JP2001349832A - Componential analysis method using layer - Google Patents

Componential analysis method using layer

Info

Publication number
JP2001349832A
JP2001349832A JP2000175665A JP2000175665A JP2001349832A JP 2001349832 A JP2001349832 A JP 2001349832A JP 2000175665 A JP2000175665 A JP 2000175665A JP 2000175665 A JP2000175665 A JP 2000175665A JP 2001349832 A JP2001349832 A JP 2001349832A
Authority
JP
Japan
Prior art keywords
measurement
component
emission
chemical species
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000175665A
Other languages
Japanese (ja)
Other versions
JP3660938B2 (en
Inventor
Yoshihiro Deguchi
祥啓 出口
Kozo Yoshikawa
孝三 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2000175665A priority Critical patent/JP3660938B2/en
Publication of JP2001349832A publication Critical patent/JP2001349832A/en
Application granted granted Critical
Publication of JP3660938B2 publication Critical patent/JP3660938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a componential analysis method using laser, capable of highly sensitively and stably measuring the concentration of constituents contained in a gas. SOLUTION: IN the componential analysis method using a laser to detect components in an object of measurement by irradiating the object of measurement with the laser light, converting the components contained in the object of measurement into a plasma, and dispersing the plasma light, delay time and measurement time, corresponding to upper energy levels caused by emission are each set for the emission lines from each constituent element, and the concentration of each component in the object of measurement is measured, using the set delay time and measurement time and the ratios of a plurality of component atoms contained in the object of measurement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス中に含まれる
極微量成分の濃度を計測するためのレーザを用いた成分
分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component analysis method using a laser for measuring the concentration of a trace component contained in a gas.

【0002】[0002]

【従来の技術】従来の成分分析方法は、図7に示すよう
に、測定場10に存在する物質をサンプラー2により採
取し、これを濃縮してサンプル試料とし、試料を成分分
析器3に輸送して分析し、その分析結果に基づき各成分
濃度(組成値)を算出する。しかし、従来の成分分析方
法では、測定場から試料を採取してから分析結果が得ら
れるまでに数時間から数十時間を要する。また、成分分
析工程を自動化する場合に、サンプル試料の輸送装置な
どが必要となり、装置コストが上昇するという短所があ
る。
2. Description of the Related Art In a conventional component analysis method, as shown in FIG. 7, a substance existing in a measurement field 10 is collected by a sampler 2 and concentrated to form a sample, which is transported to a component analyzer 3. Then, each component concentration (composition value) is calculated based on the analysis result. However, in the conventional component analysis method, it takes several hours to several tens of hours from when a sample is collected from a measurement site to when an analysis result is obtained. Further, when the component analysis process is automated, a device for transporting a sample sample or the like is required, and there is a disadvantage that the cost of the device increases.

【0003】近時、サンプルの濃縮が不要で、かつ測定
場からのサンプル試料の輸送も不要となる極微量成分の
分析方法としてレーザ誘起ブレークダウン法(Laser I
ntroduced Breakdown Spectroscopy;以下、LIBS
という)が注目されている。LIBS法は、測定場に存
在する物質にレーザを照射し、プラズマ化した成分原子
から発せられる光を分光分析する。
Recently, a laser-induced breakdown method (Laser I) has been used as a method for analyzing trace components that does not require concentration of a sample and transport of a sample from a measurement field.
ntroduced Breakdown Spectroscopy; LIBS
Has been drawing attention. In the LIBS method, a material existing in a measurement field is irradiated with a laser, and the light emitted from the component atoms converted into plasma is spectrally analyzed.

【0004】図10は従来のLIBS法における発光信
号強度の経時変化を示す特性線図である。測定対象物に
対して計測時間Mの間にレーザを照射すると、先ず成分
Aが発光し、次いで成分Bが発光する。このとき成分A
の発光信号は成分Aに固有の上位エネルギ準位に応じて
遅れ時間Dにピーク強度を有する。一方、成分Bの発光
信号は成分Bに固有の上位エネルギ準位に応じて更に遅
い遅れ時間Dにピーク強度を有する。なお、各信号特性
線の下側の漸近線はノイズ光信号を示しており、このノ
イズ光信号は時間の経過とともに減衰してゆく。
FIG. 10 is a characteristic diagram showing a temporal change of the intensity of the light emission signal in the conventional LIBS method. When the measurement object is irradiated with a laser during the measurement time M, the component A emits light first, and then the component B emits light. At this time, component A
Has a peak intensity at the delay time D according to the upper energy level inherent to the component A. On the other hand, the light emission signal of the component B has a peak intensity at a later delay time D in accordance with the higher energy level inherent to the component B. The asymptote below each signal characteristic line indicates a noise optical signal, and the noise optical signal attenuates with the passage of time.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
LIBS法においては、測定場の温度(レーザ強度やガ
ス温度)および組成(微粉粒子の存在の有無など)が変
化すると、その影響を受けて発光強度が種々に変わるの
で、数ppbオーダーの極微量成分を高感度に計測する
ことができない。また、プラズマ状態が変化した場合
に、発光信号強度が変動するので、従来の分析方法では
計測値の安定性に問題がある。
However, in the conventional LIBS method, when the temperature (laser intensity or gas temperature) and the composition (presence / absence of fine powder particles) of the measurement field change, the light emission is affected by the change. Since the intensity changes in various ways, it is impossible to measure a trace component on the order of several ppb with high sensitivity. In addition, when the plasma state changes, the emission signal intensity fluctuates. Therefore, the conventional analysis method has a problem in the stability of measured values.

【0006】本発明は上記の課題を解決するためになさ
れたものであって、ガス中に含まれる成分の濃度を高感
度かつ安定に計測することができるレーザを用いた成分
分析方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a component analysis method using a laser capable of measuring the concentration of a component contained in a gas with high sensitivity and stability. The purpose is to:

【0007】[0007]

【課題を解決するための手段】本発明者らは、先に特開
平10−038806号公報においてLIBS法を利用
する成分分析装置を開示した。この装置は、図6に示す
ように、測定場10の固体粒子に発振器11から光学系
12,13を介してレーザを導いて照射し、プラズマ化
した固体粒子からの発光を光学系14,15を介して分
光器16に導き、分光器16のそれぞれの回折格子によ
り分光されたそれぞれのスペクトル光を高速ゲートを備
えたCCDカメラ17により撮影し、撮影した映像に基
づいてコンピュータ18が固体粒子の成分を求めるもの
である。本発明者は、このような先のLIBS法を利用
した装置を土台として、これを更に改良・改善するべく
長期間にわたり鋭意研究努力した結果、本発明を完成さ
せるに至った。
The present inventors have previously disclosed a component analyzer utilizing the LIBS method in Japanese Patent Application Laid-Open No. 10-038806. As shown in FIG. 6, this apparatus irradiates a solid particle in a measurement field 10 with a laser guided from an oscillator 11 through optical systems 12 and 13 and emits light from the plasma-converted solid particles into optical systems 14 and 15. The spectroscope 16 is guided to the spectroscope 16 via the CCD, and each spectrum light separated by each diffraction grating of the spectroscope 16 is photographed by a CCD camera 17 equipped with a high-speed gate. It is to find the component. The inventor of the present invention has made a long-term research effort for further improving and improving the above-described apparatus utilizing the LIBS method as a base, and has completed the present invention.

【0008】本発明に係るレーザを用いた成分分析方法
は、レーザ光を測定対象物に照射し、測定対象物に含ま
れる成分をプラズマ化させ、そのプラズマ光を分光する
ことにより、測定対象物中の成分を検出するレーザを用
いた成分分析方法において、各成分元素からの発光ライ
ンに関し、発光に起因する上位エネルギ準位に対応した
遅れ時間および計測時間をそれぞれ設定し、設定した遅
れ時間および計測時間と測定対象物に含まれる複数の成
分原子の比とを用いて、測定対象物中の各成分の濃度を
それぞれ計測することを特徴とする。
[0008] In the component analysis method using a laser according to the present invention, the object to be measured is irradiated by irradiating the object with a laser beam, the components contained in the object to be measured are turned into plasma, and the plasma light is dispersed. In the component analysis method using a laser that detects a component in, in the emission line from each component element, a delay time and a measurement time corresponding to a higher energy level due to emission are set, respectively, and the set delay time and The concentration of each component in the measurement object is measured using the measurement time and the ratio of a plurality of component atoms contained in the measurement object.

【0009】ここで、「測定対象物に含まれる複数の成
分原子の比」とは、プラズマ化した成分原子の発光に起
因する上位エネルギ準位に応じた発光信号の積分値を各
成分原子ごとにそれぞれ計測し演算し、得られた積分値
につき複数の成分原子間に関して求めた比率をいう。
Here, the "ratio of a plurality of component atoms contained in the object to be measured" is defined as an integral value of a light emission signal corresponding to a higher energy level caused by light emission of the component atoms converted into plasma. Are calculated and calculated, and the ratio of the obtained integrated value is obtained for a plurality of component atoms.

【0010】さらに、測定対象物に含まれる化学種Aの
発光に起因する上位エネルギ準位をXa、測定対象物に
含まれる化学種Bの発光に起因する上位エネルギ準位を
Xb、但しXa<Xbの関係にあり、レーザ照射から化
学種Aの発光を検出するまでの遅れ時間Da、化学種A
の発光を計測する計測時間Ma、レーザ照射から化学種
Bの発光を検出するまでの遅れ時間Db、化学種Bの発
光を計測する計測時間Mbとした場合に、Da/Db=
k・(Xb/Xa)が成り立つ関係において、係数kが
1〜5の範囲となるように前記遅れ時間Da,Dbをそ
れぞれ個別に設定し、かつ、Ma>DaおよびMb>D
bの範囲となるように計測時間Ma,Mbをそれぞれ個
別に設定することが好ましい。
Further, the upper energy level caused by the light emission of the chemical species A contained in the object to be measured is Xa, and the upper energy level caused by the light emission of the chemical species B contained in the object to be measured is Xb, where Xa <. Xb, the delay time Da from the laser irradiation to the detection of the emission of the species A, the species A
When the measurement time Ma for measuring the light emission of the chemical species B, the delay time Db from the laser irradiation to the detection of the light emission of the chemical species B, and the measurement time Mb for measuring the light emission of the chemical species B, Da / Db =
In a relationship where k · (Xb / Xa) holds, the delay times Da and Db are individually set so that the coefficient k falls within a range of 1 to 5, and Ma> Da and Mb> D
It is preferable to set the measurement times Ma and Mb individually so as to fall within the range of b.

【0011】この場合に、上記化学種Aを測定対象物中
の主要成分とし、上記化学種Bを測定対象物中の計測目
的成分とした場合に、主要成分Aの発光信号積分値Ia
(ノイズ信号を除去した信号積分値)に対する計測目的
成分Bの発光信号積分値Ib(ノイズ信号を除去した信
号積分値)の比率Ib/Iaを計測することが更に好ま
しい。
In this case, when the chemical species A is the main component in the object to be measured and the chemical species B is the target component in the object to be measured, the emission signal integrated value Ia of the main component A is obtained.
It is further preferable to measure the ratio Ib / Ia of the emission signal integrated value Ib of the measurement target component B (the signal integrated value from which the noise signal has been removed) to the (signal integrated value from which the noise signal has been removed).

【0012】[0012]

【作用】本発明の測定原理について説明する。The measuring principle of the present invention will be described.

【0013】図8は、横軸に時間をとり、縦軸に発光信
号強度をとって、レーザ照射による測定対象物からの発
光信号強度の経時変化を示す特性線図である。本発明で
は遅れ時間1から遅れ時間2までの間に計測目的成分に
対応する検出器のゲートシャッタを開けるので、発光信
号強度のピークを中心とする計測目的成分に固有の発光
信号の積分値を得ることができる。すなわち、計測目的
成分の発光信号は、フィルタでノイズ光を除去すると、
各遅れ時間1,2,3では図9の(a),(b),
(c)にそれぞれ示す波形となる。図9の(b)に示す
遅れ時間2における信号波形は、計測目的成分に固有の
上位エネルギ準位に応じて出現するピークである。この
時間2に現れるピークを含む時間1から時間3までの間
を計測時間Mとし、この計測時間Mにおけるノイズ信号
を除去した信号強度を時間積分する。この積分値はレー
ザ発振強度のばらつきや測定場の温度変化により種々変
動するので、これのみでは計測目的成分の濃度を特定す
ることはできない。しかし、本発明では単一の計測目的
成分を検出するのではなく、図2及び図4に示すように
複数の成分の発光信号をそれぞれ検出し、基準となる発
光信号積分値に対する計測目的成分の発光信号積分値の
比率を求めるので、レーザ発振強度のばらつきや測定場
の温度変化に影響を受けることなく、高感度かつ安定に
計測目的成分の濃度が得られる。
FIG. 8 is a characteristic diagram showing time-dependent changes in the intensity of the light emission signal from the object to be measured by laser irradiation, with the horizontal axis representing time and the vertical axis representing light emission signal intensity. In the present invention, since the gate shutter of the detector corresponding to the measurement target component is opened between the delay time 1 and the delay time 2, the integral value of the emission signal specific to the measurement target component centered on the peak of the emission signal intensity is calculated. Obtainable. That is, the emission signal of the measurement target component is obtained by removing noise light with a filter.
For each of the delay times 1, 2, and 3, (a), (b),
The waveforms shown in FIG. The signal waveform at the delay time 2 shown in FIG. 9B is a peak that appears according to the upper energy level specific to the measurement target component. A period from time 1 including the peak appearing at time 2 to time 3 is defined as a measurement time M, and the signal intensity from which the noise signal has been removed during the measurement time M is integrated over time. Since the integrated value fluctuates variously due to the variation of the laser oscillation intensity and the temperature change of the measurement field, it is not possible to specify the concentration of the measurement target component by itself. However, in the present invention, instead of detecting a single measurement target component, light emission signals of a plurality of components are respectively detected as shown in FIGS. 2 and 4, and the measurement target component is compared with a reference light emission signal integrated value. Since the ratio of the integrated value of the emission signal is obtained, the concentration of the measurement target component can be obtained with high sensitivity and stability without being affected by the variation of the laser oscillation intensity or the temperature change of the measurement field.

【0014】[0014]

【発明の実施の形態】以下、添付の図面を参照しながら
本発明の種々の好ましい実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】図1および図2に示すように、測定対象物
に含まれる化学種Aの発光に起因する上位エネルギ準位
をXa、測定対象物に含まれる化学種Bの発光に起因す
る上位エネルギ準位をXb、但しXa<Xbの関係にあ
り、レーザ照射から化学種Aの発光を検出するまでの遅
れ時間Da、化学種Aの発光を計測する計測時間Ma、
レーザ照射から化学種Bの発光を検出するまでの遅れ時
間Db、化学種Bの発光を計測する計測時間Mbとした
場合に、Da/Db=k・(Xb/Xa)が成り立つ関
係において、係数kが1〜5の範囲となるように前記遅
れ時間Da,Dbをそれぞれ個別に設定し、かつ、Ma
>DaおよびMb>Dbの範囲となるように計測時間M
a,Mbをそれぞれ個別に設定する。
As shown in FIGS. 1 and 2, the upper energy level caused by the emission of the chemical species A contained in the object to be measured is Xa, and the upper energy level caused by the emission of the chemical species B contained in the object to be measured. The level is Xb, where Xa <Xb, the delay time Da from laser irradiation to the detection of the emission of the species A, the measurement time Ma for measuring the emission of the species A,
Assuming that the delay time Db from the laser irradiation to the detection of the emission of the chemical species B is the measurement time Mb for measuring the emission of the chemical species B, the coefficient is expressed as: Da / Db = k · (Xb / Xa) The delay times Da and Db are individually set so that k is in the range of 1 to 5, and Ma
> Da and Mb> Db
a and Mb are individually set.

【0016】この場合に、上記化学種Aを測定対象物中
の主要成分とし、上記化学種Bを測定対象物中の計測目
的成分とした場合に、主要成分Aの発光信号積分値Ia
(ノイズ信号を除去した信号積分値)に対する計測目的
成分Bの発光信号積分値Ib(ノイズ信号を除去した信
号積分値)の比率Ib/Iaを計測することができる。
例えば、主要成分Aには排ガス中に多量に含まれ実質的
に濃度変化を生じない窒素(N)を選択することができ
る。
In this case, when the chemical species A is a main component in the object to be measured and the chemical species B is a target component in the object to be measured, the emission signal integrated value Ia of the main component A is obtained.
The ratio Ib / Ia of the emission signal integrated value Ib of the measurement target component B (the signal integrated value from which the noise signal has been removed) to the (signal integrated value from which the noise signal has been removed) can be measured.
For example, nitrogen (N) which is contained in a large amount in the exhaust gas and does not substantially change the concentration can be selected as the main component A.

【0017】次に、図6に示した成分分析装置を用いて
本発明による成分分析結果の一例について説明する。
Next, an example of the result of component analysis according to the present invention using the component analyzer shown in FIG. 6 will be described.

【0018】図3の(a)に示すように、主要成分Aに
窒素(N)を選択し、計測目的成分にナトリウム(N
a)を選択した場合に、本発明方法により計測した結果
は強い再現性があることが実証された。また、図3の
(b)に示すように、主要成分Aに窒素(N)を選択
し、計測目的成分にカリウム(K)を選択した場合に、
本発明方法により計測した結果は強い再現性があること
が実証された。
As shown in FIG. 3A, nitrogen (N) is selected as the main component A, and sodium (N) is used as the target component for measurement.
When a) was selected, the results measured by the method of the present invention proved to be highly reproducible. In addition, as shown in FIG. 3B, when nitrogen (N) is selected as the main component A and potassium (K) is selected as the measurement target component,
The results measured by the method of the present invention proved to have strong reproducibility.

【0019】表1にナトリウム(Na),カリウム
(K),窒素(N)の各成分の発光波長(nm)、発光
時の上位準位エネルギ(cm-1)、ディレイ時間(μ
s)、計測時間(μs)をそれぞれ示す。このうち窒素
(N)は測定場において濃度変化がほとんど無いので、
これを基準として上記B/A比率を用いてナトリウム
(Na)およびカリウム(K)の濃度を演算により求め
る。その結果、Naは、発光波長が589.0nm、発
光時の上位準位エネルギが16973cm-1、ディレイ
時間が100μs、計測時間が300μsであった。ま
た、Kは、発光波長が766.5nm、発光時の上位準
位エネルギが13043cm-1、ディレイ時間が120
μs、計測時間が400μsであった。ちなみに、Nの
ディレイ時間は4μs、計測時間は20μsである。
Table 1 shows the emission wavelength (nm) of each component of sodium (Na), potassium (K), and nitrogen (N), the upper level energy (cm -1 ) at the time of emission, and the delay time (μ).
s) and measurement time (μs) are shown. Of these, nitrogen (N) has almost no concentration change at the measurement site,
Based on this, the concentrations of sodium (Na) and potassium (K) are obtained by calculation using the B / A ratio. As a result, Na had an emission wavelength of 589.0 nm, an upper-level energy at the time of emission of 16973 cm −1 , a delay time of 100 μs, and a measurement time of 300 μs. K indicates that the emission wavelength is 766.5 nm, the upper level energy at the time of emission is 13043 cm −1 , and the delay time is 120
μs and the measurement time were 400 μs. Incidentally, the delay time of N is 4 μs, and the measurement time is 20 μs.

【0020】図4に示すように、3つの成分A,B,C
につき測定することもできる。
As shown in FIG. 4, three components A, B, C
Can also be measured.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明によれば、ガス中に含まれる成分
の濃度を高感度かつ安定に計測することができる。
According to the present invention, the concentration of components contained in a gas can be measured with high sensitivity and stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るレーザ光を用いた成分
分析方法を用いて測定対象物の成分を分析したときの信
号特性線図。
FIG. 1 is a signal characteristic diagram when a component of a measurement target is analyzed using a component analysis method using laser light according to an embodiment of the present invention.

【図2】本発明の実施形態に係るレーザ光を用いた成分
分析方法を用いて測定対象物の成分を分析したときの信
号特性線図。
FIG. 2 is a signal characteristic diagram when a component of an object to be measured is analyzed using the component analysis method using laser light according to the embodiment of the present invention.

【図3】(a)はNa信号/N信号比率とNa濃度との
相関を示す特性線図、(b)はK信号/N信号比率とK
濃度との相関を示す特性線図。
3A is a characteristic diagram showing a correlation between a Na signal / N signal ratio and Na concentration, and FIG. 3B is a diagram showing a K signal / N signal ratio and a K signal.
FIG. 4 is a characteristic diagram showing a correlation with a density.

【図4】本発明の装置を用いて測定対象物の成分を分析
したときの信号特性線図。
FIG. 4 is a signal characteristic diagram when components of a measurement object are analyzed using the apparatus of the present invention.

【図5】ノイズ除去した信号強度を示す信号特性線図。FIG. 5 is a signal characteristic diagram showing signal strength after noise removal.

【図6】LIBS法を利用する成分分析装置を模式的に
示す構成ブロック図。
FIG. 6 is a configuration block diagram schematically showing a component analyzer using a LIBS method.

【図7】従来の分析方法の概要を示す模式図。FIG. 7 is a schematic diagram showing an outline of a conventional analysis method.

【図8】LIBS法の測定原理を説明するための信号特
性線図。
FIG. 8 is a signal characteristic diagram for explaining the measurement principle of the LIBS method.

【図9】(a)はLIBS法において遅れ時間1で計測
したときの信号強度を示す信号特性線図、(b)は遅れ
時間2で計測したときの信号強度を示す信号特性線図、
(c)は遅れ時間3で計測したときの信号強度を示す信
号特性線図、。
9A is a signal characteristic diagram showing the signal intensity measured at the delay time 1 in the LIBS method, FIG. 9B is a signal characteristic diagram showing the signal intensity measured at the delay time 2 in the LIBS method,
(C) is a signal characteristic diagram showing the signal strength measured at delay time 3.

【図10】LIBS法の測定原理を説明するための信号
特性線図。
FIG. 10 is a signal characteristic diagram for explaining the measurement principle of the LIBS method.

【符号の説明】[Explanation of symbols]

10…測定場、 11…レーザ発振器、 12…レンズ、 13…計測窓、 14…ミラー、 15…レンズ、 16…分光器、 17…CCDカメラ、 18…コンピュータ、 19…同期ライン。 Reference numeral 10: measurement field, 11: laser oscillator, 12: lens, 13: measurement window, 14: mirror, 15: lens, 16: spectroscope, 17: CCD camera, 18: computer, 19: synchronization line.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を測定対象物に照射し、測定対
象物に含まれる成分をプラズマ化させ、そのプラズマ光
を分光することにより、測定対象物中の成分を検出する
レーザを用いた成分分析方法において、 各成分元素からの発光ラインに関し、発光に起因する上
位エネルギ準位に対応した遅れ時間および計測時間をそ
れぞれ設定し、設定した遅れ時間および計測時間と測定
対象物に含まれる複数の成分原子の比とを用いて、測定
対象物中の各成分の濃度をそれぞれ計測することを特徴
とするレーザを用いた成分分析方法。
1. A component using a laser that irradiates a laser beam onto a measurement target, converts components contained in the measurement target into plasma, and disperses the plasma light to detect components in the measurement target. In the analysis method, for the emission line from each component element, a delay time and a measurement time corresponding to a higher energy level caused by light emission are set, respectively, and the set delay time and the measurement time and a plurality of measurement objects included in the measurement object are set. A component analysis method using a laser, wherein a concentration of each component in an object to be measured is measured using a ratio of component atoms.
【請求項2】 測定対象物に含まれる化学種Aの発光に
起因する上位エネルギ準位をXa、測定対象物に含まれ
る化学種Bの発光に起因する上位エネルギ準位をXb、
但しXa<Xbの関係にあり、レーザ照射から化学種A
の発光を検出するまでの遅れ時間Da、化学種Aの発光
を計測する計測時間Ma、レーザ照射から化学種Bの発
光を検出するまでの遅れ時間Db、化学種Bの発光を計
測する計測時間Mbとした場合に、 Da/Db=k・(Xb/Xa)が成り立つ関係におい
て、係数kが1〜5の範囲となるように前記遅れ時間D
a,Dbをそれぞれ個別に設定し、かつ、Ma>Daお
よびMb>Dbの範囲となるように計測時間Ma,Mb
をそれぞれ個別に設定することを特徴とする請求項1記
載の方法。
2. A higher energy level caused by emission of the chemical species A contained in the measurement object is Xa, a higher energy level caused by emission of the chemical species B contained in the measurement object is Xb,
However, there is a relation of Xa <Xb, and the chemical species A
Delay time Da to detect the emission of the chemical species A, measurement time Ma for measuring the emission of the chemical species A, delay time Db from the laser irradiation to detection of the emission of the chemical species B, measurement time for measuring the emission of the chemical species B Mb, the delay time D is set so that the coefficient k falls within a range of 1 to 5 in a relationship where Da / Db = k · (Xb / Xa) holds.
a and Db are individually set, and the measurement times Ma and Mb are set so that Ma> Da and Mb> Db.
2. The method according to claim 1, wherein the setting is individually performed.
【請求項3】 上記化学種Aを測定対象物中の主要成分
とし、上記化学種Bを測定対象物中の計測目的成分とし
た場合に、 主要成分Aの発光信号積分値Ia(ノイズ信号を除去し
た信号積分値)に対する計測目的成分Bの発光信号積分
値Ib(ノイズ信号を除去した信号積分値)の比率Ib
/Iaを計測することを特徴とする請求項2記載の方
法。
3. When the chemical species A is a main component in the object to be measured and the chemical species B is a measurement target component in the object to be measured, the emission signal integrated value Ia of the main component A (noise signal is Ratio Ib of emission signal integrated value Ib (signal integrated value from which noise signal has been removed) of measurement target component B to removed signal integrated value)
3. The method of claim 2, wherein / Ia is measured.
JP2000175665A 2000-06-12 2000-06-12 Component analysis method using laser Expired - Lifetime JP3660938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175665A JP3660938B2 (en) 2000-06-12 2000-06-12 Component analysis method using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175665A JP3660938B2 (en) 2000-06-12 2000-06-12 Component analysis method using laser

Publications (2)

Publication Number Publication Date
JP2001349832A true JP2001349832A (en) 2001-12-21
JP3660938B2 JP3660938B2 (en) 2005-06-15

Family

ID=18677512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175665A Expired - Lifetime JP3660938B2 (en) 2000-06-12 2000-06-12 Component analysis method using laser

Country Status (1)

Country Link
JP (1) JP3660938B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068969A (en) * 2007-09-12 2009-04-02 Central Res Inst Of Electric Power Ind Method and device for measuring substances containing concrete
JP2011007640A (en) * 2009-06-26 2011-01-13 Shikoku Electric Power Co Inc Continuous concentration measuring apparatus and method
WO2012036137A1 (en) * 2010-09-15 2012-03-22 イマジニアリング株式会社 Analysis device and analysis method
WO2012036138A1 (en) * 2010-09-15 2012-03-22 イマジニアリング株式会社 Analysis device and analysis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068969A (en) * 2007-09-12 2009-04-02 Central Res Inst Of Electric Power Ind Method and device for measuring substances containing concrete
JP2011007640A (en) * 2009-06-26 2011-01-13 Shikoku Electric Power Co Inc Continuous concentration measuring apparatus and method
WO2012036137A1 (en) * 2010-09-15 2012-03-22 イマジニアリング株式会社 Analysis device and analysis method
WO2012036138A1 (en) * 2010-09-15 2012-03-22 イマジニアリング株式会社 Analysis device and analysis method
JP5906501B2 (en) * 2010-09-15 2016-04-20 イマジニアリング株式会社 Analysis equipment
JP5906500B2 (en) * 2010-09-15 2016-04-20 イマジニアリング株式会社 Analysis equipment

Also Published As

Publication number Publication date
JP3660938B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
US7745789B2 (en) Measuring technique
US6794670B1 (en) Method and apparatus for spectrometric analysis of turbid, pharmaceutical samples
Lazzari et al. Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique
JP2004528567A (en) X-ray fluorescence analyzer combined with laser-induced fluorescence quantum analyzer
AU2002243137A1 (en) New measuring technique
JP2009288068A (en) Analyzing method and analyzer
CN108318459A (en) Pulsed Laser induces the measuring device and measuring method of photoluminescence spectrum
US7539282B2 (en) XRF analyzer
CN109387482A (en) Isotope measure device
JP2001349832A (en) Componential analysis method using layer
CN111272735A (en) Detection method of laser-induced breakdown spectroscopy
JP2928688B2 (en) Pollution element analysis method and device
JP2009511890A (en) Methods for qualitative and quantitative analysis by emission spectroscopy
JP2009288067A (en) Analyzing method and analyzer
JP2000146839A (en) Gas component concentration measuring device and method therefor
CN112858176A (en) Spectrum detection device and ore spectrum detection equipment
JP2763907B2 (en) Breakdown spectroscopic analysis method and apparatus
JPH09251004A (en) Method and device for optical-acoustic analyzing
CN215574577U (en) Spectrum detection device and ore spectrum detection equipment
JP2003098084A (en) Method and device for analyzing heavy metal harmful substance in soil
JP2005134273A (en) Apparatus for measuring concentration of constituents in particles contained in the atmosphere, or the like
JPH0452551A (en) Component analyzing method and apparatus
CN111198179A (en) Double-line quick selection method for self-absorption immune laser-induced breakdown spectroscopy
JPH0915147A (en) Method for analyzing helium isotope
JP2004132919A (en) Component analysis method by laser light

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3660938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term