and 2 and Comparative Examples 1 and 2. In Comparative Example 1 and Comparative Example 2 in which the heating temperature was higher than the transformation point of the reservoir, the reservoir dropped off at 70 or less times of heating and cooling, but in Examples 1 and 2 where the heating temperature was lower than the transformation point of the reservoir. No dropout was observed even after the temperature was raised and lowered 200 times.

【0018】[0018]

【表1】 [Table 1]

【0019】〔実施例3、4、比較例3、4〕更に、上
記評価に用いたものとは別に、電子放射陰極を上記手順
で作製し、実際に走査型電子顕微鏡に搭載し、実使用状
況下での加熱冷却の反復回数と寿命を調べた。なお、Z
rO/Wについては動作温度を1800K(比較例
3)、1150K(実施例3)とし、HfO/Wについ
ては動作温度を2150K(比較例4)、1800K
(実施例4)とした。
[Examples 3 and 4 and Comparative Examples 3 and 4] Apart from those used in the above evaluations, an electron emission cathode was prepared according to the above-described procedure, mounted on a scanning electron microscope, and actually used. The number of heating and cooling cycles and the life under the circumstances were investigated. Note that Z
For rO / W, the operating temperature was 1800K (Comparative Example 3) and 1150K (Example 3), and for HfO / W, the operating temperature was 2150K (Comparative Example 4) and 1800K.
(Example 4)

【0020】この結果を表2に示した。動作温度がリザ
ーバーの変態点より高い比較例3、比較例4では600
0時間未満の寿命であったが、動作温度がリザーバーの
変態点より低い実施例3、実施例4では8000時間以
上の長寿命が得られた。
The results are shown in Table 2. Comparative Examples 3 and 4 in which the operating temperature was higher than the transformation point of the reservoir were 600
Although the service life was less than 0 hour, in Examples 3 and 4 where the operating temperature was lower than the transformation point of the reservoir, a long service life of 8000 hours or more was obtained.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明の電子放射陰極の使用方法は、被
覆層を構成する物質を供給する供給源が常にその物質の
変態点未満の温度に維持するように電子放射陰極を動作
させるので、従来の使用方法に比べ、加熱冷却の繰り返
しを受けてもリザーバの脱落が無く、安定して長寿命が
達成され、SEMやTEMなど分析用途の如く、ON−
OFF動作の激しい電子線利用機器に好適な方法であ
る。
The method of using the electron-emitting cathode of the present invention operates the electron-emitting cathode such that the source supplying the material constituting the coating layer always maintains a temperature below the transformation point of the material. Compared to the conventional method of use, the reservoir does not fall off even after repeated heating and cooling, and a long life is achieved stably. As in the case of analytical applications such as SEM and TEM, ON-
This method is suitable for an electron beam-using device with a severe OFF operation.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属基体と、前記金属基体表面を被覆し、
金属基体の仕事関数を低下させるための被覆層と、前記
被覆層を構成する物質を供給するための供給源とを有す
る電子放射陰極の使用方法であって、前記供給源を構成
する物質の変態点よりも、低い温度で動作させることを
特徴とする電子放射陰極の使用方法。
1. A metal substrate and a surface of said metal substrate,
A method of using an electron emission cathode having a coating layer for lowering the work function of a metal substrate and a supply source for supplying a material constituting the coating layer, wherein the transformation of the material constituting the supply source is performed. A method of using an electron emission cathode, which is operated at a temperature lower than the temperature.
【請求項2】金属基体がタングステン、モリブデン、タ
ンタルまたはレニウムから選ばれた一つであることを特
徴とする請求項1記載の電子放射陰極の使用方法。
2. The method according to claim 1, wherein the metal substrate is one selected from the group consisting of tungsten, molybdenum, tantalum and rhenium.
【請求項3】供給源が、酸化ジルコニウム又は酸化ハフ
ニウムであることを特徴とする請求項1又は請求項2記
載の電子放射陰極の使用方法。
3. The method according to claim 1, wherein the supply source is zirconium oxide or hafnium oxide.
JP2000174762A 2000-06-12 2000-06-12 Usage of electron emission cathode Expired - Fee Related JP4368501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000174762A JP4368501B2 (en) 2000-06-12 2000-06-12 Usage of electron emission cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174762A JP4368501B2 (en) 2000-06-12 2000-06-12 Usage of electron emission cathode

Publications (2)

Publication Number Publication Date
JP2001357810A true JP2001357810A (en) 2001-12-26
JP4368501B2 JP4368501B2 (en) 2009-11-18

Family

ID=18676742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174762A Expired - Fee Related JP4368501B2 (en) 2000-06-12 2000-06-12 Usage of electron emission cathode

Country Status (1)

Country Link
JP (1) JP4368501B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148507A1 (en) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kabushiki Kaisha Electron source
CN112117170A (en) * 2020-10-15 2020-12-22 东南大学 Graphene-coated tungsten-based hot cathode and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148507A1 (en) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kabushiki Kaisha Electron source
CN112117170A (en) * 2020-10-15 2020-12-22 东南大学 Graphene-coated tungsten-based hot cathode and preparation method thereof
CN112117170B (en) * 2020-10-15 2024-02-06 东南大学 Graphene coated tungsten-based hot cathode and preparation method thereof

Also Published As

Publication number Publication date
JP4368501B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4971342B2 (en) Electron source
US20180158639A1 (en) Target for barium-scandate dispenser cathode
EP1858047B1 (en) Electron source manufacturing method
EP2242084B1 (en) Method of manufacturing an electron source
JP2004265614A (en) Electron source
JP2005190758A (en) Electron source
JP2009205800A (en) Electron source
JP3397570B2 (en) Thermal field emission cathode
JP2001357810A (en) Method of using electron emitting cathode
JP5363413B2 (en) Electron source
WO2011040326A1 (en) Rod for electron source, electron source, and electronic appliance
JP3260204B2 (en) Thermal field emission cathode
EP1596418B1 (en) Electron gun
JP2008004411A (en) Electron source
JP4040531B2 (en) Diffusion-supplemented electron source and electronic application device
JP2010238384A (en) Electron source and use application for the same
JPH10255703A (en) Electron emitter negative electrode
JP2006032195A (en) Electron emission source
JPH06150880A (en) Electrode for discharge lamp
JP2001319559A (en) Electron radiating cathode
KR20030078385A (en) Novel metal cathode
JPH11297189A (en) Field emission cold cathode and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees