JP2001352759A - Pwm rectifier - Google Patents

Pwm rectifier

Info

Publication number
JP2001352759A
JP2001352759A JP2000171648A JP2000171648A JP2001352759A JP 2001352759 A JP2001352759 A JP 2001352759A JP 2000171648 A JP2000171648 A JP 2000171648A JP 2000171648 A JP2000171648 A JP 2000171648A JP 2001352759 A JP2001352759 A JP 2001352759A
Authority
JP
Japan
Prior art keywords
voltage
value
capacitor
pwm rectifier
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000171648A
Other languages
Japanese (ja)
Other versions
JP3821270B2 (en
Inventor
Akio Suzuki
明夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000171648A priority Critical patent/JP3821270B2/en
Publication of JP2001352759A publication Critical patent/JP2001352759A/en
Application granted granted Critical
Publication of JP3821270B2 publication Critical patent/JP3821270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a control circuit capable of suppressing a change in a voltage across a load to be supplied with a DC power from a PWM rectifier. SOLUTION: A voltage drop part of a DC reactor 16 obtained from a current (IL) to the load 3 is obtained by a voltage drop arithmetic unit 51 instead of a voltage control of a DC capacitor 15 which has been heretofore conducted, and a regulating calculation for setting a deviation of a value obtained by subtracting the voltage drop part from the voltage (VC) across the capacitor 15 from a voltage command value (VC*) of the capacitor 15 to zero is conducted by a voltage regulator 53.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、スイッチングア
ーム複数組を並列接続してなるPWM整流器と、該PW
M整流器の出力の両端に接続される直流コンデンサと、
該直流コンデンサのいずれか一端に接続される直流リア
クトルと、制御回路とから構成されたPWM整流装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PWM rectifier comprising a plurality of sets of switching arms connected in parallel,
A DC capacitor connected across the output of the M rectifier;
The present invention relates to a PWM rectifier including a DC reactor connected to one end of the DC capacitor and a control circuit.

【0002】[0002]

【従来の技術】図9は、この種のPWM整流装置の従来
例を示す回路構成図であり、1はスター結線の三相交流
電源、2はPWM整流装置、3はPWM整流装置2を直
流電源とする負荷を示す。
2. Description of the Related Art FIG. 9 is a circuit diagram showing a conventional example of this type of PWM rectifier. Reference numeral 1 denotes a star-connected three-phase AC power supply; 2, a PWM rectifier; Indicates the load used as the power supply.

【0003】このPWM整流装置2は8組のスイッチン
グアームからなるPWM整流器11と、交流リアクトル
12〜14と、直流コンデンサ15と、直流リアクトル
16と、三相交流電源1のR相の相電圧(VR )を検出
する交流電圧検出器17と、三相交流電源1のS相の相
電圧(VS )を検出する交流電圧検出器18と、三相交
流電源1のT相の相電圧(VT )を検出する交流電圧検
出器19と、三相交流電源1のR相の相電流(IR )を
検出する交流電流検出器20と、三相交流電源1のT相
の相電流(IT )を検出する交流電流検出器21と、直
流コンデンサ15の両端電圧(VC )を検出する直流電
圧検出器22と、前記検出器17〜22それぞれの検出
値に基づいてPWM整流器11を構成するそれぞれのI
GBT(RU ,RX ,RV ,RY ,SU ,SX ,SV
Y ,TU ,TX ,TV,TY )をオン,オフ制御する
制御回路30とから構成されている。
The PWM rectifier 2 includes a PWM rectifier 11 having eight sets of switching arms, AC reactors 12 to 14, a DC capacitor 15, a DC reactor 16, and a phase voltage of the R-phase of the three-phase AC power supply 1 ( V R ), an AC voltage detector 18 for detecting the S- phase voltage (V S ) of the three-phase AC power supply 1, and a T-phase voltage (T S ) of the three-phase AC power supply 1. VT ), an AC current detector 20 for detecting the R- phase current (IR) of the three-phase AC power supply 1, and a T-phase current (T) of the three-phase AC power supply 1. an AC current detector 21 for detecting the I T), a DC voltage detector 22 for detecting the voltage across the DC capacitor 15 (V C), the PWM rectifier 11 based on a detection value of each of the detectors 17 to 22 Each of the constituent I
GBT (R U , R X , R V , R Y , S U , S X , S V ,
S Y , T U , T X , T V , and T Y ).

【0004】図10は図9に示した制御回路30の詳細
回路構成図であり、この制御回路30には電圧調節器3
1と、極性反転器32と、ベクトル演算器33と、2相
/3相変換器34と、R相電流調節器35と、T相電流
調節器36と、加算演算器37〜40と、キャリア比較
器41と、ゲート駆動回路42とを備えている。
FIG. 10 is a detailed circuit diagram of the control circuit 30 shown in FIG.
1, a polarity invertor 32, a vector calculator 33, a two-phase / three-phase converter 34, an R-phase current regulator 35, a T-phase current regulator 36, addition operators 37 to 40, a carrier A comparator 41 and a gate drive circuit 42 are provided.

【0005】図9に示した従来のPWM整流装置2の動
作を、図10に示した制御回路30のいずれも周知の技
術で形成された制御要素を参照しつつ、以下に説明す
る。
[0005] The operation of the conventional PWM rectifier 2 shown in FIG. 9 will be described below with reference to control elements formed by well-known techniques in any of the control circuits 30 shown in FIG.

【0006】このPWM整流装置2は三相交流電源1の
各相の交流電圧から任意の値の直流電圧に変換して負荷
3に供給し、その際に、三相交流電源1から見た基本波
力率をほぼ「1.0」にすることができる可逆の整流装
置である。
The PWM rectifier 2 converts the AC voltage of each phase of the three-phase AC power supply 1 into a DC voltage having an arbitrary value and supplies the DC voltage to the load 3. This is a reversible rectifier capable of reducing the wave power factor to approximately “1.0”.

【0007】すなわち、直流コンデンサ15の両端電圧
に対する電圧指令値(VC *)と直流電圧検出器22で検
出した直流コンデンサ15の両端電圧(VC )との偏差
を零にする調節演算を電圧調節器31で行ない、電圧調
節器31で得た調節演算値に極性反転器32を介するこ
とにより、有効電流指令値を得る。ここで、極性反転器
32は、後述のR相電流調節器35およびT相電流調節
器36での電流調節演算の際の極性を合わせるために設
けられている。
That is, an adjustment operation for zeroing the deviation between the voltage command value (V C * ) for the voltage across the DC capacitor 15 and the voltage (V C ) across the DC capacitor 15 detected by the DC voltage detector 22 is performed by a voltage An effective current command value is obtained by the adjustment operation value obtained by the voltage adjuster 31 via the polarity inverter 32. Here, the polarity inverter 32 is provided in order to match the polarity at the time of the current adjustment calculation in the R-phase current adjuster 35 and the T-phase current adjuster 36 described later.

【0008】ベクトル演算器33では一方の入力である
前記有効電流指令値と、他方の入力である無効電流指令
値とのベクトル演算を行ない、2相(例えば、d−q
軸)の電流指令値を得る。このとき、上述の如く、三相
交流電源1から見た基本波力率を「1.0」にするため
に、前記無効電流指令値を「0」に設定している。
The vector operation unit 33 performs a vector operation of the effective current command value as one input and the reactive current command value as the other input, and performs two-phase (for example, dq
Axis) current command value. At this time, as described above, the reactive current command value is set to "0" in order to set the fundamental wave power factor viewed from the three-phase AC power supply 1 to "1.0".

【0009】2相/3相変換器34では前記2相の電流
指令値から3相の電流指令値を得ているが、この制御回
路30ではその内、R相の電流指令値(IR *)とT相の
電流指令値(IT *)とを利用している。
[0009] Although the current command value of the two-phase / three-phase converter 34 in the two-phase to obtain a current command value of three-phase, of which the control circuit 30, the current command value of R-phase (I R * ) And the T-phase current command value ( IT * ).

【0010】R相電流調節器35では前記R相の電流指
令値(IR *)と、交流電流検出器20で検出されたR相
の相電流(IR )との偏差を零にする調節演算を行な
い、その演算結果をR相の電圧指令値(VR *)として出
力する。同様に、T相電流調節器36では前記T相の電
流指令値(IT *)と、交流電流検出器21で検出された
T相の相電流(IT )との偏差を零にする調節演算を行
ない、その演算結果をT相の電圧指令値(VT *)として
出力する。また、加算演算器37では電圧指令値
(VR *)と電圧指令値(VT *)とからS相の電圧指令値
(VS *)を得ている。
[0010] adjusted R-phase current regulator 35 that the current command value of the R-phase in the (I R *), to zero the deviation between the detected R-phase phase current (I R) in an alternating current detector 20 performs computation, and outputs the result of operation voltage command value of R-phase as (V R *). Similarly, the T-phase current adjuster 36 adjusts the deviation between the T-phase current command value ( IT * ) and the T-phase current ( IT ) detected by the AC current detector 21 to zero. The calculation is performed, and the calculation result is output as a T-phase voltage command value ( VT * ). Further, to obtain voltage command values of S phase (V S *) from the adders 37 in the voltage command value (V R *) a voltage command value (V T *).

【0011】加算演算器38では前記R相の電圧指令値
(VR *)と交流電圧検出器17で検出されたR相の相電
圧(VR )との加算演算からR相の通流率指令値
(λR )を得ている。同様に、加算演算器39では前記
S相の電圧指令値(VS *)と交流電圧検出器18で検出
されたS相の相電圧(VS )との加算演算からS相の通
流率指令値(λS )を得ている。また、加算演算器40
では前記T相の電圧指令値(VT *)と交流電圧検出器1
9で検出されたT相の相電圧(VT )との加算演算から
T相の通流率指令値(λT )を得ている。
[0011] adding calculator 38 voltage command value of the R phase at (V R *) and an AC voltage detector detected phase voltage of the R phase at 17 (V R) and the duty ratio of the R-phase from the addition operation The command value (λ R ) has been obtained. Similarly, the addition calculator 39 calculates the S-phase conduction ratio from the addition calculation of the S-phase voltage command value (V S * ) and the S-phase phase voltage (V S ) detected by the AC voltage detector 18. The command value (λ S ) has been obtained. Further, the addition arithmetic unit 40
In the above, the T-phase voltage command value (V T * ) and the AC voltage detector 1
The T-phase conduction ratio command value (λ T ) is obtained from the addition operation with the T-phase phase voltage (V T ) detected in 9.

【0012】キャリア比較器41では前記通流率指令値
(λR ),通流率指令値(λS ),通流率指令値
(λT )と、例えば三角波状のキャリアとのPWM演算
を行ない、これらの演算結果にゲート駆動回路42を介
することによりPWM整流器11を構成するそれぞれの
IGBT(RU ,RX ,RV ,RY ,SU ,SX
V,SY ,TU ,TX ,TV ,TY )を前記通流率指
令値に対応した通流率λ(λ=オン期間/(オン期間+
オフ期間))でオン、又はオフさせている。
The carrier comparator 41 performs a PWM operation on the duty ratio command value (λ R ), the duty ratio command value (λ S ), the duty ratio command value (λ T ) and, for example, a triangular carrier. The IGBTs (R U , R X , R V , R Y , S U , S X , and IGBT) constituting the PWM rectifier 11 by passing these calculation results through the gate drive circuit 42.
S V , S Y , T U , T X , T V , T Y ) are converted to a duty ratio λ (λ = ON period / (ON period +
In the off period)), it is turned on or off.

【0013】[0013]

【発明が解決しようとする課題】図9に示した従来のP
WM整流装置2において、直流リアクトル16は、例え
ば負荷3に短絡が発生したときにこの短絡電流の電流変
化率(di/dt)によるPWM整流装置2の破損を防
止するためなどに設けられているが、上述の従来の制御
回路30では、単に直流コンデンサ15の両端電圧を所
望の値にする制御を行っていることから、負荷3の電流
の変動に伴って、負荷3の両端電圧が直流リアクトル1
6に起因して、若干変動するという難点があった。
The conventional P shown in FIG.
In the WM rectifier 2, the DC reactor 16 is provided, for example, to prevent damage to the PWM rectifier 2 due to a current change rate (di / dt) of the short-circuit current when a short circuit occurs in the load 3. However, in the above-described conventional control circuit 30, since the voltage between both ends of the DC capacitor 15 is simply controlled to a desired value, the voltage between both ends of the load 3 is changed according to the fluctuation of the current of the load 3. 1
6, there was a problem that it fluctuated slightly.

【0014】この発明の目的は上記問題点を解消し、負
荷の両端電圧の変動を抑制したPWM整流装置を提供す
ることにある。
An object of the present invention is to solve the above problems and to provide a PWM rectifier which suppresses fluctuations in the voltage across the load.

【0015】[0015]

【課題を解決するための手段】この第1の発明は、スイ
ッチングアーム複数組を並列接続してなるPWM整流器
と、該PWM整流器の出力の両端に接続される直流コン
デンサと、該直流コンデンサのいずれか一端に接続され
る直流リアクトルと、制御回路とから構成されたPWM
整流装置において、前記制御回路では、前記直流リアク
トルの他端と前記直流コンデンサの他端との間に接続さ
れる負荷への電圧指令値と、前記直流コンデンサの両端
電圧から前記直流リアクトルの電圧降下分を減算した演
算値との偏差を零にする調節演算を行ない、前記調節演
値を有効電流指令値とした電流の調節演算により前記そ
れぞれのスイッチングアームのスイッチング素子をオ
ン,オフ制御することを特徴とする。
According to a first aspect of the present invention, there is provided a PWM rectifier comprising a plurality of sets of switching arms connected in parallel, a DC capacitor connected to both ends of an output of the PWM rectifier, and a DC capacitor. PWM comprising a DC reactor connected to one end and a control circuit
In the rectifier, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor, and a voltage drop of the DC reactor from a voltage across the DC capacitor. Performing an adjustment operation to reduce the deviation from the operation value obtained by subtracting the minute to zero, and performing on / off control of the switching elements of the respective switching arms by current adjustment operation using the adjustment performance value as an effective current command value. Features.

【0016】第2の発明は前記PWM整流装置におい
て、前記制御回路では、前記直流リアクトルの他端と前
記直流コンデンサの他端との間に接続される負荷への電
圧指令値と、該負荷の両端電圧との偏差を零にする第1
の調節演算を行ない、前記負荷の両端電圧から前記直流
リアクトルの電圧降下分を減算した演算値と、前記第1
の調節演算値との加算演算を行ない、前記加算演算値と
前記直流コンデンサの両端電圧との偏差を零にする第2
の調節演算を行ない、前記第2の調節演算値を有効電流
指令値とした電流の調節演算により前記それぞれのスイ
ッチングアームのスイッチング素子をオン,オフ制御す
ることを特徴とする。
According to a second aspect of the present invention, in the PWM rectifier, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; The first to make the deviation from the voltage between both ends zero
And a calculation value obtained by subtracting the voltage drop of the DC reactor from the voltage across the load,
And a second operation for reducing the deviation between the added operation value and the voltage across the DC capacitor to zero.
And performing on / off control of the switching elements of the respective switching arms by a current adjustment operation using the second adjustment operation value as an effective current command value.

【0017】第3の発明は前記PWM整流装置におい
て、前記制御回路では、前記直流リアクトルの他端と前
記直流コンデンサの他端との間に接続される負荷への電
圧指令値と、前記直流コンデンサの両端電圧から前記直
流リアクトルの電圧降下分を減算した演算値との偏差を
零にする調節演算を行ない、前記調節演算値と、前記P
WM整流器の出力電力値との加算値を有効電流指令値と
した電流の調節演算により前記それぞれのスイッチング
アームのスイッチング素子をオン,オフ制御することを
特徴とする。
According to a third aspect of the present invention, in the PWM rectifier, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; An adjustment operation is performed to make a deviation from an operation value obtained by subtracting the voltage drop of the DC reactor from the voltage between both ends of the DC reactor zero, and the adjustment operation value and the P
The switching element of each of the switching arms is controlled to be on and off by a current adjustment calculation using an added value with the output power value of the WM rectifier as an effective current command value.

