JPS637248B2 - - Google Patents

Info

Publication number
JPS637248B2
JPS637248B2 JP56010414A JP1041481A JPS637248B2 JP S637248 B2 JPS637248 B2 JP S637248B2 JP 56010414 A JP56010414 A JP 56010414A JP 1041481 A JP1041481 A JP 1041481A JP S637248 B2 JPS637248 B2 JP S637248B2
Authority
JP
Japan
Prior art keywords
boiling point
point medium
low
low boiling
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56010414A
Other languages
Japanese (ja)
Other versions
JPS57124078A (en
Inventor
Haruyuki Yamazaki
Haruichiro Sakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56010414A priority Critical patent/JPS57124078A/en
Publication of JPS57124078A publication Critical patent/JPS57124078A/en
Publication of JPS637248B2 publication Critical patent/JPS637248B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

【発明の詳細な説明】 本発明は、熱発電装置、特に、地熱回収に適し
た熱発電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal power generation device, and particularly to a thermal power generation device suitable for geothermal recovery.

地熱を回収する発電プラントでは低沸点媒体蒸
発器が用いられるが、第1図は低沸点媒体蒸発器
を用いた従来の地熱回収発電プラントの一例を示
すものである。この地熱回収発電プラントは、蒸
発器1、タービン2、発電機3、凝縮器4、循環
ポンプ5、熱水吸み上げポンプ6を主な構成要素
とし、熱水、低沸点媒体および冷却水の三系統か
らなつている。熱水系は、地表101下の熱水層
102から熱水103を熱水吸み上げポンプ6で
吸み上げ、蒸発器1で低沸点媒体104に熱回収
した後、再び地表101下に戻す系統である。低
沸点媒体系は、作動媒体である低沸点媒体104
を、蒸発器1で熱水103によつて蒸発させ、低
沸点媒体蒸気105をタービン2に導き、タービ
ン2を回転させ発電に使つた後、凝縮器4で液化
し、これを循環ポンプ5で蒸発器1に戻す系統で
ある。冷却水の系統は、凝縮器4において低沸点
媒体蒸気を冷却水106によつて液に凝縮させる
ための系統である。
A low boiling point medium evaporator is used in a power generation plant that recovers geothermal heat, and FIG. 1 shows an example of a conventional geothermal recovery power generation plant using a low boiling point medium evaporator. This geothermal recovery power generation plant has an evaporator 1, a turbine 2, a generator 3, a condenser 4, a circulation pump 5, and a hot water suction pump 6 as main components, and includes hot water, low boiling point medium, and cooling water. It consists of three systems. In the hydrothermal system, hot water 103 is sucked up from a hydrothermal layer 102 under the earth's surface 101 by a hot water suction pump 6, and after the heat is recovered into a low boiling point medium 104 by an evaporator 1, it is returned to the earth's surface 101 again. It is a systematic. The low boiling point medium system includes a low boiling point medium 104 which is a working medium.
is evaporated by hot water 103 in the evaporator 1, and the low boiling point medium vapor 105 is led to the turbine 2, which is rotated and used for power generation.Then, it is liquefied in the condenser 4, and is liquefied in the circulation pump 5. This is the system that returns to the evaporator 1. The cooling water system is a system for condensing the low boiling point medium vapor into a liquid using the cooling water 106 in the condenser 4 .

しかし、この地熱回収発電プラントは、低沸点
媒体系の低沸点媒体を循環させるための循環ポン
プ5および熱水系の熱水吸み上げポンプ6等に多
量の動力を必要とするため、所内動力率が高くな
る点が欠点となつていた。
However, this geothermal recovery power generation plant requires a large amount of power for the circulation pump 5 for circulating the low boiling point medium of the low boiling point medium system, the hot water suction pump 6 for the hot water system, etc. The disadvantage was that the rate was high.

