JPH10255703A - Electron emitter negative electrode - Google Patents

Electron emitter negative electrode

Info

Publication number
JPH10255703A
JPH10255703A JP5503297A JP5503297A JPH10255703A JP H10255703 A JPH10255703 A JP H10255703A JP 5503297 A JP5503297 A JP 5503297A JP 5503297 A JP5503297 A JP 5503297A JP H10255703 A JPH10255703 A JP H10255703A
Authority
JP
Japan
Prior art keywords
tip
needle
radius
electrode
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5503297A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Tsunoda
勝義 角田
Yoshinori Terui
良典 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP5503297A priority Critical patent/JPH10255703A/en
Publication of JPH10255703A publication Critical patent/JPH10255703A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a practical electron emitting negative electrode in which a change with the passage of time can be controlled for a radius of a curvature of a needle shaped electrode tip and a long time operation can be performed under a certain operating condition. SOLUTION: In this electron emitter negative electrode, a covered layer, which is composed of oxygen and at least one element selected from a group consisting of titanium, micronium, magnesium, aluminum, and hafnium, is disposed to a needle shaped electrode constituted of a monocrystal of tungsten or molybdenum having an axis direction <100>. This electron emitter negative electrode has such a feature that a cone half angle in a tipped cone part of the needle shaped electrode is 5 deg. or less, and desirably, a feature that a radius of curvature of the needle shaped electrode tip is 0.6 micron meter or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子顕微鏡、電子線測長
機、電子線露光機、電子線テスター等に用いられる電子
放射陰極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron emission cathode used for an electron microscope, an electron beam measuring device, an electron beam exposure device, an electron beam tester and the like.

【0002】電子顕微鏡を初めとする電子線利用機器の
高精度化、高能率化のために、より高輝度の電子線が必
要とされ、熱電界放射陰極或いはショットキー放射陰極
等のいろいろな陰極が検討されている。これらの陰極の
うち、とりわけ軸方位が<100>方位からなるタング
ステン単結晶の針状電極、或いはモリブデン単結晶の針
状電極に、チタン、ジルコニウム、マグネシウム、アル
ミニウム、或いはハフニウムの一群から選ばれた元素と
酸素とからなる被覆層を設けた電子放射陰極(以下表面
被覆型陰極という)が注目されている。
In order to increase the precision and efficiency of electron beam-based devices such as electron microscopes, higher-luminance electron beams are required, and various cathodes such as a thermal field emission cathode or a Schottky emission cathode are used. Is being considered. Among these cathodes, a needle-shaped electrode of tungsten single crystal or a needle-shaped electrode of molybdenum single crystal whose axis direction is <100> direction is selected from a group of titanium, zirconium, magnesium, aluminum, or hafnium. Electron emission cathodes provided with a coating layer made of an element and oxygen (hereinafter referred to as surface-coated cathodes) have been receiving attention.

【0003】前記表面被覆型陰極の中で、タングステン
単結晶の針状電極(以下、Wチップという)の表面にジ
ルコニウムと酸素とからなる被覆層(以下、ZrO層と
いう)を設けたZrO/W熱電界放射陰極は、そのZr
O層によってタングステン単結晶の(100)面の仕事
関数が被覆層のないときの約4.5eVから約2.8eV
にまで低下するので、<100>方位のWチップの先端
部に形成された微小で平坦な単一の(100)面(以
下、マイクロ・ファセットという)のみを電子放射領域
とすることができ、従来の熱陰極よりも高輝度の電子線
が長寿命で得ることができるという特徴があり、また冷
電界放射陰極よりも低い真空度でも安定して動作し使い
やすいという理由等から、非常に注目を浴びている。
[0003] Among the surface-coated cathodes, ZrO / W in which a coating layer (hereinafter, referred to as a ZrO layer) made of zirconium and oxygen is provided on the surface of a tungsten single crystal needle-like electrode (hereinafter, referred to as a W chip). The thermal field emission cathode has its Zr
Due to the O layer, the work function of the (100) plane of the tungsten single crystal can be increased from about 4.5 eV to about 2.8 eV without the coating layer.
Therefore, only a small flat single (100) plane (hereinafter referred to as a micro facet) formed at the tip of the <100> -oriented W chip can be used as an electron emission region. It is characterized by the fact that it can obtain a high-brightness electron beam with a longer lifetime than conventional hot cathodes, and also because it operates stably even at a lower vacuum than the cold field emission cathode and is easy to use, etc. Is taking a bath.

【0004】[0004]

【従来の技術】ZrO/W熱電界放射陰極の構造は、図
2にその断面図を示すように、先端部から電子ビームを
放射するWチップ1がタングステンフィラメント3に溶
着固定され、前記タングステンフィラメント3は金属支
柱5を介して絶縁碍子4に固定され、更に不要な電子放
射を抑制するための電界を形成するサプレッサー電極2
を備えたものである。なお、ZrO/W熱電界放射陰極
は、タングステンフィラメント3を通電加熱しWチップ
を約1800Kの温度に高めて用いられる。
2. Description of the Related Art As shown in a sectional view of FIG. 2, a structure of a ZrO / W thermal field emission cathode is such that a W chip 1 for emitting an electron beam from a tip is welded and fixed to a tungsten filament 3, Reference numeral 3 denotes a suppressor electrode 2 fixed to the insulator 4 via a metal column 5 and further forming an electric field for suppressing unnecessary electron emission.
It is provided with. The ZrO / W thermal field emission cathode is used by energizing and heating the tungsten filament 3 to raise the temperature of the W chip to about 1800K.

【0005】前記ZrO/W熱電界放射陰極の構造を詳
細にみると、図3はWチップ1とタングステンワイヤー
3の部分を拡大したものであるが、Wチップ1の一部に
はジルコニウムと酸素との供給源のリザーバー7が設け
られている。図示していないがWチップの表面はZrO
層で覆われている。Wチップ1の先端は、図4に拡大し
て示した通り円錐半角αを有する円錐部、平行部、曲率
半径がRである球面部、そしてマイクロ・ファセット部
とから構成されるのが一般的であり、円錐半角α或いは
曲率半径Rが小さい場合には前記平行部は内側に湾曲し
た形状を示す場合もある。また、平行部は曲率半径Rが
大きくなるに従って、或いは円錐半角αが大きくなるに
従って短くなり、時には平行部が存在しない場合もある
(図5参照)。従来の電子放射陰極においては針状電極
先端の円錐半角は5゜を越える大きさに限られていた。
尚、先端曲率半径が大きくなるに従い前記円錐半角も大
きくなる傾向にある。
Referring to the structure of the ZrO / W thermal field emission cathode in detail, FIG. 3 is an enlarged view of a portion of the W tip 1 and the tungsten wire 3, and a part of the W tip 1 has zirconium and oxygen. Is provided. Although not shown, the surface of the W chip is ZrO
Covered with layers. The tip of the W chip 1 is generally composed of a conical part having a conical half angle α as shown in FIG. 4, a parallel part, a spherical part having a radius of curvature R, and a micro facet part. When the half cone angle α or the radius of curvature R is small, the parallel portion may have a shape curved inward. The parallel portion becomes shorter as the radius of curvature R becomes larger or as the half cone angle α becomes larger, and sometimes the parallel portion does not exist (see FIG. 5). In the conventional electron emission cathode, the half angle of the cone at the tip of the needle electrode is limited to a size exceeding 5 °.
The half angle of the cone tends to increase as the radius of curvature of the tip increases.

【0006】ZrO/W熱電界放射陰極をはじめとする
表面被覆型陰極は1800K程度の高温に加熱して動作
させるので、使用条件下では針状電極に作用する表面張
力は大きくなり、該針状電極の先端部から側面部へ向か
って物質移動が起こり、その結果として該針状電極の先
端曲率半径は次第に大きくなることが知られている(P
hys.Rev.117,1452(1960)、Jo
urnal of Applied Physics,
31,790(1960)参照)。従って、表面被覆型
陰極を一定の引き出し電圧の下にて動作させた際には、
先端曲率半径の肥大化によって、針状電極先端に生ずる
電界強度が次第に低下するために、放射電流密度も減少
するという現象を示す。そして、この放射電流密度の減
少、すなわち針状電極の先端曲率半径の増加は先端曲率
半径が小さい時にほど顕著である。
[0006] Since surface-coated cathodes such as the ZrO / W thermal field emission cathode are operated by heating to a high temperature of about 1800 K, the surface tension acting on the needle-shaped electrode becomes large under use conditions, and the needle-shaped electrode becomes large. It is known that mass transfer occurs from the tip of the electrode toward the side face, and as a result, the radius of curvature of the tip of the needle-shaped electrode gradually increases (P
hys. Rev .. 117, 1452 (1960), Jo
urnal of Applied Physics,
31, 790 (1960)). Therefore, when the surface-coated cathode is operated under a constant extraction voltage,
The phenomenon that the radiated current density also decreases because the electric field intensity generated at the tip of the needle electrode gradually decreases due to the enlargement of the tip radius of curvature. The decrease in the emission current density, that is, the increase in the radius of curvature of the tip of the needle-shaped electrode is more remarkable as the radius of curvature of the tip is smaller.