【0018】第4の発明は前記PWM整流装置におい
て、前記制御回路では、前記直流リアクトルの他端と前
記直流コンデンサの他端との間に接続される負荷への電
圧指令値と、該負荷の両端電圧との偏差を零にする第1
の調節演算を行ない、前記負荷の両端電圧から前記直流
リアクトルの電圧降下分を減算した演算値と、前記第1
の調節演算値との加算演算を行ない、前記加算演算値と
前記直流コンデンサの両端電圧との偏差を零にする第2
の調節演算を行ない、前記第2の調節演算値と、前記P
WM整流器の出力電力値との加算値を有効電流指令値と
した電流の調節演算により前記それぞれのスイッチング
アームのスイッチング素子をオン,オフ制御することを
特徴とする。
According to a fourth aspect of the present invention, in the PWM rectifier, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; The first to make the deviation from the voltage between both ends zero
And an operation value obtained by subtracting the voltage drop of the DC reactor from the voltage across the load, and the first
And a second operation for reducing the deviation between the added operation value and the voltage across the DC capacitor to zero.
Of the second adjustment calculation value and P
The switching element of each of the switching arms is controlled to be on and off by a current adjustment calculation using an added value with the output power value of the WM rectifier as an effective current command value.

【0019】第5の発明は前記PWM整流装置におい
て、前記制御回路では、前記直流リアクトルの他端と前
記直流コンデンサの他端との間に接続される負荷への電
圧指令値と、前記直流コンデンサの両端電圧から前記直
流リアクトルの電圧降下分を減算した演算値との偏差を
零にする調節演算を行ない、前記調節演算値を有効電流
指令値とした電流の調節演算により前記それぞれのスイ
ッチングアームのスイッチング素子の通流率指令値を求
め、該それぞれの通流率指令値を前記直流コンデンサの
両端電圧で除算演算し、この除算演算結果を新たな通流
率指令値として前記スイッチングアームのスイッチング
素子をオン,オフ制御することを特徴とする。
According to a fifth aspect of the present invention, in the PWM rectifier, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; An adjustment operation is performed to reduce the deviation from an operation value obtained by subtracting the voltage drop of the DC reactor from the voltage between both ends of the switching arm to zero, and the adjustment operation of the respective switching arms is performed by adjusting the current using the adjustment operation value as an effective current command value. A duty ratio command value of a switching element is obtained, each of the duty ratio command values is divided by a voltage across the DC capacitor, and the result of the division operation is set as a new duty ratio command value as a switching element of the switching arm. Is turned on and off.

【0020】第6の発明は前記PWM整流装置におい
て、前記制御回路では、前記直流リアクトルの他端と前
記直流コンデンサの他端との間に接続される負荷への電
圧指令値と、該負荷の両端電圧との偏差を零にする第1
の調節演算を行ない、前記負荷の両端電圧から前記直流
リアクトルの電圧降下分を減算した演算値と、前記第1
の調節演算値との加算演算を行ない、前記加算演算値と
前記直流コンデンサの両端電圧との偏差を零にする第2
の調節演算を行ない、前記第2の調節演算値を有効電流
指令値とした電流の調節演算により前記それぞれのスイ
ッチングアームのスイッチング素子の通流率指令値を求
め、該それぞれの通流率指令値を前記直流コンデンサの
両端電圧で除算演算し、この除算演算結果を新たな通流
率指令値として前記スイッチングアームのスイッチング
素子をオン,オフ制御することを特徴とする。
According to a sixth aspect of the present invention, in the PWM rectifier, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; The first to make the deviation from the voltage between both ends zero
And an operation value obtained by subtracting the voltage drop of the DC reactor from the voltage across the load, and the first
And a second operation for reducing the deviation between the added operation value and the voltage across the DC capacitor to zero.
Of the switching element of each of the switching arms by current adjustment calculation using the second adjustment calculation value as an effective current command value, and calculating the respective duty ratio command values. Is divided by the voltage across the DC capacitor, and the result of the division operation is used as a new duty ratio command value to turn on and off the switching element of the switching arm.

【0021】第7の発明は前記PWM整流装置におい
て、前記制御回路では、前記直流リアクトルの他端と前
記直流コンデンサの他端との間に接続される負荷への電
圧指令値と、前記直流コンデンサの両端電圧から前記直
流リアクトルの電圧降下分を減算した演算値との偏差を
零にする調節演算を行ない、前記調節演算値と、前記P
WM整流器の出力電力値との加算値を有効電流指令値と
した電流の調節演算により前記それぞれのスイッチング
アームのスイッチング素子の通流率指令値を求め、該そ
れぞれの通流率指令値を前記直流コンデンサの両端電圧
で除算演算し、この除算演算結果を新たな通流率指令値
として前記スイッチングアームのスイッチング素子をオ
ン,オフ制御することを特徴とする。
According to a seventh aspect of the present invention, in the PWM rectifier, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; An adjustment operation is performed to make a deviation from an operation value obtained by subtracting the voltage drop of the DC reactor from the voltage between both ends of the DC reactor zero, and the adjustment operation value and the P
A duty ratio command value of the switching element of each of the switching arms is obtained by a current adjustment calculation using an added value with the output power value of the WM rectifier as an effective current command value. A division operation is performed by a voltage between both ends of the capacitor, and the result of the division operation is set as a new duty ratio command value to control on / off of the switching element of the switching arm.

【0022】第8の発明は前記PWM整流装置におい
て、前記制御回路では、前記直流リアクトルの他端と前
記直流コンデンサの他端との間に接続される負荷への電
圧指令値と、該負荷の両端電圧との偏差を零にする第1
の調節演算を行ない、前記負荷の両端電圧から前記直流
リアクトルの電圧降下分を減算した演算値と、前記第1
の調節演算値との加算演算を行ない、前記加算演算値と
前記直流コンデンサの両端電圧との偏差を零にする第2
の調節演算を行ない、前記第2の調節演算値と、前記P
WM整流器の出力電力値との加算値を有効電流指令値と
した電流の調節演算により前記それぞれのスイッチング
アームのスイッチング素子の通流率指令値を求め、該そ
れぞれの通流率指令値を前記直流コンデンサの両端電圧
で除算演算し、この除算演算結果を新たな通流率指令値
として前記スイッチングアームのスイッチング素子をオ
ン,オフ制御することを特徴とする。
According to an eighth aspect of the present invention, in the PWM rectifier, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; The first to make the deviation from the voltage between both ends zero
And an operation value obtained by subtracting the voltage drop of the DC reactor from the voltage across the load, and the first
And a second operation for reducing the deviation between the added operation value and the voltage across the DC capacitor to zero.
Of the second adjustment calculation value and P
A duty ratio command value of the switching element of each of the switching arms is obtained by a current adjustment calculation using an added value with the output power value of the WM rectifier as an effective current command value. A division operation is performed by a voltage between both ends of the capacitor, and the result of the division operation is set as a new duty ratio command value to control on / off of the switching element of the switching arm.

【0023】この発明によれば、従来の制御回路に前記
直流リアクトルの電圧降下分を補償する制御機能を付加
することにより、前記負荷の電流の変動に伴う該負荷の
両端電圧の変動を抑制している。
According to the present invention, the control function for compensating for the voltage drop of the DC reactor is added to the conventional control circuit, thereby suppressing the fluctuation of the voltage between both ends of the load due to the fluctuation of the load current. ing.

【0024】[0024]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示すPWM整流装置の回路構成図であり、図9に示
した従来例回路と同一機能を有するものには同一符号を
付している。
FIG. 1 is a circuit diagram of a PWM rectifier according to a first embodiment of the present invention, in which components having the same functions as those of the conventional circuit shown in FIG. It is attached.

【0025】すなわち、図1に示した回路構成が図9に
示した回路構成と異なる点は、直流リアクトル16から
負荷3への経路に負荷3の電流(IL )を検出する直流
電流検出器23が挿設され、また、従来の制御回路30
に代えて制御回路50,60,70のいずれかを備えて
いることである。
That is, the point that the circuit configuration shown in FIG. 1 is different from the circuit configuration shown in FIG. 9 is that a DC current detector for detecting a current (I L ) of the load 3 in a path from the DC reactor 16 to the load 3. 23, and the conventional control circuit 30
Instead of the control circuit 50, 60, or 70.

【0026】図2は、この発明の第1の実施例としての
図1に示した制御回路50の詳細回路構成図であり、図
10に示した従来例回路と同一機能を有するものには同
一符号を付して、ここでは重複する説明を省略する。
FIG. 2 is a detailed circuit diagram of the control circuit 50 shown in FIG. 1 as a first embodiment of the present invention. The same circuit as that of the conventional circuit shown in FIG. The reference numerals are attached, and the duplicate description is omitted here.

【0027】すなわち、図2に示した制御回路50が図
10に示した制御回路30と異なる点は、電圧調節器3
1に代えて、電圧降下演算器51と、加算演算器52
と、電圧調節器53とを備えていることである。
That is, the difference between the control circuit 50 shown in FIG. 2 and the control circuit 30 shown in FIG.
1, a voltage drop calculator 51 and an addition calculator 52
And a voltage regulator 53.

【0028】先ず、電圧降下演算器51では直流電流検
出器23で得られる検出値(IL)を負荷3に流入する
方向を正極性として、直流リアクトル16のインダクタ
ンス分を「L」とし、抵抗分を「R」とすると、 直流リアクトル16の両端電圧=L・〔d(IL )/d
t〕+R・IL で表される電圧降下分を求めている。
First, in the voltage drop calculator 51, the direction in which the detection value (I L ) obtained by the DC current detector 23 flows into the load 3 is set to a positive polarity, the inductance of the DC reactor 16 is set to “L”, and the resistance is set to “L”. Assuming that the minute is “R”, the voltage across the DC reactor 16 = L · [d (I L ) / d
seeking a voltage drop represented by t] + R · I L.

【0029】従って、加算演算器52では直流電圧検出
器22で得られた検出値(VC )から前記電圧降下分を
減算した負荷3の両端電圧の演算値を求めている。
Therefore, the addition calculator 52 calculates the calculated value of the voltage across the load 3 by subtracting the voltage drop from the detection value (V C ) obtained by the DC voltage detector 22.

【0030】さらに、電圧調節器53は負荷3の電圧調
節動作を行なうべく、負荷3の両端電圧の指令値
(VL *)と前記演算値との偏差を零にする調節演算を行
ない、この調節演算結果に極性反転器32を介すること
により、ベクトル演算器33への有効電流指令値を得て
いる。
Further, the voltage adjuster 53 performs an adjustment operation to make the deviation between the command value (V L * ) of the voltage between both ends of the load 3 and the operation value zero in order to perform the voltage adjustment operation of the load 3. An effective current command value to the vector calculator 33 is obtained by passing the adjustment calculation result through the polarity inverter 32.

【0031】その結果、この制御回路50によれば、負
荷3の電流(IL )の変動に伴い、直流リアクトル16
に起因する負荷3の両端電圧の変動を、効果的に抑制す
ることができる。
[0031] Consequently, according to the control circuit 50, along with the variation of the load 3 of the current (I L), DC reactor 16
The fluctuation of the voltage between both ends of the load 3 due to the above can be effectively suppressed.

【0032】図3は、この発明の第2の実施例としての
図1に示した制御回路60の詳細回路構成図であり、図
2に示した実施例回路と同一機能を有するものには同一
符号を付して、ここでは重複する説明を省略する。
FIG. 3 is a detailed circuit configuration diagram of a control circuit 60 shown in FIG. 1 as a second embodiment of the present invention, and those having the same functions as those of the embodiment circuit shown in FIG. The reference numerals are attached, and the duplicate description is omitted here.

【0033】すなわち、図3に示した制御回路60が図
2に示した制御回路50と異なる点は、負荷電力演算器
61と、加算演算器62とが付加されていることであ
る。
That is, the control circuit 60 shown in FIG. 3 differs from the control circuit 50 shown in FIG. 2 in that a load power calculator 61 and an addition calculator 62 are added.

【0034】負荷電力演算器61では直流電圧検出器2
2で得られた検出値(VC )と、直流電流検出器23で
得られた検出値(IL )とを乗算演算することにより、
PWM整流器11が出力電力の瞬時値を求めている。
The load power calculator 61 includes a DC voltage detector 2
2 and the detection value (I L ) obtained by the DC current detector 23 by multiplying the detection value (V C ) obtained in
The PWM rectifier 11 determines the instantaneous value of the output power.

【0035】従って、前述の電圧調節器53の調節演算
結果と前記出力電力の瞬時値とを加算演算器62で加算
し、この加算値に極性反転器32を介することにより、
ベクトル演算器33の有効電流指令値を得ている。
Therefore, the result of the adjustment operation of the voltage adjuster 53 and the instantaneous value of the output power are added by the addition operation unit 62, and the added value is passed through the polarity inverter 32.
The effective current command value of the vector calculator 33 is obtained.

【0036】その結果、この制御回路60によれば、負
荷3の電流(IL )の変動に伴い、直流リアクトル16
に起因する負荷3の両端電圧の変動を、よりダイナミッ
クに抑制することができる。
As a result, according to the control circuit 60, the DC reactor 16 is controlled by the fluctuation of the current (I L ) of the load 3.
, The fluctuation of the voltage between both ends of the load 3 can be more dynamically suppressed.

【0037】図4は、この発明の第3の実施例としての
図1に示した制御回路70の詳細回路構成図であり、図
2に示した実施例回路と同一機能を有するものには同一
符号を付して、ここでは重複する説明を省略する。
FIG. 4 is a detailed circuit configuration diagram of a control circuit 70 shown in FIG. 1 as a third embodiment of the present invention. The same circuit as that of the embodiment shown in FIG. The reference numerals are attached, and the duplicate description is omitted here.

【0038】すなわち、図4に示した制御回路70が図
2に示した制御回路50と異なる点は、除算演算器71
〜73が付加されていることである。
That is, the difference between the control circuit 70 shown in FIG. 4 and the control circuit 50 shown in FIG.
To 73 are added.

【0039】除算演算器71では加算演算器38で得ら
れるR相の通流率指令値(λR )を直流電圧検出器22
で得られる検出値(VC )で除算演算し、この演算値を
キャリア比較41への新たなR相の通流率指令値として
いる。同様に、除算演算器72では加算演算器39で得
られるS相の通流率指令値(λS )を前記検出値
(V C )で除算演算し、この演算値をキャリア比較41
への新たなS相の通流率指令値としている。また、除算
演算器73では加算演算器40で得られるT相の通流率
指令値(λT )を前記検出値(VC )で除算演算し、こ
の演算値をキャリア比較41への新たなT相の通流率指
令値としている。
The division operation unit 71 obtains the value obtained by the addition operation unit 38.
R-phase duty ratio command value (λR) To the DC voltage detector 22
The detection value (VC) And divide the result by
As a new R-phase duty ratio command value for carrier comparison 41
I have. Similarly, the division operation unit 72 obtains the value obtained by the addition operation unit 39.
S phase duty ratio command value (λS) Is the detected value
(V C), And the calculated value is compared with the carrier comparison 41.
To the new S-phase conduction ratio command value. Also division
In the operation unit 73, the conduction ratio of the T phase obtained by the addition operation unit 40
Command value (λT) With the detected value (VC).
The calculated value of is used as a new conductivity index of the T phase to the carrier comparison 41.
It has been set as the limit price.

【0040】その結果、この制御回路70によれば、コ
ンデンサ15の両端電圧の変動をフイードフォワード的
に補正しつつ、負荷3の電流(IL )の変動に伴い、直
流リアクトル16に起因する負荷3の両端電圧の変動
を、より高速に抑制することができる。
As a result, according to the control circuit 70, the fluctuation of the voltage across the capacitor 15 is corrected in a feed-forward manner, and the fluctuation of the current (I L ) of the load 3 is caused by the DC reactor 16. The fluctuation of the voltage between both ends of the load 3 can be suppressed more quickly.

【0041】図5はこの発明の第2の実施の形態を示す
PWM整流装置の回路構成図であり、図9に示した従来
例回路と同一機能を有するものには同一符号を付してい
る。
FIG. 5 is a circuit diagram of a PWM rectifier according to a second embodiment of the present invention, in which components having the same functions as those of the conventional circuit shown in FIG. .

【0042】すなわち、図5に示した回路構成が図9に
示した回路構成と異なる点は、直流リアクトル16から
負荷3への経路に負荷3の電流(IL )を検出する直流
電流検出器23が挿設され、また、負荷3の両端電圧
(VL )を検出する直流電圧検出器24が付加され、従
来の制御回路30に代えて制御回路80を備えているこ
とである。
That is, the circuit configuration shown in FIG. 5 is different from the circuit configuration shown in FIG. 9 in that a DC current detector for detecting a current (I L ) of load 3 in a path from DC reactor 16 to load 3. 23, a DC voltage detector 24 for detecting the voltage (V L ) across the load 3 is added, and a control circuit 80 is provided instead of the conventional control circuit 30.

【0043】図6は、この発明の第4の実施例としての
図5に示した制御回路80の詳細回路構成図であり、図
2に示した実施例回路と同一機能を有するものには同一
符号を付して、ここでは重複する説明を省略する。
FIG. 6 is a detailed circuit diagram of a control circuit 80 shown in FIG. 5 according to a fourth embodiment of the present invention. The same circuit as that of the embodiment shown in FIG. The reference numerals are attached, and the duplicate description is omitted here.

【0044】すなわち、図6に示した制御回路80が図
2に示した制御回路50と異なる点は、電圧調節器53
に代えて、直流コンデンサ15の電圧調節動作を行う従
来の電圧調節器31が用いられ、さらに、電圧調節器8
1と、加算演算器82とが付加されていることである。
That is, the difference between the control circuit 80 shown in FIG. 6 and the control circuit 50 shown in FIG.
Is replaced with a conventional voltage regulator 31 for performing a voltage regulating operation of the DC capacitor 15,
1 and an adder 82 are added.

【0045】先述の電圧調節器53と同等の制御定数を
有する電圧調節器81では負荷3への電圧指令値
(VL *)と直流電圧検出器24で得られる検出値
(VL )との偏差を零にする調節演算を行ない、この調
節演算値と前記検出値(VL )との加算と、この加算値
から電圧降下演算器51の演算値を減算する加算演算器
82により、直流コンデンサ16の両端電圧の指令値
(演算値)が得られる。
In the voltage regulator 81 having the same control constant as the voltage regulator 53 described above, the voltage command value (V L * ) to the load 3 and the detection value (V L ) obtained by the DC voltage detector 24 are calculated. An adjustment operation for reducing the deviation to zero is performed. The addition of the adjustment operation value and the detection value (V L ) and the addition operation unit 82 for subtracting the operation value of the voltage drop operation unit 51 from the addition value result in a DC capacitor. Thus, a command value (computed value) of the voltage between both ends is obtained.

【0046】従って、電圧調節器31では前記指令値
(演算値)と直流電圧検出器22で得られる検出値(V
C )との偏差を零にする調節演算を行っている。
Accordingly, in the voltage regulator 31, the command value (calculated value) and the detection value (V
C ) An adjustment operation is performed to make the deviation from zero.

【0047】その結果、この制御回路80によれば、負
荷3の電流(IL )の変動に伴い、直流リアクトル16
に起因する負荷3の両端電圧の変動を効果的に抑制しつ
つ、電圧調節器81により定常的な負荷3の両端電圧
を、ほぼ一定値に維持することができる。
As a result, according to the control circuit 80, the DC reactor 16 is controlled by the fluctuation of the current (I L ) of the load 3.
, The voltage regulator 81 can maintain the steady-state voltage across the load 3 at a substantially constant value while effectively suppressing fluctuations in the voltage across the load 3 due to the above.

【0048】このとき、電圧調節器81の応答速度は電
圧調節器31の応答速度に比して遅く設定することが、
電圧調節器81と電圧調節器31との間の制御干渉を防
ぐために有効である。
At this time, the response speed of the voltage regulator 81 may be set lower than the response speed of the voltage regulator 31.
This is effective for preventing control interference between the voltage regulator 81 and the voltage regulator 31.

【0049】図7はこの発明の第3の実施の形態を示す
PWM整流装置の回路構成図であり、図9に示した従来
例回路と同一機能を有するものには同一符号を付してい
る。
FIG. 7 is a circuit diagram of a PWM rectifier according to a third embodiment of the present invention, in which components having the same functions as those of the conventional circuit shown in FIG. .

【0050】すなわち、図7に示した回路構成が図9に
示した回路構成と異なる点は、PWM整流器25として
3組のスイッチングアームから構成され、直流リアクト
ル16から負荷3への経路に負荷3の電流(IL )を検
出する直流電流検出器23が挿設され、また、従来の交
流電圧検出器17〜19に代えて、R−S相間の線間電
圧(VRS)を検出する交流電圧検出器26と、S−T相
間の線間電圧(VST)を検出する交流電圧検出器27
と、T−R相間の線間電圧(VTR)を検出する交流電圧
検出器28と、制御回路30に代えて制御回路90を備
えていることである。また、デルタ結線の三相交流電源
6がこのPWM整流装置7への入力電源になっている。
That is, the circuit configuration shown in FIG. 7 is different from the circuit configuration shown in FIG. 9 in that the PWM rectifier 25 is composed of three sets of switching arms, and the load 3 is provided on the path from the DC reactor 16 to the load 3. A DC current detector 23 for detecting the current (I L ) is inserted, and instead of the conventional AC voltage detectors 17 to 19, an AC for detecting a line voltage (V RS ) between the R and S phases is provided. A voltage detector 26 and an AC voltage detector 27 for detecting a line voltage (V ST ) between the ST and T phases.
And an AC voltage detector 28 for detecting a line voltage (V TR ) between the T and R phases, and a control circuit 90 in place of the control circuit 30. The delta-connected three-phase AC power supply 6 is the input power supply to the PWM rectifier 7.

【0051】図8は、この発明の第5の実施例としての
図7に示した制御回路90の詳細回路構成図であり、図
2に示した実施例回路と同一機能を有するものには同一
符号を付して、ここでは重複する説明を省略する。
FIG. 8 is a detailed circuit configuration diagram of a control circuit 90 shown in FIG. 7 as a fifth embodiment of the present invention, and the same circuit having the same function as the embodiment circuit shown in FIG. The reference numerals are attached, and the duplicate description is omitted here.

【0052】すなわち、図8に示した制御回路90が図
2に示した制御回路50と異なる点は、三相交流電源6
のそれぞれの線間電圧をそれぞれの相電圧に変換する相
電圧演算器91が付加されていることである。
That is, the control circuit 90 shown in FIG. 8 is different from the control circuit 50 shown in FIG.
Is added to the phase voltage calculator 91 for converting the respective line voltages into the respective phase voltages.

【0053】なお、図示しないが図7に示した主回路構
成においても、先述の制御回路60,70,80のいず
れかの制御機能を付加することができる。
Although not shown, any of the control functions of the control circuits 60, 70, and 80 can be added to the main circuit configuration shown in FIG.

【0054】[0054]

【発明の効果】この発明によれば、従来の制御回路に直
流リアクトルの電圧降下分を補償する制御機能を付加す
ることにより、負荷の電流の変動に伴う該負荷の両端電
圧の変動を抑制し、負荷短絡などに伴うPWM整流装置
の損傷を防止した動作信頼性の高いPWM整流装置を提
供することができる。
According to the present invention, by adding a control function for compensating for the voltage drop of the DC reactor to the conventional control circuit, the fluctuation of the voltage across the load due to the fluctuation of the load current can be suppressed. In addition, it is possible to provide a highly reliable PWM rectifier that prevents damage to the PWM rectifier due to a load short circuit or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示すPWM整流
装置の回路構成図
FIG. 1 is a circuit configuration diagram of a PWM rectifier showing a first embodiment of the present invention.

【図2】この発明の第1の実施例を示す図1の部分詳細
回路構成図
FIG. 2 is a partial detailed circuit configuration diagram of FIG. 1 showing a first embodiment of the present invention;

【図3】この発明の第2の実施例を示す図1の部分詳細
回路構成図
FIG. 3 is a partially detailed circuit configuration diagram of FIG. 1 showing a second embodiment of the present invention;

【図4】この発明の第3の実施例を示す図1の部分詳細
回路構成図
FIG. 4 is a partial detailed circuit configuration diagram of FIG. 1 showing a third embodiment of the present invention;

【図5】この発明の第2の実施の形態を示すPWM整流
装置の回路構成図
FIG. 5 is a circuit configuration diagram of a PWM rectifier showing a second embodiment of the present invention.

【図6】この発明の第4の実施例を示す図5の部分詳細
回路構成図
FIG. 6 is a partial detailed circuit configuration diagram of FIG. 5 showing a fourth embodiment of the present invention;

【図7】この発明の第3の実施の形態を示すPWM整流
装置の回路構成図
FIG. 7 is a circuit configuration diagram of a PWM rectifier showing a third embodiment of the present invention.

【図8】この発明の第5の実施例を示す図7の部分詳細
回路構成図
FIG. 8 is a partial detailed circuit configuration diagram of FIG. 7 showing a fifth embodiment of the present invention.

【図9】従来例を示すPWM整流装置の回路構成図FIG. 9 is a circuit configuration diagram of a PWM rectifier showing a conventional example.

【図10】図9の部分詳細回路構成図FIG. 10 is a partial detailed circuit configuration diagram of FIG. 9;

【符号の説明】[Explanation of symbols]