このような欠点を除去するため、例えば、特開
昭49−124646号公報には、地熱回収発電プラント
の低沸点媒体蒸発器において、低沸点媒体の蒸気
と液との密度差による自然循環作用を効果的に発
揮させることによつて、低沸点媒体の循環ポンプ
および熱水吸み上げポンプ等を不要とし、プラン
トの所内動力率の低減を可能とするものが開示さ
れている。
In order to eliminate such drawbacks, for example, Japanese Patent Application Laid-Open No. 124646/1983 proposes a natural circulation effect due to the density difference between the vapor and liquid of the low boiling point medium in the low boiling point medium evaporator of the geothermal recovery power generation plant. It has been disclosed that, by effectively utilizing the heat, a circulation pump for a low boiling point medium, a hot water suction pump, etc. are not required, and it is possible to reduce the internal power rate of a plant.

本発明は、このような低沸点媒体用の循環ポン
プおよび熱水吸み上げポンプ等の必要がなく、プ
ラントの所内動力率の低減が可能であるのみなら
ず、熱水の温度の高い場合においても効率良く使
用できる熱発電装置を提供可能とすることを目的
とし、低沸点媒体蒸気によつて回転するタービン
と、該タービンで使用した前記低沸点媒体蒸気を
低沸点媒体液にする凝縮器と、熱源内に頂部と底
部において重力状態が異なるように挿入設置さ
れ、その底部において外筒に連通する内筒を有す
る二重筒と、前記外筒内の前記内筒に接して設け
られ、前記低沸点媒体に添加される分解防止液を
前記外筒頂部から前記二重筒底部に戻す中間筒と
よりなり、前記内筒の頂部に前記凝縮器によつて
凝縮した低沸点媒体液が供給され、前記外筒にお
いて、前記熱源によつて加熱されて得られた前記
タービンの回転に使用される低沸点媒体蒸気が発
生する低沸点媒体蒸発器とを有することを特徴と
するものである。
The present invention eliminates the need for circulation pumps for low boiling point media, hot water suction pumps, etc., and not only can reduce the internal power rate of the plant, but also reduces the The purpose of the present invention is to provide a thermal power generation device that can be used efficiently, and includes a turbine that is rotated by low-boiling point medium vapor, and a condenser that converts the low-boiling point medium vapor used in the turbine into a low-boiling point medium liquid. , a double cylinder inserted and installed in the heat source so that the gravity state is different at the top and bottom, and having an inner cylinder communicating with the outer cylinder at the bottom, and a double cylinder provided in contact with the inner cylinder inside the outer cylinder, An intermediate cylinder returns the decomposition prevention liquid added to the low-boiling medium from the top of the outer cylinder to the bottom of the double cylinder, and the low-boiling medium liquid condensed by the condenser is supplied to the top of the inner cylinder. and a low-boiling point medium evaporator that generates low-boiling point medium vapor heated by the heat source and used for rotation of the turbine in the outer cylinder.

すなわち、本発明は、熱発電装置、例えば、地
熱回収発電プラントの低沸点媒体蒸発器におい
て、低沸点媒体の蒸気と液との密度差による自然
循環作用を効果的に発揮させることによつて、低
沸点媒体の循環ポンプおよび熱水吸み上げポンプ
等を不要とし、プラントの所内動力率の低減を可
能とすることができるのみならず、蒸発器の外筒
内の内筒に接して低沸点媒体に添加される分解防
止液を外筒の頂部から二重筒底部に戻す中間筒を
設けることによつて、熱水の温度が高く、200〜
300℃の蒸気が発生する場合にも、低沸点媒体の
分解を防止可能として、効率良い使用を可能とし
たものである。
That is, the present invention effectively exhibits the natural circulation effect due to the density difference between the vapor and liquid of the low boiling point medium in a low boiling point medium evaporator of a thermal power generation device, for example, a geothermal recovery power generation plant. This not only makes it possible to reduce the internal power rate of the plant by eliminating the need for low-boiling point medium circulation pumps and hot water suction pumps, etc. By providing an intermediate cylinder that returns the decomposition prevention liquid added to the medium from the top of the outer cylinder to the bottom of the double cylinder, the temperature of the hot water is high, and
Even when steam at 300°C is generated, it is possible to prevent the decomposition of low boiling point media, making it possible to use it efficiently.

以下、実施例について説明する。 Examples will be described below.

第2図は、一実施例の低沸点媒体蒸発器を断面
で示した系統図で、第1図と同一部分には同一符
号が付してある。この低沸点媒体蒸発器(以下蒸
発器と称する)10は内筒11と外筒12よりな
る二重筒と、外筒12内の内筒11に接して設け
られ、低沸点媒体に添加される分解防止液を外筒
12頂部から二重筒10底部に戻す中間筒16と
よりなる。内筒11は底部において外筒12に連
通し、頂部において、凝縮器4に直接接続して低
沸点媒体供給管として用いられ、外筒12の頂部
には第3図に詳細を示す気液分離器14が設けら
れ、排気管15を介してタービン2に接続してい
る。
FIG. 2 is a system diagram showing a cross section of a low boiling point medium evaporator of one embodiment, and the same parts as in FIG. 1 are given the same reference numerals. This low boiling point medium evaporator (hereinafter referred to as evaporator) 10 is provided in a double cylinder consisting of an inner cylinder 11 and an outer cylinder 12, and in contact with an inner cylinder 11 inside the outer cylinder 12, and is added to a low boiling point medium. It consists of an intermediate cylinder 16 that returns the decomposition prevention liquid from the top of the outer cylinder 12 to the bottom of the double cylinder 10. The inner cylinder 11 communicates with the outer cylinder 12 at the bottom and is directly connected to the condenser 4 at the top to be used as a low-boiling medium supply pipe. A turbine 14 is provided and connected to the turbine 2 via an exhaust pipe 15.

この蒸発器10は、地熱井107より熱水層1
02へ地表下約1Km挿入設置される。そして内筒
11より低沸点媒体液、例えば、フロン114液
(約40℃)が供給されると、このフロン114液は蒸
発器10の底部において外筒12に噴出する。外
筒12の周囲が熱水層102の地熱水によつて約
150℃になつているとすると、フロン114液は周囲
の地熱水によつて加熱されるので、フロン114液
は外筒12に沿つて上昇するにつれて次第に蒸発
し、フロン114蒸気となる。この外筒12を上昇
するフロン114蒸気の密度は約0.5g/cm3、内筒1
1を下降するフロン1114液の密度は1.5g/cm3
あるため、これらの密度差によつて圧力差を生じ
る。すなわち、この圧力差は、両者の密度差×高
さであるため、高さが、例えば、500m〜1Kmで
あると圧力差は50〜100Kg/cm2となり、この圧力
差が生みだす大きな循環力によつて、凝縮器4か
ら低沸点媒体液の循環が行なわれるため、凝縮器
4からの低沸点媒体液104の供給用の循環ポン
プは不要である。また、外筒12に沿つて上昇す
る低沸点媒体蒸気は気液分離器14でミストセパ
レートし、この低沸点媒体を作動媒体としてター
ビン2を回し発電した後、凝縮器4で液化する。
液化した低沸点媒体液104は蒸発器10の循環
力により自然循環する。
This evaporator 10 is connected to a hot water layer 1 from a geothermal well 107.
It will be inserted approximately 1 km below the ground surface into 02. When a low boiling point medium liquid, for example, a Freon 114 liquid (approximately 40° C.) is supplied from the inner cylinder 11, this Freon 114 liquid is ejected into the outer cylinder 12 at the bottom of the evaporator 10. The outer cylinder 12 is surrounded by geothermal water in the hydrothermal layer 102.
Assuming that the temperature is 150°C, the Freon 114 liquid is heated by the surrounding geothermal water, so as it rises along the outer cylinder 12, the Freon 114 liquid gradually evaporates and becomes Freon 114 vapor. The density of the Freon 114 vapor rising in the outer cylinder 12 is approximately 0.5 g/cm 3 ,
Since the density of the Freon 1114 liquid flowing down the tube is 1.5 g/cm 3 , a pressure difference is caused by the density difference. In other words, this pressure difference is the density difference between the two multiplied by the height, so if the height is, for example, 500m to 1km, the pressure difference will be 50 to 100Kg/ cm2 , and this pressure difference will generate a large circulation force. Therefore, since the low boiling point medium liquid is circulated from the condenser 4, a circulation pump for supplying the low boiling point medium liquid 104 from the condenser 4 is not necessary. Further, the low boiling point medium vapor rising along the outer cylinder 12 is separated into mist by the gas-liquid separator 14, and after the low boiling point medium is used as a working medium to rotate the turbine 2 to generate electricity, it is liquefied in the condenser 4.
The liquefied low-boiling medium liquid 104 is naturally circulated by the circulation force of the evaporator 10.