【0007】ZrO/W熱電界放射陰極をはじめとする
表面被覆型陰極は、上記した如く高輝度の電子線を長時
間得ることができ、しかもその操作性が容易であるた
め、色々な電子線利用機器で急速に普及している。そし
て、これらのいろいろな電子線利用機器の用途において
は、5000時間、或いは10000時間といった長期
に渡り経時変化の少ない安定した電子線が求められてい
るが、この要求が十分に満足されるには到っていないの
が現状である。即ち、使用時間の経過に伴って針状電極
の先端曲率半径は前記メカニズムに従って次第に大きく
なるため、一定の引き出し電圧で動作させた場合には徐
々に角電流密度が減少するので、角電流密度を一定に保
つためには引き出し電圧を徐々に増加させて使用しなけ
ればならず操作上問題であった。特に先端曲率半径が
0.6μm以下のもので前記問題が顕著である。
As described above, surface-coated cathodes such as the ZrO / W thermal field emission cathode can obtain a high-brightness electron beam for a long period of time and are easy to operate. It is rapidly spreading in use equipment. In these various applications of electron beam utilizing equipment, stable electron beams with little change over time over a long period of time such as 5000 hours or 10000 hours are required. It has not yet arrived. That is, the radius of curvature of the tip of the needle-shaped electrode gradually increases with the elapse of use time according to the mechanism described above. Therefore, when the electrode is operated at a constant extraction voltage, the angular current density gradually decreases. In order to keep the voltage constant, it is necessary to gradually increase the withdrawal voltage for use. In particular, the above problem is remarkable when the radius of curvature of the tip is 0.6 μm or less.

【0008】先端曲率半径の小さなZrO/W熱電界放
射陰極に関して特開平6−84451号公報に0.2〜
0.4μmのものが放射角電流密度が高いが全放射電流
は差程高くない特性を有することが開示されている。し
かし、前記ZrO/W熱電界放射陰極においても、先端
半径の変化が著しく、一定の角電流密度を保って動作さ
せるためには頻繁に引き出し電圧を上げていかなければ
ならないという欠点を有している。引き出し電圧を頻繁
に変化させることは電子光学特性に影響を与えるし、ま
た針状電極の先端半径が大きく変化することはソースサ
イズの変化となって光学特性に影響を与え、分解能の低
下につながるので好ましくない。
Japanese Patent Application Laid-Open No. 6-84451 discloses a ZrO / W thermal field emission cathode having a small tip radius of curvature.
It is disclosed that 0.4 μm has a characteristic that the emission angular current density is high but the total emission current is not so high. However, the ZrO / W thermal field emission cathode also has a disadvantage that the tip radius changes remarkably and the extraction voltage must be increased frequently in order to operate at a constant angular current density. I have. Frequent changes in the extraction voltage affect the electro-optical characteristics, and large changes in the radius of the tip of the needle electrode change the source size and affect the optical characteristics, leading to a reduction in resolution. It is not preferable.

【0009】[0009]

【発明が解決しようとする課題】本発明者らは、上記の
事情に鑑みいろいろ検討した結果、針状電極の先端円錐
部の円錐半角を極度に小さくするときに該針状電極先端
部での物質移動を抑制し、その結果針状電極先端の曲率
半径の経時変化を小さくすることができ、いろいろな電
子線利用機器に適用したときの操作性に優れる電子放射
陰極を提供できるという知見を得て、本発明に至ったも
のである。
SUMMARY OF THE INVENTION The present inventors have made various studies in view of the above circumstances, and as a result, have found that when the conical half angle of the tip conical portion of the needle electrode is made extremely small, the tip angle of the tip of the needle electrode is extremely small. It has been found that mass transfer can be suppressed, and as a result, the time-dependent change in the radius of curvature of the tip of the needle-shaped electrode can be reduced, and an electron emission cathode excellent in operability when applied to various electron beam utilizing devices can be provided. Thus, the present invention has been accomplished.