1…三相交流電源、2…PWM整流装置、3…負荷、
4,5…PWM整流装置、6…三相交流電源、7…PW
M整流装置、11…PWM整流器、12〜14…交流リ
アクトル、15…直流コンデンサ、16…直流リアクト
ル、17〜19…交流電圧検出器、20,21…交流電
流検出器、22…直流電圧検出器、23…直流電流検出
器、24…直流電圧検出器、25…PWM整流器、26
〜28…交流電圧検出器、30…制御回路、31…電圧
調節器、32…極性反転器、33…ベクトル演算器、3
4…2相/3相変換器、35…R相電流調節器、36…
S相電流調節器、37〜40…加算演算器、41…キャ
リア比較器、42…ゲート駆動回路、50…制御回路、
51…電圧降下演算器、52…加算演算器、53…電圧
調節器、60…制御回路、61…乗算演算器、62…加
算演算器、70…制御回路、71〜73…除算演算器、
80…制御回路、81…電圧調節器、82…加算演算
器、90…制御回路、91…相電圧演算器。
1 ... three-phase AC power supply, 2 ... PWM rectifier, 3 ... load,
4, 5 PWM rectifier, 6 three-phase AC power supply, 7 PWM
M rectifier, 11 PWM rectifier, 12-14 AC reactor, 15 DC capacitor, 16 DC reactor, 17-19 AC voltage detector, 20, 21 AC current detector, 22 DC voltage detector , 23 ... DC current detector, 24 ... DC voltage detector, 25 ... PWM rectifier, 26
~ 28 ... AC voltage detector, 30 ... Control circuit, 31 ... Voltage regulator, 32 ... Polarity inverter, 33 ... Vector calculator, 3
4 ... 2 phase / 3 phase converter, 35 ... R phase current regulator, 36 ...
S-phase current controller, 37 to 40: addition arithmetic unit, 41: carrier comparator, 42: gate drive circuit, 50: control circuit,
51: voltage drop calculator, 52: addition calculator, 53: voltage regulator, 60: control circuit, 61: multiplication calculator, 62: addition calculator, 70: control circuit, 71 to 73: division calculator,
80: control circuit, 81: voltage regulator, 82: addition operator, 90: control circuit, 91: phase voltage operator.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 スイッチングアーム複数組を並列接続し
てなるPWM整流器と、該PWM整流器の出力の両端に
接続される直流コンデンサと、該直流コンデンサのいず
れか一端に接続される直流リアクトルと、制御回路とか
ら構成されたPWM整流装置において、 前記制御回路では、 前記直流リアクトルの他端と前記直流コンデンサの他端
との間に接続される負荷への電圧指令値と、前記直流コ
ンデンサの両端電圧から前記直流リアクトルの電圧降下
分を減算した演算値との偏差を零にする調節演算を行な
い、 前記調節演値を有効電流指令値とした電流の調節演算に
より前記それぞれのスイッチングアームのスイッチング
素子をオン,オフ制御することを特徴とするPWM整流
装置。
1. A PWM rectifier comprising a plurality of sets of switching arms connected in parallel, a DC capacitor connected to both ends of an output of the PWM rectifier, a DC reactor connected to one end of the DC capacitor, and a control unit. In the PWM rectifier, the control circuit includes: a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; and a voltage across the DC capacitor. Performing an adjustment operation to reduce the deviation from the operation value obtained by subtracting the voltage drop of the DC reactor from the control element to zero, and performing the adjustment operation of the current using the adjustment performance value as an effective current command value to switch the switching element of each switching arm. A PWM rectifier characterized by on / off control.
【請求項2】 スイッチングアーム複数組を並列接続し
てなるPWM整流器と、該PWM整流器の出力の両端に
接続される直流コンデンサと、該直流コンデンサのいず
れか一端に接続される直流リアクトルと、制御回路とか
ら構成されたPWM整流装置において、 前記制御回路では、 前記直流リアクトルの他端と前記直流コンデンサの他端
との間に接続される負荷への電圧指令値と、該負荷の両
端電圧との偏差を零にする第1の調節演算を行ない、 前記負荷の両端電圧から前記直流リアクトルの電圧降下
分を減算した演算値と、前記第1の調節演算値との加算
演算を行ない、 前記加算演算値と前記直流コンデンサの両端電圧との偏
差を零にする第2の調節演算を行ない、 前記第2の調節演算値を有効電流指令値とした電流の調
節演算により前記それぞれのスイッチングアームのスイ
ッチング素子をオン,オフ制御することを特徴とするP
WM整流装置。
2. A PWM rectifier comprising a plurality of sets of switching arms connected in parallel, a DC capacitor connected to both ends of an output of the PWM rectifier, a DC reactor connected to one end of the DC capacitor, and a control unit. In the PWM rectifier configured with a circuit, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor, a voltage across the load, Performs a first adjustment operation to reduce the deviation of the load to zero, performs an addition operation of an operation value obtained by subtracting the voltage drop of the DC reactor from the voltage across the load, and the first adjustment operation value, and performs the addition. A second adjustment operation is performed to make the deviation between the operation value and the voltage between both ends of the DC capacitor zero, and a current adjustment operation is performed by using the second adjustment operation value as an effective current command value. Serial turns on the switching element of the respective switching arms, P, characterized by off control
WM rectifier.
【請求項3】 スイッチングアーム複数組を並列接続し
てなるPWM整流器と、該PWM整流器の出力の両端に
接続される直流コンデンサと、該直流コンデンサのいず
れか一端に接続される直流リアクトルと、制御回路とか
ら構成されたPWM整流装置において、 前記制御回路では、 前記直流リアクトルの他端と前記直流コンデンサの他端
との間に接続される負荷への電圧指令値と、前記直流コ
ンデンサの両端電圧から前記直流リアクトルの電圧降下
分を減算した演算値との偏差を零にする調節演算を行な
い、 前記調節演算値と、前記PWM整流器の出力電力値との
加算値を有効電流指令値とした電流の調節演算により前
記それぞれのスイッチングアームのスイッチング素子を
オン,オフ制御することを特徴とするPWM整流装置。
3. A PWM rectifier comprising a plurality of sets of switching arms connected in parallel, a DC capacitor connected to both ends of an output of the PWM rectifier, a DC reactor connected to one end of the DC capacitor, and a control unit. In the PWM rectifier, the control circuit includes: a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; and a voltage across the DC capacitor. And performing an adjustment operation to reduce the deviation from the operation value obtained by subtracting the voltage drop of the DC reactor from the current value to zero, and setting a current obtained by adding an adjustment value of the adjustment operation value and an output power value of the PWM rectifier to an effective current command value. A switching element of each of the switching arms is controlled to be turned on and off by an adjustment operation of the PWM rectifier.
【請求項4】 スイッチングアーム複数組を並列接続し
てなるPWM整流器と、該PWM整流器の出力の両端に
接続される直流コンデンサと、該直流コンデンサのいず
れか一端に接続される直流リアクトルと、制御回路とか
ら構成されたPWM整流装置において、 前記制御回路では、 前記直流リアクトルの他端と前記直流コンデンサの他端
との間に接続される負荷への電圧指令値と、該負荷の両
端電圧との偏差を零にする第1の調節演算を行ない、 前記負荷の両端電圧から前記直流リアクトルの電圧降下
分を減算した演算値と、前記第1の調節演算値との加算
演算を行ない、 前記加算演算値と前記直流コンデンサの両端電圧との偏
差を零にする第2の調節演算を行ない、 前記第2の調節演算値と、前記PWM整流器の出力電力
値との加算値を有効電流指令値とした電流の調節演算に
より前記それぞれのスイッチングアームのスイッチング
素子をオン,オフ制御することを特徴とするPWM整流
装置。
4. A PWM rectifier comprising a plurality of sets of switching arms connected in parallel, a DC capacitor connected to both ends of an output of the PWM rectifier, a DC reactor connected to one end of the DC capacitor, and a control unit. In the PWM rectifier configured with a circuit, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor, a voltage across the load, Performs a first adjustment operation to reduce the deviation of the load to zero, and performs an addition operation of an operation value obtained by subtracting a voltage drop of the DC reactor from a voltage across the load and the first adjustment operation value. A second adjustment operation is performed to make a deviation between an operation value and a voltage between both ends of the DC capacitor zero, and an added value of the second adjustment operation value and an output power value of the PWM rectifier is performed. Turning on the switching element of the respective switching arms by adjusting operation of current and active current command value, PWM rectifier, characterized in that the off control.
【請求項5】 スイッチングアーム複数組を並列接続し
てなるPWM整流器と、該PWM整流器の出力の両端に
接続される直流コンデンサと、該直流コンデンサのいず
れか一端に接続される直流リアクトルと、制御回路とか
ら構成されたPWM整流装置において、 前記制御回路では、 前記直流リアクトルの他端と前記直流コンデンサの他端
との間に接続される負荷への電圧指令値と、前記直流コ
ンデンサの両端電圧から前記直流リアクトルの電圧降下
分を減算した演算値との偏差を零にする調節演算を行な
い、 前記調節演算値を有効電流指令値とした電流の調節演算
により前記それぞれのスイッチングアームのスイッチン
グ素子の通流率指令値を求め、該それぞれの通流率指令
値を前記直流コンデンサの両端電圧で除算演算し、 この除算演算結果を新たな通流率指令値として前記スイ
ッチングアームのスイッチング素子をオン,オフ制御す
ることを特徴とするPWM整流装置。
5. A PWM rectifier comprising a plurality of sets of switching arms connected in parallel, a DC capacitor connected to both ends of an output of the PWM rectifier, a DC reactor connected to one end of the DC capacitor, and a control unit. In the PWM rectifier, the control circuit includes: a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; and a voltage across the DC capacitor. Performing an adjustment operation to reduce the deviation from the operation value obtained by subtracting the voltage drop of the DC reactor from the current value to zero, and performing the adjustment operation of the current using the adjustment operation value as an effective current command value, for the switching element of each switching arm. A duty ratio command value is obtained, and each of the duty ratio command values is divided by a voltage across the DC capacitor to calculate the duty ratio command value. The results on the switching elements of the switching arm as a new conduction ratio command value, PWM rectifier, characterized in that the off control.
【請求項6】 スイッチングアーム複数組を並列接続し
てなるPWM整流器と、該PWM整流器の出力の両端に
接続される直流コンデンサと、該直流コンデンサのいず
れか一端に接続される直流リアクトルと、制御回路とか
ら構成されたPWM整流装置において、 前記制御回路では、 前記直流リアクトルの他端と前記直流コンデンサの他端
との間に接続される負荷への電圧指令値と、該負荷の両
端電圧との偏差を零にする第1の調節演算を行ない、 前記負荷の両端電圧から前記直流リアクトルの電圧降下
分を減算した演算値と、前記第1の調節演算値との加算
演算を行ない、 前記加算演算値と前記直流コンデンサの両端電圧との偏
差を零にする第2の調節演算を行ない、 前記第2の調節演算値を有効電流指令値とした電流の調
節演算により前記それぞれのスイッチングアームのスイ
ッチング素子の通流率指令値を求め、該それぞれの通流
率指令値を前記直流コンデンサの両端電圧で除算演算
し、 この除算演算結果を新たな通流率指令値として前記スイ
ッチングアームのスイッチング素子をオン,オフ制御す
ることを特徴とするPWM整流装置。
6. A PWM rectifier comprising a plurality of sets of switching arms connected in parallel, a DC capacitor connected to both ends of an output of the PWM rectifier, a DC reactor connected to one end of the DC capacitor, and a control unit. In the PWM rectifier configured with a circuit, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor, a voltage across the load, Performs a first adjustment operation to reduce the deviation of the load to zero, and performs an addition operation of an operation value obtained by subtracting a voltage drop of the DC reactor from a voltage across the load and the first adjustment operation value. A second adjustment operation is performed to make the deviation between the operation value and the voltage between both ends of the DC capacitor zero, and a current adjustment operation is performed by using the second adjustment operation value as an effective current command value. The duty ratio command values of the switching elements of the respective switching arms are obtained, the respective duty ratio command values are divided by the voltage across the DC capacitor, and the result of the division operation is used as a new duty ratio command value. A PWM rectifier, wherein on / off control of a switching element of the switching arm is performed.
【請求項7】 スイッチングアーム複数組を並列接続し
てなるPWM整流器と、該PWM整流器の出力の両端に
接続される直流コンデンサと、該直流コンデンサのいず
れか一端に接続される直流リアクトルと、制御回路とか
ら構成されたPWM整流装置において、 前記制御回路では、 前記直流リアクトルの他端と前記直流コンデンサの他端
との間に接続される負荷への電圧指令値と、前記直流コ
ンデンサの両端電圧から前記直流リアクトルの電圧降下
分を減算した演算値との偏差を零にする調節演算を行な
い、 前記調節演算値と、前記PWM整流器の出力電力値との
加算値を有効電流指令値とした電流の調節演算により前
記それぞれのスイッチングアームのスイッチング素子の
通流率指令値を求め、該それぞれの通流率指令値を前記
直流コンデンサの両端電圧で除算演算し、 この除算演算結果を新たな通流率指令値として前記スイ
ッチングアームのスイッチング素子をオン,オフ制御す
ることを特徴とするPWM整流装置。
7. A PWM rectifier comprising a plurality of sets of switching arms connected in parallel, a DC capacitor connected to both ends of an output of the PWM rectifier, a DC reactor connected to one end of the DC capacitor, and a control unit. In the PWM rectifier, the control circuit includes: a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor; and a voltage across the DC capacitor. And performing an adjustment operation to reduce the deviation from the operation value obtained by subtracting the voltage drop of the DC reactor from the current value to zero, and setting a current obtained by adding an adjustment value of the adjustment operation value and an output power value of the PWM rectifier to an effective current command value. The duty ratio command value of the switching element of each of the switching arms is obtained by the adjustment calculation of A PWM rectifier, wherein a division operation is performed by a voltage between both ends of a capacitor, and the result of the division operation is used as a new duty ratio command value to control ON / OFF of a switching element of the switching arm.
【請求項8】 スイッチングアーム複数組を並列接続し
てなるPWM整流器と、該PWM整流器の出力の両端に
接続される直流コンデンサと、該直流コンデンサのいず
れか一端に接続される直流リアクトルと、制御回路とか
ら構成されたPWM整流装置において、 前記制御回路では、 前記直流リアクトルの他端と前記直流コンデンサの他端
との間に接続される負荷への電圧指令値と、該負荷の両
端電圧との偏差を零にする第1の調節演算を行ない、 前記負荷の両端電圧から前記直流リアクトルの電圧降下
分を減算した演算値と、前記第1の調節演算値との加算
演算を行ない、 前記加算演算値と前記直流コンデンサの両端電圧との偏
差を零にする第2の調節演算を行ない、 前記第2の調節演算値と、前記PWM整流器の出力電力
値との加算値を有効電流指令値とした電流の調節演算に
より前記それぞれのスイッチングアームのスイッチング
素子の通流率指令値を求め、該それぞれの通流率指令値
を前記直流コンデンサの両端電圧で除算演算し、 この除算演算結果を新たな通流率指令値として前記スイ
ッチングアームのスイッチング素子をオン,オフ制御す
ることを特徴とするPWM整流装置。
8. A PWM rectifier comprising a plurality of sets of switching arms connected in parallel, a DC capacitor connected to both ends of an output of the PWM rectifier, a DC reactor connected to one end of the DC capacitor, and a control unit. In the PWM rectifier configured with a circuit, in the control circuit, a voltage command value to a load connected between the other end of the DC reactor and the other end of the DC capacitor, a voltage across the load, Performs a first adjustment operation to reduce the deviation of the load to zero, and performs an addition operation of an operation value obtained by subtracting a voltage drop of the DC reactor from a voltage across the load and the first adjustment operation value. A second adjustment operation is performed to make a deviation between an operation value and a voltage between both ends of the DC capacitor zero, and an added value of the second adjustment operation value and an output power value of the PWM rectifier is performed. A duty ratio command value of the switching element of each of the switching arms is obtained by an adjustment calculation of a current as an effective current command value, and each of the duty ratio command values is divided by a voltage across the DC capacitor to calculate the duty ratio command value. A PWM rectifier, wherein a switching result of the switching arm is turned on and off by using a calculation result as a new duty ratio command value.
JP2000171648A 2000-06-08 2000-06-08 PWM rectifier Expired - Fee Related JP3821270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000171648A JP3821270B2 (en) 2000-06-08 2000-06-08 PWM rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000171648A JP3821270B2 (en) 2000-06-08 2000-06-08 PWM rectifier