この内筒11を下降し、外筒12に沿つて上昇
する低沸点媒体中には、例えば、エステル油の如
き、不揮発性の分解防止液が混合されている。こ
の不揮発生の液体は、低沸点媒体単独では、熱水
の温度が高く200〜300℃の蒸気を発生するような
場合には、低沸点媒体の分解がおこるので、これ
を防止するために、加えられるもので、外筒12
に沿つて上昇する低沸点媒体中の蒸発しない液体
を気液分離器4で分離する段階において、分離さ
れ、中間筒16を介して再循環するようになつて
いる。
A non-volatile anti-decomposition liquid such as ester oil is mixed in the low boiling point medium that descends through the inner cylinder 11 and rises along the outer cylinder 12. If this non-volatile liquid is used as a low-boiling point medium alone, the low-boiling point medium will decompose if the temperature of the hot water is high and steam of 200 to 300 degrees Celsius is generated, so in order to prevent this, It is an item that can be added to the outer cylinder 12.
In the step of separating the non-evaporated liquid in the low-boiling medium rising along the gas-liquid separator 4, it is separated and recycled via the intermediate cylinder 16.

この実施例の熱発電装置は、低沸点媒体の蒸気
と液との密度差によつて生まれる循環力を効果的
に利用できるので、低沸点媒体循環ポンプが不要
になり、蒸発器を熱水層に挿入設置するので、熱
水吸み上げポンプも不要となり、従つて、所内動
力率の低減が可能となるのみならず、熱水の温度
の高い場合にも、低沸点媒体の分解を防止するこ
とができるので、効率良い使用が可能である。
The thermal power generation device of this embodiment can effectively utilize the circulation force generated by the density difference between the vapor and liquid of the low-boiling point medium, eliminating the need for a low-boiling point medium circulation pump and converting the evaporator into a hot water layer. Since the hot water suction pump is not required, this not only makes it possible to reduce the power rate in the station, but also prevents the decomposition of low boiling point media even when the hot water temperature is high. Therefore, it can be used efficiently.

第4図は、蒸発器を複数個設けて高出力の地熱
発電を可能とする実施例で、第2図と同一部分に
は同一の符号が付してある。この装置では、複数
の蒸発器10から発生する低沸点媒体蒸気105
を集め、タービンに供給するようにし、凝縮器4
からの低沸点媒体液104を凝縮器10へ分配す
るようになつている。そしてこの蒸発器10は地
熱井の大きさに合せて、その本数を変えられる効
果がある。
FIG. 4 shows an embodiment in which a plurality of evaporators are provided to enable high-output geothermal power generation, and the same parts as in FIG. 2 are given the same reference numerals. In this device, low boiling point medium vapor 105 generated from a plurality of evaporators 10
is collected and supplied to the turbine, and the condenser 4
The low-boiling medium liquid 104 from the condenser 10 is adapted to be distributed to the condenser 10. The number of evaporators 10 can be changed according to the size of the geothermal well.

このように、実施例の地熱回収発電プラント
は、蒸発器において低沸点媒体の蒸気系と液系と
の圧力差、循環力を大きく取ることができるの
で、低沸点媒体の循環ポンプが不要となる効果が
あり、また、蒸発器を熱水層に挿入設置している
ので、熱水くみ上げポンプが不要となる効果があ
る。なお、低沸点媒体を内筒から供給しているの
で、スタートアツプの時にもポンプの必要はな
い。さらに、地中には可動部分が全くないので、
構造は簡単である。また、単相流(熱水)と二相
流(作動媒体)との熱交換を用いているので伝熱
面積が小さく、容器直径を小さくすることがで
き、さらに制御をほとんど必要としない等の効果
を有するが、熱水の温度が高く、低沸点媒体の分
解がおこるような場合においても上述の効果を発
揮できる点で著しい効果を有するものである。
In this way, the geothermal recovery power generation plant of the example can have a large pressure difference between the vapor system and liquid system of the low boiling point medium and a large circulation force in the evaporator, so a circulation pump for the low boiling point medium is not required. In addition, since the evaporator is inserted into the hot water layer, there is no need for a hot water pump. Note that since the low boiling point medium is supplied from the inner cylinder, there is no need for a pump at startup. Additionally, there are no moving parts underground, so
The structure is simple. In addition, since it uses heat exchange between a single-phase flow (hot water) and a two-phase flow (working medium), the heat transfer area is small, the container diameter can be made small, and there is little need for control. However, it has a remarkable effect in that the above-mentioned effect can be exhibited even when the temperature of hot water is high and decomposition of a low boiling point medium occurs.

以上の実施例においては、地熱回収発電につい
て説明したが、地熱以外の熱源を用いる場合にも
同様に作用し、同様の効果を得ることができる。
In the above embodiments, geothermal recovery power generation has been described, but the same effect can be obtained even when a heat source other than geothermal heat is used.

以上の如く、本発明の熱発電装置は、低沸点媒
体用の循環ポンプおよび熱水吸み上げポンプ等の
必要がなく、プラントの所内動力率の低減が可能
であるのみならず、熱水の温度の高い場合におい
ても効率良く使用できる熱発電装置の提供を可能
とするもので、産業上の効果の大なるものであ
る。
As described above, the thermal power generation device of the present invention does not require a circulation pump for a low boiling point medium, a hot water suction pump, etc., and is not only capable of reducing the internal power rate of the plant, but also This makes it possible to provide a thermal power generation device that can be used efficiently even at high temperatures, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の地熱回収発電プラントの一例
を示す系統図、第2図は、本発明の熱発電装置の
一実施例の要部断面系統図、第3図aおよびb
は、それぞれ第2図の要部の平面図および側面
図、第4図は、同じく他の実施例の要部の斜視図
である。 2……タービン、4……凝縮器、10……低沸
点媒体蒸発器、11……内筒、12……外筒、1
4……気液分離器、15……排気管、16……中
間筒、101……地表、102……地熱層、10
4……低沸点媒体液、105……低沸点媒体蒸
気、107……地熱井。
Fig. 1 is a system diagram showing an example of a conventional geothermal recovery power generation plant, Fig. 2 is a cross-sectional system diagram of main parts of an embodiment of the thermal power generation device of the present invention, and Figs. 3 a and b.
2 are a plan view and a side view of the main part of FIG. 2, respectively, and FIG. 4 is a perspective view of the main part of another embodiment. 2... Turbine, 4... Condenser, 10... Low boiling point medium evaporator, 11... Inner cylinder, 12... Outer cylinder, 1
4... Gas-liquid separator, 15... Exhaust pipe, 16... Intermediate cylinder, 101... Ground surface, 102... Geothermal layer, 10
4...Low boiling point medium liquid, 105...Low boiling point medium vapor, 107...Geothermal well.

Claims (1)

【特許請求の範囲】 1 低沸点媒体蒸気によつて回転するタービン
と、該タービンで使用した前記低沸点媒体蒸気を
低沸点媒体液にする凝縮器と、熱源内に頂部と底
部において重力状態が異なるように挿入設置さ
れ、その底部において外筒に連通する内筒を有す
る二重筒と、前記外筒内の前記内筒に接して設け
られ、前記低沸点媒体に添加される分解防止液を
前記外筒頂部から前記二重筒底部に戻す中間筒と
よりなり、前記内筒の頂部に前記凝縮器によつて
凝縮した低沸点媒体液が供給され、前記外筒にお
いて、前記熱源によつて加熱されて得られた前記
タービンの回転に使用される低沸点媒体蒸気が発
生する低沸点媒体蒸発器とを有することを特徴と
する熱発電装置。 2 前記熱源が、地熱井の熱水層である特許請求
の範囲第1項記載の熱発電装置。
[Claims] 1. A turbine rotated by low-boiling point medium vapor, a condenser that converts the low-boiling point medium vapor used in the turbine into a low-boiling point medium liquid, and a gravitational condition at the top and bottom of the heat source. A double cylinder having an inner cylinder inserted and installed differently and communicating with the outer cylinder at the bottom thereof, and a decomposition prevention liquid provided in the outer cylinder in contact with the inner cylinder and added to the low boiling point medium. The intermediate cylinder returns from the top of the outer cylinder to the bottom of the double cylinder, and the low boiling point medium liquid condensed by the condenser is supplied to the top of the inner cylinder, and in the outer cylinder, the liquid is heated by the heat source. A thermal power generation device comprising: a low boiling point medium evaporator that generates low boiling point medium vapor that is heated and used to rotate the turbine. 2. The thermal power generation device according to claim 1, wherein the heat source is a hydrothermal layer of a geothermal well.
JP56010414A 1981-01-27 1981-01-27 Heat generator Granted JPS57124078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56010414A JPS57124078A (en) 1981-01-27 1981-01-27 Heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56010414A JPS57124078A (en) 1981-01-27 1981-01-27 Heat generator

Publications (2)

Publication Number Publication Date
JPS57124078A JPS57124078A (en) 1982-08-02
JPS637248B2 true JPS637248B2 (en) 1988-02-16

Family

ID=11749483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56010414A Granted JPS57124078A (en) 1981-01-27 1981-01-27 Heat generator

Country Status (1)

Country Link
JP (1) JPS57124078A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2160306B (en) * 1984-06-14 1987-12-09 Total Energy Conservation And Method of geothermal energy recovery
JPS6165078A (en) * 1984-09-04 1986-04-03 Ishikawajima Harima Heavy Ind Co Ltd Geo-thermal generation device
JP2011145050A (en) * 2010-01-18 2011-07-28 Sumitomo Fudosan Kk Energy supply system reusing existing cavern
CN102146898A (en) * 2011-05-18 2011-08-10 任永斌 Geothermal circulating fluid power station
WO2013027643A1 (en) 2011-08-19 2013-02-28 富士電機株式会社 Power generating device
US11255576B2 (en) * 2018-02-08 2022-02-22 Greenfire Energy Inc. Closed loop energy production from producing geothermal wells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124646A (en) * 1973-04-03 1974-11-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124646A (en) * 1973-04-03 1974-11-28

Also Published As

Publication number Publication date
JPS57124078A (en) 1982-08-02

Similar Documents

Publication Publication Date Title
AU618565B2 (en) Method of and apparatus for producing power from solar ponds
US3953971A (en) Power generation arrangement
US4302297A (en) Desalination apparatus with power generation
US8650875B2 (en) Direct exchange geothermal refrigerant power advanced generating system
JP3391515B2 (en) Apparatus and method for obtaining power from high pressure geothermal fluid
US4283211A (en) Power generation by exchange of latent heats of phase transition
US4267022A (en) Energy efficient process and apparatus for desalinizing water
US20070227703A1 (en) Evaporatively cooled thermosiphon
US3845627A (en) Power generation from hot brines
US4186311A (en) Heat pump method of concentrating fluids
BRPI0709837A2 (en) Method, device and system for energy conversion
EP0649985A1 (en) Thermal power generator
JPH09512332A (en) Absorption cooling device and method
US4380903A (en) Enthalpy restoration in geothermal energy processing system
US4318275A (en) Atmospheric thermal energy conversion system
JPH0120315B2 (en)
US4342197A (en) Geothermal pump down-hole energy regeneration system
JPS637248B2 (en)
EP0044294A1 (en) A desalination apparatus with power generation
US4275563A (en) Power-generating plant having increased circulating force of working fluid
JPH01232175A (en) Geothermal usable power converter
JPS59119073A (en) Low temperature difference power plant
CA1220353A (en) Absorption type heat transfer system functioning as a temperature pressure potential amplifier
JPH0438883B2 (en)
JPS5864486A (en) Heat exchanger