【0010】即ち、本発明は、針状電極先端の曲率半径
の経時変化を小さく抑え、一定の動作条件の下で長時間
動作することのできる実用的な電子放射陰極を提供する
ことを目的とする。
[0010] That is, an object of the present invention is to provide a practical electron emission cathode capable of suppressing a change over time in the radius of curvature of the tip of a needle-shaped electrode and operating for a long time under a constant operating condition. I do.

【0011】[0011]

【課題を解決するための手段】本発明は、軸方位が<1
00>方位のタングステンまたはモリブデンの単結晶か
らなる針状電極にチタン、ジルコニウム、マグネシウ
ム、アルミニウム、ハフニウムの一群から選ばれる少な
くとも一種の元素と酸素とからなる被覆層を設けた電子
放射陰極において、前記針状電極の先端円錐部の円錐半
角が5゜以下であることを特徴とする電子放射陰極であ
り、好ましくは、針状電極の先端曲率半径が0.6μm
以下であることを特徴とする前記電子放射陰極である。
SUMMARY OF THE INVENTION According to the present invention, an axial azimuth of <1 is provided.
An electron emission cathode comprising a needle electrode made of a single crystal of tungsten or molybdenum having a orientation of at least one element selected from the group consisting of titanium, zirconium, magnesium, aluminum and hafnium and oxygen. An electron emission cathode characterized in that the conical half angle of the conical tip of the needle electrode is 5 ° or less, and preferably, the radius of curvature of the needle electrode tip is 0.6 μm.
The electron emission cathode described below.

【0012】[0012]

【発明の実施の形態】本発明は針状電極の円錐半角を5
゜以下とすることにより、該針状電極先端での物質移動
による半径変化を小さくすることができ、その結果とし
て放射電流密度の減少を実用上問題ない程度までに小さ
く抑える効果があるもので、特に従来では特性変化の著
しかった0.6μm以下の領域においてその効果が顕著
である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the half angle of a cone
By ゜ or less, it is possible to reduce the change in radius due to mass transfer at the tip of the needle-shaped electrode, and as a result, has the effect of suppressing the decrease in radiation current density to a level that does not pose a practical problem, In particular, the effect is remarkable in the region of 0.6 μm or less where the characteristic change is remarkable in the past.

【0013】即ち、図1は、初期角電流密度を概ね12
0μA/srとした時の本発明に係る電子放射陰極の針
状電極先端の曲率半径変化を、従来公知の電子放射陰極
のそれと対比して示した説明図である。横軸は使用直前
における針状電極先端の曲率半径(R0)を、縦軸は針
状電極先端の曲率半径の変化率(R5000/R0)を表し
ている。ここで、R5000は5000時間使用後の針状電
極先端の曲率半径を表す。本発明に係る電子放射陰極
は、従来公知の電子放射陰極に比べて、R0の全ての領
域でR5000/R0が小さく、特にR0が0.6μm以下の
領域ではその差異が著しい。
That is, FIG. 1 shows that the initial angular current density is approximately 12%.
FIG. 5 is an explanatory diagram showing a change in the radius of curvature of the tip of the needle electrode of the electron emission cathode according to the present invention at 0 μA / sr in comparison with that of a conventionally known electron emission cathode. The horizontal axis represents the radius of curvature (R0) of the tip of the needle electrode immediately before use, and the vertical axis represents the rate of change (R5000 / R0) of the radius of curvature of the tip of the needle electrode. Here, R5000 represents the radius of curvature of the tip of the needle electrode after 5000 hours of use. In the electron emission cathode according to the present invention, R5000 / R0 is small in the entire region of R0 as compared with the conventionally known electron emission cathode, and the difference is remarkable especially in the region where R0 is 0.6 μm or less.