Publications (2)

Publication Number Publication Date
JP2001352759A true JP2001352759A (en) 2001-12-21
JP3821270B2 JP3821270B2 (en) 2006-09-13

Family

ID=18674171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000171648A Expired - Fee Related JP3821270B2 (en) 2000-06-08 2000-06-08 PWM rectifier

Country Status (1)

Country Link
JP (1) JP3821270B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094682A (en) * 2004-09-27 2006-04-06 Toshiba Mitsubishi-Electric Industrial System Corp Power supply device
JP2011254645A (en) * 2010-06-03 2011-12-15 Fuji Electric Co Ltd Power conversion equipment and power conversion system
CN102647097A (en) * 2011-02-17 2012-08-22 富士电机株式会社 Power supply device
JP2014124084A (en) * 2012-12-20 2014-07-03 Tdk Corp Power factor improvement circuit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227660A (en) * 1988-03-04 1989-09-11 Fuji Electric Co Ltd Control system for semiconductor power converter device
JPH0684796U (en) * 1993-05-19 1994-12-02 ヤマハ株式会社 Power supply
JPH07322629A (en) * 1994-05-27 1995-12-08 Meidensha Corp Power rectifying device
JPH0819261A (en) * 1994-06-24 1996-01-19 Toyo Electric Mfg Co Ltd Controller of current converter
JPH08214550A (en) * 1995-02-01 1996-08-20 Hitachi Ltd Controller pwm converter
JPH09163752A (en) * 1995-12-11 1997-06-20 Fuji Electric Co Ltd Pwm controlled self-excited rectifier
JPH1118433A (en) * 1997-06-19 1999-01-22 Hitachi Ltd Pulse width modulating power converter
JPH11355909A (en) * 1998-06-05 1999-12-24 Toshiba Corp Power converting device
JP2001314086A (en) * 2000-04-28 2001-11-09 Sanken Electric Co Ltd Ac-dc converter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227660A (en) * 1988-03-04 1989-09-11 Fuji Electric Co Ltd Control system for semiconductor power converter device
JPH0684796U (en) * 1993-05-19 1994-12-02 ヤマハ株式会社 Power supply
JPH07322629A (en) * 1994-05-27 1995-12-08 Meidensha Corp Power rectifying device
JPH0819261A (en) * 1994-06-24 1996-01-19 Toyo Electric Mfg Co Ltd Controller of current converter
JPH08214550A (en) * 1995-02-01 1996-08-20 Hitachi Ltd Controller pwm converter
JPH09163752A (en) * 1995-12-11 1997-06-20 Fuji Electric Co Ltd Pwm controlled self-excited rectifier
JPH1118433A (en) * 1997-06-19 1999-01-22 Hitachi Ltd Pulse width modulating power converter
JPH11355909A (en) * 1998-06-05 1999-12-24 Toshiba Corp Power converting device
JP2001314086A (en) * 2000-04-28 2001-11-09 Sanken Electric Co Ltd Ac-dc converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094682A (en) * 2004-09-27 2006-04-06 Toshiba Mitsubishi-Electric Industrial System Corp Power supply device
JP2011254645A (en) * 2010-06-03 2011-12-15 Fuji Electric Co Ltd Power conversion equipment and power conversion system
CN102647097A (en) * 2011-02-17 2012-08-22 富士电机株式会社 Power supply device
JP2012175714A (en) * 2011-02-17 2012-09-10 Fuji Electric Co Ltd Power supply unit
JP2014124084A (en) * 2012-12-20 2014-07-03 Tdk Corp Power factor improvement circuit

Also Published As

Publication number Publication date
JP3821270B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
US5212630A (en) Parallel inverter system
JP2526992B2 (en) AC output converter parallel operation system
US7796411B2 (en) Universal three phase controllers for power converters
US20040062062A1 (en) Method and compensation modulator for dynamically controlling induction machine regenerating energy flow and direct current bus voltage for an adjustable frequency drive system
JP6655680B2 (en) Inverter control device
JPH0638711B2 (en) DC power supply for inverter
US20040080968A1 (en) Vector control of an induction motor
JP2001352759A (en) Pwm rectifier
JP2708648B2 (en) Parallel operation control device
JP3488320B2 (en) Inverter synchronous switching circuit
Sousa et al. Efficiency optimization of a solar boat induction motor drive
JP2674402B2 (en) Parallel operation control device for AC output converter
JP3343711B2 (en) Static var compensator
JP2916091B2 (en) Control device for current source converter that obtains DC from multi-phase AC
Shen et al. Analysis and improvement of steady-state and dynamic performance of SVPWM based three-phase VIENNA rectifier
JP3070314B2 (en) Inverter output voltage compensation circuit
Zare et al. A new hysteresis current control for three-phase inverters based on adjacent voltage vectors and time error
JP5140618B2 (en) Three-phase power converter
JPH0744841B2 (en) Power converter control circuit
WO2021166335A1 (en) Converter device and power conversion system
JP2916092B2 (en) Control device for voltage-source converter that obtains DC from polyphase AC
JP3752804B2 (en) AC machine control device
JP3420911B2 (en) Power converter
JPH11299245A (en) Control method of converter
Monfared et al. High performance DPC for PWM converters

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031201

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20031209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees