JP2001355566A - Geothermal power generating device - Google Patents
Geothermal power generating deviceInfo
- Publication number
- JP2001355566A JP2001355566A JP2000179327A JP2000179327A JP2001355566A JP 2001355566 A JP2001355566 A JP 2001355566A JP 2000179327 A JP2000179327 A JP 2000179327A JP 2000179327 A JP2000179327 A JP 2000179327A JP 2001355566 A JP2001355566 A JP 2001355566A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- low
- turbine
- boiling
- downcomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、火山地帯に設置
される低沸点媒体を利用した地熱発電装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a geothermal power generator using a low-boiling medium installed in a volcanic zone.
【0002】[0002]
【従来の技術】自然エネルギーの利用のうちでも、風力
や太陽熱に比べると、地熱が変化なく比較的一定に得ら
れやすい。しかも、日本は火山の分布が非常に多いこと
から、地熱発電が実施され、あるいはその提案が種々な
されている。2. Description of the Related Art Among natural energy uses, geothermal energy can be obtained relatively unchanged without change compared to wind power or solar heat. Moreover, since Japan has a very large distribution of volcanoes, geothermal power generation has been implemented or various proposals have been made.
【0003】現在実施されている地熱発電は、水を地熱
により気化させて水蒸気圧によってタービンを回転させ
て電力を得るものであるが、水を気化させる高温と共に
多大な地熱エネルギーを要することから、余程恵まれた
火山環境でない限り、恒常的な運転が保障されないた
め、フロリーナート等の低沸点媒体を利用する地熱発電
装置が提案されている(特開昭58−5485号公
報)。[0003] The geothermal power generation that is currently being carried out uses water to vaporize by geothermal heat and rotates a turbine by steam pressure to obtain electric power. However, it requires a large amount of geothermal energy together with the high temperature to vaporize water. Unless a volcanic environment is so blessed, constant operation is not guaranteed, and a geothermal power generation device using a low-boiling medium such as Florinate has been proposed (Japanese Patent Laid-Open No. 58-5485).
【0004】同公報記載の地熱発電装置は、図4に示す
ように、低沸点媒体液を供給管50により地下熱水層5
1に送り込んで、熱水により揚水管52の中で気化さ
せ、その気泡を揚水管中に熱水を随伴させながら上昇す
ることにより、気体の圧力を保たせ、地上によりその圧
力でタービンを回転させ電気エネルギーに変換させるも
ので、地上に揚水された熱水は気泡と分離され下降管5
5により地下に戻される。また、気化した低沸点媒体
は、仕事が終ってから冷却装置56により液化され、再
度供給管50により地下に気泡発生のため供給される。As shown in FIG. 4, the geothermal power generation device described in the publication discloses a method of supplying a low boiling medium liquid to a subsurface hot water layer 5 through a supply pipe 50.
1 and is vaporized in the pumping pipe 52 by hot water, and the bubbles rise while the hot water accompanies the pumping pipe, thereby maintaining the gas pressure and rotating the turbine at that pressure on the ground. The hot water pumped to the ground is separated from the air bubbles and converted into electric energy.
Returned to the basement by 5. Further, the vaporized low boiling point medium is liquefied by the cooling device 56 after the work is completed, and is again supplied to the underground by the supply pipe 50 for generating bubbles.
【0005】[0005]
【発明が解決しようとする課題】上記のような従来の地
熱発電装置によれば、地熱により気化した低沸点媒体を
回収後に再度利用することから、冷却装置により液化さ
せるために、自然の冷媒を用いることができないなら
ば、過大なエネルギー(主にコンプレッサーの運転電
力)を要し、差引き期待する電力量が得られないという
問題がある。ちなみに、この液化エネルギーを、例え
ば、風力、太陽熱で得ようとすれば自然条件に左右され
るし、雪や水の冷媒を利用しようとすれば、火山地形上
の条件からそれが困難な場合が多い。According to the above-mentioned conventional geothermal power generator, the low-boiling-point medium vaporized by geothermal heat is reused after being recovered. Therefore, natural refrigerant is used for liquefaction by the cooling device. If it cannot be used, excessive energy (mainly the operating power of the compressor) is required, and there is a problem that the amount of power expected to be subtracted cannot be obtained. By the way, if you want to obtain this liquefied energy by, for example, wind or solar heat, it depends on natural conditions, and if you use snow or water refrigerant, it may be difficult due to volcanic terrain conditions. Many.
【0006】この発明は、上記のような実情に鑑みて、
発電効率が良好であって、自然条件に左右されなく安定
して電力を供給できる地熱発電装置を提供することを目
的とした。The present invention has been made in view of the above-described circumstances,
It is an object of the present invention to provide a geothermal power generation device that has good power generation efficiency and can stably supply power without being affected by natural conditions.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、上昇管を共通とし下降管をそれぞれ
備えてなる熱水の循環系統と低沸点媒体の循環系統とを
地下に埋設し、地上において、上昇管中に低沸点液体が
気化した気泡と、気泡に随伴して揚水された熱水とを分
ける分離装置を両循環系統の共通部中に設けるほか、分
離された低沸点気体の液化装置を低沸点媒体の循環系統
中に設け、熱水の下降管の中途に、熱水の落下により回
転するタービンを設け、タービンの回転力により発電す
る地熱発電装置を構成した。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an underground circulating system for hot water and a circulating system for a low-boiling-point medium, each having a common riser and having a downcomer. In addition to installing a separator in the common part of both circulation systems, a separator is installed on the ground to separate the gas bubbles in which the low-boiling liquid vaporized in the riser pipe from the hot water pumped along with the bubbles. A liquefier of the boiling gas was provided in the circulation system of the low-boiling medium, a turbine rotating by falling hot water was provided in the middle of the downcomer of the hot water, and a geothermal power generation device configured to generate power by the rotating force of the turbine was configured.
【0008】上記の構成によれば、上昇管中を気泡と共
に揚水された熱水は、分離装置を経て下降管に落下さ
せ、その落差に伴うタービンの回転力により電力を得る
ものであるから、効率的に大きな電力が一定して得られ
る。また、分離装置から分離された低沸点気体の液化に
ついては、後記するように環境条件によって、液化装置
の形態に様々の方式を採ることができるため、得られた
電力を差引きすることなくそのままの量で送電できる。[0008] According to the above configuration, the hot water pumped up in the rising pipe together with the air bubbles is dropped into the downcoming pipe through the separation device, and the electric power is obtained by the rotational force of the turbine caused by the drop. Efficiently large power can be obtained efficiently. In addition, regarding the liquefaction of the low-boiling gas separated from the separation device, various forms can be adopted in the form of the liquefaction device depending on the environmental conditions as described below, so that the obtained electric power is not deducted as it is. Power can be transmitted.
【0009】[0009]
【発明の実施の形態】この発明において、低沸点媒体と
は、水の沸点よりも極低い温度で気化する液体であっ
て、これには例えば常温近辺の温度(5〜30℃)で沸
騰するフッ素化合物としてのフロリナートを好適に使用
することができる。また、低沸点液体の液化には、大
気、積雪、川水等の自然条件を利用できれば、液化装置
11はその利用形態を採ることが望ましい。しかし、困
難であれば、請求項2や後記実施例に示すように、気化
圧力を利用する。また、これだけで不足する場合には自
然条件と併用することもできる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a low-boiling medium is a liquid that evaporates at a temperature extremely lower than the boiling point of water, and for example, boils at a temperature near normal temperature (5 to 30 ° C.). Fluorinate as a fluorine compound can be suitably used. In addition, if natural conditions such as the atmosphere, snow, and river water can be used for liquefaction of the low boiling point liquid, it is desirable that the liquefaction apparatus 11 adopt the use form. However, if it is difficult, a vaporization pressure is used as described in claim 2 and the following embodiments. If this is insufficient, it can be used together with natural conditions.
【0010】また、地熱の循環系統1と低沸点媒体の循
環系統2は、それぞれ配管により連続する形態(図1)
と、火山の地下水としての熱水層25を取り込む形態
(図3)とがある。発電規模や火山地形的条件、使用目
的等によりいずれの選定も可能である。The geothermal circulation system 1 and the low-boiling medium circulation system 2 are connected by pipes (FIG. 1).
And a mode of taking in a hydrothermal layer 25 as groundwater of a volcano (FIG. 3). Either one can be selected depending on the power generation scale, volcanic topographical conditions, purpose of use, etc.
【0011】[0011]
【発明の効果】以上説明したように、この発明によれ
ば、低沸点媒体の気泡の上昇に随伴させて揚水した熱水
を落下させて、水の位置エネルギーを電力に変換するも
のであるため、変換効率が良好であって、自然条件に関
係なく安定して各種用途に必要な電力を供給できるとい
う優れた効果がある。As described above, according to the present invention, the potential energy of the water is converted into electric power by dropping the hot water pumped with the rise of the bubbles of the low-boiling medium. It has an excellent effect that the conversion efficiency is good and the power required for various uses can be stably supplied regardless of the natural conditions.
【0012】[0012]
【実施例】次に、この発明の実施例を図面に基づいて説
明する。Next, an embodiment of the present invention will be described with reference to the drawings.
【0013】図1および図2は、山小屋Hや一般家庭等
の消費電力を賄える程度の小規模地熱発電装置Paを示
したもので、熱水の循環系統1と、低沸点媒体の循環系
統2とを並列させ、その並列につき上昇管3を共通にさ
せ、地下において熱水の下降管5に発電器7のタービン
8を設け、地上において熱水と低沸点気体6bとの分離
装置9や液化装置11等が装備される。FIG. 1 and FIG. 2 show a small-scale geothermal power generation device Pa capable of covering the power consumption of a mountain hut H, a general household, and the like. A circulation system 1 for hot water and a circulation system 2 for a low boiling point medium are shown. Are arranged in parallel, the riser 3 is made common to the parallel arrangement, the turbine 8 of the generator 7 is provided in the downcomer 5 of the hot water underground, and the separator 9 and the liquefaction of the hot water and the low-boiling gas 6b are provided above the ground. The device 11 is provided.
【0014】熱水の循環系統1は、上昇管3と下降管5
との間に地下の連結管12と地上の分離装置9とを介在
して構成されるもので、地下の縦寸法が約3mであっ
て、地下2m程度の箇所にタービン8が内装される。ま
た、そのタービン8の回転軸13が地上に出され、地上
に発電器7が設けられる。なお、下降管5中の水位L
は、上昇管3中の熱水の上昇を助ける役目を果たす。The hot water circulation system 1 comprises a riser 3 and a downcomer 5
The underground connecting pipe 12 and the above-mentioned separation device 9 are interposed between them, and the vertical dimension of the underground is about 3 m, and the turbine 8 is installed at a location of about 2 m below the ground. Further, the rotating shaft 13 of the turbine 8 is put out on the ground, and the generator 7 is provided on the ground. The water level L in the downcomer 5
Serves to help the hot water in the riser 3 rise.
【0015】低沸点媒体の循環系統2は、地下では下降
管15から上昇管3への導入管17を設け、地上では分
離装置9から液化装置11への圧気管19を設けてあ
る。そして、圧気管19の中にタービン18を設けるこ
とにより、その動力を液化装置11の駆動源としてあ
る。21が動力伝達軸を示す。The low-boiling medium circulation system 2 is provided with an inlet pipe 17 from the downcomer pipe 15 to the ascending pipe 3 underground, and a compressed air pipe 19 from the separator 9 to the liquefaction apparatus 11 above the ground. By providing the turbine 18 in the compressed air pipe 19, the power is used as a drive source of the liquefier 11. Reference numeral 21 denotes a power transmission shaft.
【0016】液化装置11により液化された低沸点液体
6aは、下降管5を流下して熱水の循環系統1の下端に
注入されると、それまでに地熱により加熱されているの
で、上昇管3の熱水中を気泡となって上昇しそれからも
熱を受けて気泡を増大させながら、熱水を随伴させて分
離装置9に至り、そこで分離された熱水は下降管5中に
落下してタービン8を回転させ、これで発電器7により
電力が得られ、その電力が送電線23を伝って小屋Hに
供給される。When the low-boiling liquid 6a liquefied by the liquefaction apparatus 11 flows down the downcomer pipe 5 and is injected into the lower end of the circulation system 1 of hot water, it has been heated by the geothermal heat so far. The hot water of No. 3 rises as bubbles in the hot water and then receives the heat to increase the bubbles, accompanied by the hot water and reaches the separation device 9, where the separated hot water falls into the downcomer 5. The turbine 8 is rotated to generate electric power by the generator 7, and the electric power is supplied to the hut H via the power transmission line 23.
【0017】図3は、地下の熱水層25に至るまで配管
する大規模な地熱発電装置Pbを示したもので、前記実
施例とは基本的には同じであるが、熱水の循環系統1と
低沸点媒体の循環系統2とがそれぞれその熱水層25を
一部として取り込んでいる違いがある。また、熱水の下
降管5の上端には、貯水池27を設け、ここに一旦溜め
てから落下させるようにして安定して電力が得られるよ
うにしてある。さらに、下降管5が挿入されるケーシン
グ29の中に発電器7が内装される。また、別途ケーシ
ング30には上昇管3と低沸点液体6aの下降管15と
が共に挿入されている。FIG. 3 shows a large-scale geothermal power generation device Pb which is connected to the underground hot water layer 25, and is basically the same as that of the above-mentioned embodiment. 1 and the low-boiling-point medium circulation system 2 have a difference that the hot water layer 25 is partially taken in. A reservoir 27 is provided at the upper end of the downcomer 5 of the hot water. The reservoir 27 is temporarily stored in the reservoir 27 and then dropped, so that electric power can be stably obtained. Further, the generator 7 is provided inside a casing 29 into which the downcomer pipe 5 is inserted. The riser 3 and the downcomer 15 for the low-boiling liquid 6a are separately inserted into the casing 30 separately.
【図1】この発明による地熱発電装置の断面説明図であ
る。FIG. 1 is an explanatory cross-sectional view of a geothermal power generation device according to the present invention.
【図2】同地熱発電装置の設置使用場所風景を示す斜視
図である。FIG. 2 is a perspective view showing a landscape where the geothermal power generation device is installed and used.
【図3】他の実施例による地熱発電装置の断面説明図で
ある。FIG. 3 is an explanatory sectional view of a geothermal power generation device according to another embodiment.
【図4】従来例の説明図である。FIG. 4 is an explanatory diagram of a conventional example.
Pa,Pb 地熱発電装置 1 熱水の循環系統 2 低沸点媒体の循環系統 3 上昇管 5 下降管 6a 低沸点液体 6b 低沸点気体 8 タービン 9 分離装置 11 液化装置 15 下降管 18 タービン 25 熱水層 Pa, Pb Geothermal power generation device 1 Hot water circulation system 2 Low boiling point medium circulation system 3 Rise pipe 5 Downcomer pipe 6a Low boiling point liquid 6b Low boiling point gas 8 Turbine 9 Separation device 11 Liquefaction device 15 Downcomer 18 Turbine 25 Hot water layer
Claims (2)
てなる熱水の循環系統と低沸点媒体の循環系統とを地下
に埋設し、地上において、上昇管中に低沸点液体が気化
した気泡と、気泡に随伴して揚水された熱水とを分ける
分離装置を両循環系統の共通部中に設けるほか、分離さ
れた低沸点気体の液化装置を低沸点媒体の循環系統中に
設け、熱水の下降管の中途に、熱水の落下により回転す
るタービンを設け、タービンの回転力により発電するよ
うに構成したことを特徴とする地熱発電装置。1. A circulating system for hot water and a circulating system for a low-boiling medium, each having a common riser and having a downcomer, are buried underground, and air bubbles having a low-boiling liquid vaporized in the riser on the ground. In addition to installing a separation device in the common part of both circulation systems, which separates hot water pumped along with air bubbles, and a liquefier for the separated low-boiling gas in the circulation system of the low-boiling medium, A geothermal power generation device comprising: a turbine that rotates by falling of hot water provided in the middle of a water downcomer to generate power by the rotational force of the turbine.
間に、低沸点気体の圧力により回転するタービンを設
け、タービンの回転力を液化に要する動力源としたこと
を特徴とする請求項1記載の地熱発電装置。2. The liquefaction apparatus according to claim 1, wherein a turbine rotating by the pressure of the low-boiling gas is provided between the liquefaction apparatus and the separation apparatus, and the rotational force of the turbine is used as a power source required for liquefaction. Geothermal power plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000179327A JP2001355566A (en) | 2000-06-15 | 2000-06-15 | Geothermal power generating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000179327A JP2001355566A (en) | 2000-06-15 | 2000-06-15 | Geothermal power generating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001355566A true JP2001355566A (en) | 2001-12-26 |
Family
ID=18680617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000179327A Pending JP2001355566A (en) | 2000-06-15 | 2000-06-15 | Geothermal power generating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001355566A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012068279A3 (en) * | 2010-11-16 | 2012-09-27 | InnerGeo LLC | System and method for extracting energy |
CN107060926A (en) * | 2017-01-25 | 2017-08-18 | 天津大学 | A kind of middle low temperature heat energy combined generating system of utilization two-phase pipe airlift pump |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS585485A (en) * | 1981-07-01 | 1983-01-12 | Hitachi Ltd | Geothermal recovery power plant |
-
2000
- 2000-06-15 JP JP2000179327A patent/JP2001355566A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS585485A (en) * | 1981-07-01 | 1983-01-12 | Hitachi Ltd | Geothermal recovery power plant |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012068279A3 (en) * | 2010-11-16 | 2012-09-27 | InnerGeo LLC | System and method for extracting energy |
US9708885B2 (en) | 2010-11-16 | 2017-07-18 | InnerGeo LLC | System and method for extracting energy |
CN107060926A (en) * | 2017-01-25 | 2017-08-18 | 天津大学 | A kind of middle low temperature heat energy combined generating system of utilization two-phase pipe airlift pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5515679A (en) | Geothermal heat mining and utilization | |
US8650875B2 (en) | Direct exchange geothermal refrigerant power advanced generating system | |
US8708046B2 (en) | Closed loop energy production from geothermal reservoirs | |
US9394771B2 (en) | Single well, self-flowing, geothermal system for energy extraction | |
CN101415940B (en) | Method, device and system for converting energy | |
EP3737839B1 (en) | Geothermal energy device | |
US3757516A (en) | Geothermal energy system | |
US9482109B2 (en) | Compressed gas energy storage and release system | |
US20180209305A1 (en) | Integrated System for Using Thermal Energy Conversion | |
AU633246B2 (en) | Power generation plant | |
US8418466B1 (en) | Thermodynamic amplifier cycle system and method | |
WO2010021618A1 (en) | Closed loop energy production from geothermal reservoirs | |
US4380903A (en) | Enthalpy restoration in geothermal energy processing system | |
CN204663783U (en) | Ocean thermal energy hydraulic generating equipment | |
WO2024104361A1 (en) | Method and apparatus for generating power by air temperature difference | |
Glos et al. | Assessment of performance and costs of CO2 based next level geothermal power (NLGP) systems | |
JP2001355566A (en) | Geothermal power generating device | |
US20240183342A1 (en) | Renewable geothermal energy harvesting systems and methods | |
Gurgenci et al. | Challenges for geothermal energy utilisation | |
JPS637248B2 (en) | ||
KR101713596B1 (en) | Power generation device using waste heat | |
Phair | Getting the most out of geothermal power | |
GB2504568A (en) | Venturi heat exchanger for power plant condenser | |
JPS59200076A (en) | Transportation method of high-temperature geothermal water and method of geothermal power generation | |
WO2024091187A1 (en) | A method and a device for production of heat and/or electric energy with a geothermal gravitational heat pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100521 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100929 |