【0014】以下、実施例、比較例に基づいて、本発明
を更に詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

【実施例】【Example】

〔実施例1〜5、比較例1〜2〕碍子にロウ付けされた
2本の金属支柱の先端に、V字型のタングステンフィラ
メントをスポット溶接により取り付けた。更にV字型タ
ングステンフィラメントの頂点部に長さ3.0mm、直
径約0.13mmの<100>方位のタングステン単結
晶細線をスポット溶接により取り付けた。
[Examples 1 to 5, Comparative Examples 1 and 2] V-shaped tungsten filaments were attached to the tips of two metal posts brazed to the insulator by spot welding. Further, a tungsten single crystal thin wire of <100> orientation having a length of 3.0 mm and a diameter of about 0.13 mm was attached to the top of the V-shaped tungsten filament by spot welding.

【0015】実施例1〜4については、リング状電極に
従来よりも低濃度である0.5規定のNaOH水溶液を
張り、前記タングステン単結晶細線の先端部を浸漬し、
更に該NaOH水溶液の液面に対してタングステン単結
晶細線を約150μmのストロークで上下に往復運動さ
せながら電解研磨を行い、細線の一部を切り離して円錐
半角が5゜以下の針状電極を得た。上記操作において、
比較例1及び比較例2については、NaOH水溶液の濃
度を従来公知の1規定とした。
In Examples 1 to 4, a 0.5N NaOH aqueous solution having a lower concentration than the conventional one was applied to the ring-shaped electrode, and the tip of the tungsten single crystal thin wire was immersed.
Further, electropolishing is performed while reciprocating a tungsten single crystal thin wire up and down with a stroke of about 150 μm on the liquid surface of the NaOH aqueous solution, and a part of the thin wire is cut off to obtain a needle electrode having a conical half angle of 5 ° or less. Was. In the above operation,
In Comparative Example 1 and Comparative Example 2, the concentration of the aqueous NaOH solution was set to a conventionally known concentration.

【0016】また、実施例5については電解研磨によっ
てタングステン単結晶細線の一部に直径3.6μm程度
のくびれ部を形成し、次にくびれ部を含む該タングステ
ン単結晶細線に通電して該くびれ部を局所的に発熱させ
て、溶断によって先端曲率半径1.8μm、円錐半角4
゜の針状電極を作製した。
In Example 5, a narrow portion having a diameter of about 3.6 μm was formed in a part of the tungsten single crystal thin wire by electrolytic polishing, and then the tungsten single crystal thin wire including the narrow portion was energized to apply the narrowing. The part is locally heated, and the tip has a radius of curvature of 1.8 μm and a cone half angle of 4 due to fusing.
A needle-shaped electrode was prepared.

【0017】次に、前記タングステン単結晶細線のタン
グステンフィラメントの頂点部から約0.2mmの位置
に水素化ジルコニウムを有機溶剤中で粉砕しスラリー状
にしたものを塗布し、更に超高真空装置中で3×10-9
Torrまで真空引きした後、金属支柱を介しタングス
テンフィラメントに通電してタングステン単結晶細線を
約1800Kまで加熱し、その後酸素を3×10-6To
rrまで導入して48時間維持した。この操作により水
素化ジルコニウムを熱分解、酸化して、酸化ジルコニウ
ムからなるリザーバーを形成した。
Next, zirconium hydride crushed in an organic solvent and slurried is applied to a position about 0.2 mm from the apex of the tungsten filament of the tungsten single crystal thin wire, and further applied in an ultrahigh vacuum apparatus. At 3 × 10 -9
After evacuating to Torr, the tungsten filament is heated to about 1800 K by energizing a tungsten filament through a metal support, and then oxygen is added to 3 × 10 −6 To.
rr was introduced and maintained for 48 hours. By this operation, the zirconium hydride was thermally decomposed and oxidized to form a reservoir made of zirconium oxide.

【0018】碍子にサプレッサー電極を被せ、サプレッ
サーの孔から針状電極を突き出し、引き出し電極が対に
なっている電子銃に搭載し、超高真空装置に配設して5
×10-10Torrまで真空引きした。タングステンフ
ィラメントに通電して針状電極を1800Kに加熱し、
続いて針状電極に、引き出し電極に対して負の高圧電位
(引き出し電圧)を印加して、電子放射を開始した。な
お、高圧印加、計測系については図6に示した通りであ
り、引き出し電極を通過した軸上電流Ipと立体角ωか
ら角電流密度Ip'=Ip/ωを算出した。実施例1〜
実施例5、比較例1及び比較例2の結果を表1に示し
た。
A suppressor electrode is put on the insulator, a needle-like electrode is protruded from a hole of the suppressor, mounted on an electron gun paired with an extraction electrode, and arranged in an ultrahigh vacuum apparatus.
Vacuum was drawn to × 10 −10 Torr. Energize the tungsten filament to heat the needle electrode to 1800K,
Subsequently, a negative high potential (extraction voltage) was applied to the needle electrode with respect to the extraction electrode, and electron emission was started. The high-voltage application and measurement system is as shown in FIG. 6, and the angular current density Ip ′ = Ip / ω was calculated from the on-axis current Ip passing through the extraction electrode and the solid angle ω. Example 1
Table 1 shows the results of Example 5, Comparative Example 1 and Comparative Example 2.

【0019】[0019]

【表1】 [Table 1]

【0020】又、1000時間までの動作時の電子放射
特性について、実施例1と比較例1を図7に、実施例
3、実施例4、及び比較例2を図8に示した。本発明に
係る電子放射陰極が、従来公知の電子放射陰極に比べ、
電子放射特性が格段に安定していることが明かである。
FIG. 7 shows Example 1 and Comparative Example 1, and FIG. 8 shows Examples 3, 4 and Comparative Example 2 regarding the electron emission characteristics during the operation up to 1000 hours. Electron emission cathode according to the present invention, compared with conventionally known electron emission cathode,
It is clear that the electron emission characteristics are much more stable.

【0021】[0021]

【発明の効果】本発明の電子放射陰極は、針状電極先端
の曲率半径の経時変化を小さく抑え、一定の動作条件下
で長時間動作するという特徴を有するので、電子顕微鏡
を初めとする多くの電子線利用機器に用いるときに、頻
繁に電圧調整する必要がなく、操作性に優れるという効
果を有し、産業上有用である。
The electron emission cathode of the present invention has a feature that the change in the radius of curvature of the tip of the needle-shaped electrode with time is kept small and the device operates for a long time under a certain operating condition. When used for an electron beam utilizing device, there is no need to frequently adjust the voltage, and the operability is excellent, which is industrially useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電子放射陰極の針状電極先端の曲
率半径変化を示す説明図。
FIG. 1 is an explanatory diagram showing a change in a radius of curvature of a tip of a needle-like electrode of an electron emission cathode according to the present invention.

【図2】電子放射陰極の断面図。FIG. 2 is a sectional view of an electron emission cathode.

【図3】電子放射陰極の針状電極部拡大図。FIG. 3 is an enlarged view of a needle electrode portion of the electron emission cathode.

【図4】電子放射陰極の針状電極先端の形状図。FIG. 4 is a shape diagram of a tip of a needle-like electrode of an electron emission cathode.

【図5】電子放射陰極の針状電極先端の他の形状図。FIG. 5 is another shape diagram of the tip of the needle-like electrode of the electron emission cathode.

【図6】電子放射陰極への高圧印加、電子線計測の模式
図。
FIG. 6 is a schematic diagram of applying a high voltage to an electron emission cathode and measuring an electron beam.

【図7】実施例1に係る電子放射陰の角電流密度の経時
変化を示す図。
FIG. 7 is a diagram showing a change over time in the angular current density of the electron emission shadow according to the first embodiment.

【図8】実施例3及び実施例4に係る電子放射陰極の角
電流密度の経時変化を示す図。
FIG. 8 is a diagram showing a change with time of the angular current density of the electron-emitting cathodes according to Examples 3 and 4.

【符号の説明】[Explanation of symbols]

1 Wチップ 2 サプレッサー電極 3 タングステンフィラメント 4 絶縁碍子 5 金属支柱 6 ネジ 7 リザーバー α 円錐半角 R 曲率半径 Reference Signs List 1 W tip 2 Suppressor electrode 3 Tungsten filament 4 Insulator 5 Metal column 6 Screw 7 Reservoir α Conical half angle R Radius of curvature

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】軸方位が<100>方位のタングステンま
たはモリブデンの単結晶からなる針状電極にチタン、ジ
ルコニウム、マグネシウム、アルミニウム、ハフニウム
の一群から選ばれる少なくとも一種の元素と酸素とから
なる被覆層を設けた電子放射陰極において、前記針状電
極の先端円錐部の円錐半角が5゜以下であることを特徴
とする電子放射陰極。
1. A coating layer comprising at least one element selected from the group consisting of titanium, zirconium, magnesium, aluminum and hafnium and oxygen on a needle-like electrode comprising a single crystal of tungsten or molybdenum having an axial orientation of <100>. Wherein the conical half angle of the conical tip of the needle-shaped electrode is 5 ° or less.
【請求項2】針状電極の先端曲率半径が0.6μm以下
であることを特徴とする請求項1記載の電子放射陰極。
2. The electron emission cathode according to claim 1, wherein the radius of curvature of the tip of the needle-shaped electrode is 0.6 μm or less.
JP5503297A 1997-03-10 1997-03-10 Electron emitter negative electrode Pending JPH10255703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5503297A JPH10255703A (en) 1997-03-10 1997-03-10 Electron emitter negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5503297A JPH10255703A (en) 1997-03-10 1997-03-10 Electron emitter negative electrode

Publications (1)

Publication Number Publication Date
JPH10255703A true JPH10255703A (en) 1998-09-25

Family

ID=12987327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5503297A Pending JPH10255703A (en) 1997-03-10 1997-03-10 Electron emitter negative electrode

Country Status (1)

Country Link
JP (1) JPH10255703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301573A (en) * 2001-04-02 2002-10-15 Rigaku Corp Method of connecting tungsten members to each other and sample high-temperature equipment
JP2002538596A (en) * 1999-03-05 2002-11-12 エテック システムズ インコーポレイテッド Schottky and field emission electron guns with enhanced angular strength
WO2014057570A1 (en) * 2012-10-12 2014-04-17 株式会社 日立ハイテクノロジーズ Method for manufacturing electron source

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538596A (en) * 1999-03-05 2002-11-12 エテック システムズ インコーポレイテッド Schottky and field emission electron guns with enhanced angular strength
JP2002301573A (en) * 2001-04-02 2002-10-15 Rigaku Corp Method of connecting tungsten members to each other and sample high-temperature equipment
JP4526099B2 (en) * 2001-04-02 2010-08-18 株式会社リガク Method for manufacturing sample support and sample high temperature apparatus
WO2014057570A1 (en) * 2012-10-12 2014-04-17 株式会社 日立ハイテクノロジーズ Method for manufacturing electron source
CN104704601A (en) * 2012-10-12 2015-06-10 株式会社日立高新技术 Method for manufacturing electron source
JPWO2014057570A1 (en) * 2012-10-12 2016-08-25 株式会社日立ハイテクノロジーズ Manufacturing method of electron source
US10074506B2 (en) 2012-10-12 2018-09-11 Hitachi High-Technologies Corporation Method for manufacturing electron source

Similar Documents

Publication Publication Date Title
US5089742A (en) Electron beam source formed with biologically derived tubule materials
US7888654B2 (en) Cold field emitter
JP2005228741A (en) High-luminance thermionic cathode
EP3066680B1 (en) Bright and durable field emission source derived from refractory taylor cones
US6798126B2 (en) High angular intensity Schottky electron point source
JP4792404B2 (en) Manufacturing method of electron source
EP2242084B1 (en) Method of manufacturing an electron source
US6680562B1 (en) Schottky emitter having extended life
JP2004265614A (en) Electron source
EP1123558B1 (en) Schottky emitter having extended life
JPH1074446A (en) Electron emitting cathode
JP4292108B2 (en) Electron source and manufacturing method thereof
US5962961A (en) Thermal field emission electron gun
JPH10255703A (en) Electron emitter negative electrode
CN117133616A (en) Electron emitter and method for manufacturing the same
JP3547531B2 (en) Electron beam equipment
JP2009205800A (en) Electron source
JP4032057B2 (en) Manufacturing method of electron source
WO2011040326A1 (en) Rod for electron source, electron source, and electronic appliance
JP7295974B2 (en) Electron source, electron beam apparatus, and method for manufacturing electron source
JP2003007195A (en) Electron emission cathode and its manufacturing method
JPH0684452A (en) Thermoelectric field emission cathode
JP3250724B2 (en) Manufacturing method of needle electrode
JPWO2004073010A1 (en) Electron gun
US11935720B1 (en) Field-emission type electron source and charged particle beam device using the same