JP2001349775A - Breakage detecting device for windmill vane - Google Patents
Breakage detecting device for windmill vaneInfo
- Publication number
- JP2001349775A JP2001349775A JP2000171244A JP2000171244A JP2001349775A JP 2001349775 A JP2001349775 A JP 2001349775A JP 2000171244 A JP2000171244 A JP 2000171244A JP 2000171244 A JP2000171244 A JP 2000171244A JP 2001349775 A JP2001349775 A JP 2001349775A
- Authority
- JP
- Japan
- Prior art keywords
- wind turbine
- turbine blade
- vibration
- windmill
- vibration sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02E10/722—
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Wind Motors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は風力発電装置に適用
される風車の風車翼破損検知装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind turbine blade damage detecting device applied to a wind turbine generator.
【0002】[0002]
【従来の技術】従来使用されている風力発電装置の一例
を図5に示す。風車翼1はロータヘッド2内にあるハブ
3に複数枚取り付けられ主軸4を介して増速機5と結合
している。増速機5は発電機6と結合しており、風力に
よって風車翼1に生じた回転力が発電機6を回転して電
力を得る。増速機5や発電機6はナセル7に収納され、
タワー8で支持されている。ナセル7は風車翼1を風向
きに合わせるために旋回する機構を有している。2. Description of the Related Art An example of a conventional wind power generator is shown in FIG. A plurality of wind turbine blades 1 are attached to a hub 3 in a rotor head 2 and are connected to a gearbox 5 via a main shaft 4. The speed-increasing gear 5 is connected to the generator 6, and the rotating force generated in the wind turbine blade 1 by the wind rotates the generator 6 to obtain electric power. The gearbox 5 and the generator 6 are stored in the nacelle 7,
Supported by tower 8. The nacelle 7 has a mechanism for turning the wind turbine blades 1 to adjust the wind direction.
【0003】風車は周囲に平野部や海岸など風を遮るよ
うな構造物の無い場所に設置され、また風車そのものの
高さが数十mと非常に高いために落雷の可能性が高くな
るためナセル7の上部に避雷針9が取付けられており、
また、タワー8の接地抵抗を出来る限り低くするなどの
落雷対策が施されている。A windmill is installed in a place where there is no structure that blocks the wind, such as a plain or a coast, and the height of the windmill itself is as high as several tens of meters, which increases the possibility of lightning strikes. A lightning rod 9 is attached to the upper part of the nacelle 7,
In addition, lightning strike measures such as minimizing the ground resistance of the tower 8 are taken.
【0004】従来の風車においては、ナセル7やタワー
8に落雷対策が施されているが、風車の中で最も高い位
置にあり、かつ突端形状である風車翼1に落雷する可能
性が高くなる。雷撃電流は数十kAにも及ぶため、風車翼
1を通過する際に翼が破損する場合がある。In a conventional wind turbine, a nacelle 7 or a tower
Although a lightning strike countermeasure is applied to 8, the possibility of lightning strike on the windmill blade 1 which is located at the highest position in the windmill and has a tip shape is increased. Since the lightning current reaches several tens of kA,
Wings may be damaged when passing through 1.
【0005】風車翼1は長さが数十m程度で高速回転し
ているため、折損飛散した場合には周囲の構造物あるい
は人に対し非常に危険である。従って、風車翼1が折損
し飛散する前に翼の破損情報を初期段階に捉えることが
非常に重要となる。[0005] Since the wind turbine blade 1 is rotating at a high speed with a length of about several tens of meters, it is extremely dangerous to surrounding structures or persons if broken and scattered. Therefore, it is very important to grasp the damage information of the wind turbine blade 1 at an early stage before the wind turbine blade 1 breaks and scatters.
【0006】従来は風車翼の破損を検知するには、例え
ば、特開平8―261135号公報に記載されているよ
うに風車翼内部に導電性の線状材を設けて抵抗値を測定
することで翼の破損を検知したり、あるいは特開平9−
133576号公報に記載されているように主軸の回転
状態を検出することで風車翼の振動状態を検知するもの
が知られている。Conventionally, to detect damage to a wind turbine blade, for example, a conductive wire is provided inside the wind turbine blade and the resistance value is measured as described in Japanese Patent Application Laid-Open No. 8-261135. To detect wing damage, or
As described in Japanese Patent Application Laid-Open No. 133576, there is known an apparatus that detects a vibration state of a wind turbine blade by detecting a rotation state of a main shaft.
【0007】[0007]
【発明が解決しようとする課題】従来技術の前者は、風
車翼の製作が非常に複雑になり実用上の問題点がある。
また、後者は、風車翼の振動が主軸のトルク変動に及ぼ
す値を検出しているが、通常運転時の風車翼のピッチ角
は翼回転面に対して浅く、風車翼の振動の大半は翼面に
垂直であることから風車翼の振動成分はほとんどが翼回
転面に垂直な成分となる。したがって、回転方向つまり
トルク成分は非常に小さくなり、風車翼の初期異常時の
微小振動を検出できないという問題点を有する。本発明
の目的は、風車翼の破損を初期段階で検知して折損飛散
などの事故を防止することができる風車翼破損検知装置
を提供することにある。The former of the prior art has a practical problem in that the manufacture of the windmill blade is very complicated.
The latter detects the value of the wind turbine blade vibration affecting the torque fluctuation of the main shaft.The pitch angle of the wind turbine blade during normal operation is shallow with respect to the blade rotation surface, and most of the vibration of the wind turbine blade is Since it is perpendicular to the plane, most of the vibration components of the wind turbine blade are perpendicular to the blade rotation plane. Therefore, the rotation direction, that is, the torque component becomes very small, and there is a problem that a minute vibration at the time of the initial abnormality of the wind turbine blade cannot be detected. An object of the present invention is to provide a wind turbine blade damage detection device capable of detecting breakage of a wind turbine blade at an early stage and preventing an accident such as breakage and scattering.
【0008】[0008]
【課題を解決するための手段】請求項1に記載の発明
は、風車の風車翼回転機構と発電機を収納したナセル部
と、ナセル部を支持するタワー部とで構成される風力発
電装置において、風車の各風車翼に振動を検出する振動
センサを取付け、これら振動センサから得られる振動パ
ターンを比較判定する判定手段とを備えていることを特
徴とする。According to a first aspect of the present invention, there is provided a wind turbine generator comprising a nacelle section accommodating a windmill blade rotating mechanism of a windmill and a generator, and a tower section supporting the nacelle section. A vibration sensor for detecting vibration is attached to each wind turbine blade of the wind turbine, and a determination means for comparing and determining a vibration pattern obtained from these vibration sensors is provided.
【0009】請求項2に記載の発明は、風車翼の回転軸
に複数のスリップリングと各スリップリングに接するブ
ラシを設け、振動センサからの振動信号をスリップリン
グとブラシを介して判定手段に取込むようにしたことを
特徴とする。According to a second aspect of the present invention, a plurality of slip rings and a brush in contact with each of the slip rings are provided on the rotating shaft of the wind turbine blade, and a vibration signal from a vibration sensor is received by the determination means via the slip ring and the brush. It is characterized in that it is inserted.
【0010】請求項3に記載の発明は、振動センサの取
付け方向を風車翼回転面に対して垂直方向としたことを
特徴とする。The invention according to claim 3 is characterized in that the mounting direction of the vibration sensor is perpendicular to the wind turbine blade rotation surface.
【0011】請求項4に記載の発明は、振動センサの取
付け位置を風車ロータヘッド内の翼根部としたことを特
徴とする。According to a fourth aspect of the present invention, the vibration sensor is attached to a blade root in the wind turbine rotor head.
【0012】本発明は、風車翼から直接振動を検知して
いるので高感度で検出でき、風車翼に異常が生じた際に
初期段階での検知が可能となり、風車翼の折損飛散事故
を防止することができる。According to the present invention, vibration is detected directly from the wind turbine blades, so that it can be detected with high sensitivity, and when an abnormality occurs in the wind turbine blades, it can be detected at an early stage, and the breakage of the wind turbine blades is prevented. can do.
【0013】[0013]
【発明の実施の形態】本発明の一実施例を図1により説
明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.
【0014】図1において、風車翼1a、1b、1cに
雷などが原因で異常が生じる場合、大部分はまず翼の微
小破損が生じ、これが進展して翼の折損となる。風車翼
1に破損などの異常がある場合、正常時とは異なる振動
が生じる。この振動は高々数百kHz程度の周波数である
ため風車翼1全体に伝播する。In FIG. 1, when an abnormality occurs in the wind turbine blades 1a, 1b, 1c due to lightning or the like, in most cases, the blades are firstly micro-damaged, which progresses to break the blades. Windmill wing
If there is an abnormality such as breakage in 1, vibration different from that at normal time will occur. Since this vibration has a frequency of at most about several hundred kHz, it propagates throughout the wind turbine blade 1.
【0015】風車翼1a、1b、1cごとに振動センサ
10a、10b、10cを取付け翼振動を検出する。風
車翼1(1a、1b、1c)から直接検知しているため
高感度検出が可能となる。A vibration sensor 10a, 10b, 10c is provided for each wind turbine blade 1a, 1b, 1c to detect blade vibration. Since the detection is performed directly from the wind turbine blades 1 (1a, 1b, 1c), high-sensitivity detection is possible.
【0016】風車翼1は主として翼面と垂直に振動す
る。通常運転時の翼回転面に対する風車翼1のピッチ角
は数度程度と浅いことから、振動の大部分は図2に示す
ように翼回転面に垂直な成分となる。そのため、図3に
示すように振動センサ10(10a、10b、10c)
の取付け方向を翼回転面に対して垂直方向とすることに
より微小振動に対しても高感度検出が可能となる。The wind turbine blade 1 mainly vibrates perpendicularly to the blade surface. Since the pitch angle of the wind turbine blade 1 with respect to the blade rotation surface during normal operation is as shallow as about several degrees, most of the vibration is a component perpendicular to the blade rotation surface as shown in FIG. Therefore, as shown in FIG. 3, the vibration sensor 10 (10a, 10b, 10c)
By setting the mounting direction to the direction perpendicular to the blade rotation surface, high-sensitivity detection is possible even for minute vibration.
【0017】また、風車翼1の回転による遠心力が振動
センサ10の受感軸に直角となり、風車翼1の回転が振
動センサ10に及ぼす影響は最小限になり翼1の振動を
正確に検出することが可能となる。さらに、振動センサ
10の取付け位置をローターヘッド2内部の翼根とする
ことで、振動センサ10が風車翼1の作る気流を乱さ
ず、かつ振動センサ10が風雨の影響を避けることが可
能となる。Further, the centrifugal force caused by the rotation of the wind turbine blade 1 is perpendicular to the sensing axis of the vibration sensor 10, and the influence of the rotation of the wind turbine blade 1 on the vibration sensor 10 is minimized, and the vibration of the blade 1 is accurately detected. It is possible to do. Furthermore, by setting the vibration sensor 10 at the blade root inside the rotor head 2, the vibration sensor 10 does not disturb the airflow created by the windmill blade 1, and the vibration sensor 10 can avoid the influence of wind and rain. .
【0018】振動センサ10a、10b、10cで検出
された振動信号は、軸4の内部に配線された信号ケーブ
ル11からスリップリング12、ブラシ13、信号ケー
ブル11を介して比較演算装置15に入力される。The vibration signals detected by the vibration sensors 10a, 10b, and 10c are input from a signal cable 11 wired inside the shaft 4 to a comparison / calculation device 15 via a slip ring 12, a brush 13, and a signal cable 11. You.
【0019】比較演算装置15の処理内容を図4に示
す。FIG. 4 shows the processing contents of the comparison arithmetic unit 15.
【0020】振動センサ10の振動信号(強度信号)は
時間成分として出力される。比較演算装置15は振動セ
ンサ10の振動信号を入力すると、処理20において振
動信号をスペクトラムアナライザにより周波数成分に変
換する。比較演算装置15の信号取込みは、例えば、取
込み信号の周波数領域を0から10MHzとして、これを
500分割した区間ごとのピーク値を用いて処理21で
パターン化して図示しないメモリに格納する。この際、
各ピーク値間の最大値で規格化を施しておく。この処理
を各風車翼1a、1b、1cごとに実行する。The vibration signal (intensity signal) of the vibration sensor 10 is output as a time component. Upon receiving the vibration signal of the vibration sensor 10, the comparison operation device 15 converts the vibration signal into a frequency component by a spectrum analyzer in processing 20. The signal acquisition of the comparison operation device 15 is performed, for example, by setting the frequency domain of the acquired signal to 0 to 10 MHz, patterning the signal in a process 21 using a peak value for each of 500 divided sections, and storing the pattern in a memory (not shown). On this occasion,
Normalization is performed with the maximum value between the peak values. This process is executed for each wind turbine blade 1a, 1b, 1c.
【0021】処理21でパターン化した振動波形と、あ
らかじめデータベース16に取り込んでおいた正常時の
波形パターンとを処理22において比較する。風車翼1
や発電機6、タワー8はそれぞれの固有振動数で振動す
るため、異常時にはこれらとは異なる振動数成分が検出
される。そのため処理22における比較は、例えば取り
込み波形から正常時波形を差分した値が20%以上の変
動があれば異常と判定する。この判定は処理23で行わ
れる。処理23で異常と判定すると、処理25で直ちに
停止信号を出して風車を停止させる。正常時には処理2
4においてメモリを消去して次の信号に待機する。In the process 22, the vibration waveform patterned in the process 21 is compared with the normal waveform pattern previously stored in the database 16. Windmill wing 1
, The generator 6, and the tower 8 vibrate at their respective natural frequencies, so that when abnormal, a frequency component different from these is detected. Therefore, in the comparison in the process 22, for example, if the value obtained by subtracting the normal waveform from the fetched waveform has a change of 20% or more, it is determined to be abnormal. This determination is made in step 23. If it is determined in step 23 that there is an abnormality, a stop signal is immediately issued in step 25 to stop the windmill. Processing 2 when normal
At 4, the memory is erased and the process waits for the next signal.
【0022】異常時にはメモリに取り込んである各翼の
波形を比較して異常翼を同定する。風車には一般的に2
〜3枚の風車翼1が取り付けられている。風車翼1に雷な
どが原因で異常が生じる場合、大部分はその中の1枚に
落雷することから、1枚のみの異常となることが殆どで
ある。同定方法としては、例えば、風車翼1が図1のよ
うに3枚の場合、各翼をa、b、cとすると各翼の波形に
ついて処理26でa-b、b-c、c-aの差分を行い、処理2
7において残差の最も小さい差分が正常翼の組み合わせ
と同定され、残りの1枚が異常翼と同定される。In the event of an abnormality, the abnormal wing is identified by comparing the waveform of each wing taken into the memory. Generally 2 for windmills
Up to three wind turbine blades 1 are attached. When an abnormality occurs in the wind turbine blade 1 due to lightning or the like, most of the lightning strikes on one of them, so that in most cases, only one abnormality occurs. As an identification method, for example, when the number of the wind turbine blades 1 is three as shown in FIG. 1, if each blade is a, b, and c, a difference between ab, bc, and ca is performed in a process 26 for the waveform of each blade, and the process is performed. 2
In 7, the difference with the smallest residual is identified as a combination of normal wings, and the remaining one is identified as an abnormal wing.
【0023】風車翼1は瞬間的な突風や発電機負荷のラ
ンダム的な励磁力により短時間の非定常振動を生じる
が、振動センサ10a、10b、10cの振動信号の取
込みを翼回転周期の数周期以上の平均化処理を施すこと
で短時間ノイズの影響を取り除ける。また、各風車翼1
は同様に短時間非定常振動の影響を受けるため各翼の波
形を比較することによって、それら瞬間的な擾乱の影響
を取り除くことが可能となり判定精度が向上する。The wind turbine blade 1 generates a short-term non-stationary vibration due to an instantaneous gust or a random exciting force of the generator load. By performing the averaging process for a period equal to or longer than the period, the effect of short-time noise can be removed. In addition, each windmill blade 1
In the same way, the influence of the short-term unsteady vibration causes the effect of the instantaneous disturbance to be eliminated by comparing the waveforms of the respective blades, thereby improving the determination accuracy.
【0024】図4に示す処理を連続的に行うことは機器
への負荷が増大し非効率的であるため、一定時間間隔、
例えば10分から30分ごとにデータを取り込むことに
より十分な精度で異常検知できる。Since the continuous processing shown in FIG. 4 increases the load on the equipment and is inefficient, the processing shown in FIG.
For example, by taking in data every 10 to 30 minutes, abnormality can be detected with sufficient accuracy.
【0025】このようにして風車翼の破損を検知するの
であるが、風車翼から直接振動を検知しているので高感
度で検出でき、風車翼に異常が生じた際に初期段階での
検知が可能となり、風車翼の折損飛散事故を防止するこ
とができる。In this way, the damage of the wind turbine blade is detected. Since the vibration is directly detected from the wind turbine blade, it can be detected with high sensitivity. When an abnormality occurs in the wind turbine blade, the detection at the initial stage can be performed. This makes it possible to prevent breakage and scattering of the wind turbine blades.
【0026】[0026]
【発明の効果】本発明によれば、風車翼に異常が生じた
際に初期異常段階での微細な異常の検知が可能となり、
風車翼の折損飛散事故を防止することができる。According to the present invention, when an abnormality occurs in a wind turbine blade, a minute abnormality can be detected in an initial abnormality stage,
It is possible to prevent breakage and accidents of wind turbine blades.
【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of the present invention.
【図2】風車翼の振動成分の説明図である。FIG. 2 is an explanatory diagram of a vibration component of a wind turbine blade.
【図3】振動センサの取付け状態図である。FIG. 3 is a mounting state diagram of a vibration sensor.
【図4】本発明の動作を説明するための処理図である。FIG. 4 is a processing diagram for explaining the operation of the present invention.
【図5】従来の風力発電装置の一例を示す構成図であ
る。FIG. 5 is a configuration diagram illustrating an example of a conventional wind turbine generator.
1a、1b、1c…風車翼、2…ロータヘッド、3…ハ
ブ、4…主軸、5…増速機、6…発電機、7…ナセル、
8…タワー、9…避雷針、10…振動センサ、11…信
号ケーブル、12…スリップリング、13…ブラシ、1
5…比較演算装置。1a, 1b, 1c ... wind turbine blades, 2 ... rotor head, 3 ... hub, 4 ... spindle, 5 ... gearbox, 6 ... generator, 7 ... nacelle,
8 tower, 9 lightning rod, 10 vibration sensor, 11 signal cable, 12 slip ring, 13 brush, 1
5. Comparison operation device.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 奎将 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 鈴木 博房 茨城県日立市幸町三丁目2番2号 株式会 社日立エンジニアリングサービス内 Fターム(参考) 2G024 AD23 BA15 BA27 CA13 2G064 AA12 AB01 AB22 BA28 CC41 CC54 CC62 3H078 AA02 AA26 BB12 CC02 CC12 CC22 CC47 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keisho Endo 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power and Electricity Research Laboratory, Hitachi, Ltd. (72) Inventor Hirobo Suzuki Hitachi, Ibaraki Prefecture 3-2, Sachimachi F-term in Hitachi Engineering Services Co., Ltd. (Reference) 2G024 AD23 BA15 BA27 CA13 2G064 AA12 AB01 AB22 BA28 CC41 CC54 CC62 3H078 AA02 AA26 BB12 CC02 CC12 CC22 CC47
Claims (4)
ナセル部と、前記ナセル部を支持するタワー部とで構成
される風力発電装置において、前記風車の各風車翼に振
動を検出する振動センサを取付け、これら振動センサか
ら得られる振動パターンを比較判定する判定手段とを備
えていることを特徴とする風車翼破損検知装置。In a wind turbine generator comprising a nacelle section accommodating a windmill blade rotating mechanism of a windmill and a generator, and a tower section supporting the nacelle section, vibration is detected on each windmill blade of the windmill. A wind turbine blade damage detection device comprising a vibration sensor, and a determination unit for comparing and determining a vibration pattern obtained from the vibration sensor.
前記風車翼の回転軸に複数のスリップリングと各スリッ
プリングに接するブラシを設け、前記振動センサからの
振動信号を前記スリップリングとブラシを介して前記判
定手段に取込むようにしたことを特徴とする風車翼破損
検知装置。2. The wind turbine blade damage detecting device according to claim 1,
A plurality of slip rings and a brush in contact with each slip ring are provided on the rotation axis of the wind turbine blade, and a vibration signal from the vibration sensor is taken into the determination unit via the slip ring and the brush. Wind turbine blade damage detection device.
前記振動センサの取付け方向を風車翼回転面に対して垂
直方向としたことを特徴とする風車翼破損検知装置。3. The wind turbine blade damage detecting device according to claim 1,
A wind turbine blade damage detecting device, wherein the vibration sensor is attached in a direction perpendicular to a wind turbine blade rotation surface.
前記振動センサの取付け位置を風車ロータヘッド内の翼
根部としたことを特徴とする風車翼破損検知装置。4. The wind turbine blade damage detecting device according to claim 1,
A wind turbine blade damage detecting device, wherein the vibration sensor is mounted at a blade root portion in a wind turbine rotor head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000171244A JP2001349775A (en) | 2000-06-07 | 2000-06-07 | Breakage detecting device for windmill vane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000171244A JP2001349775A (en) | 2000-06-07 | 2000-06-07 | Breakage detecting device for windmill vane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001349775A true JP2001349775A (en) | 2001-12-21 |
Family
ID=18673826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000171244A Pending JP2001349775A (en) | 2000-06-07 | 2000-06-07 | Breakage detecting device for windmill vane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001349775A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100743931B1 (en) | 2006-09-01 | 2007-07-30 | 주식회사 효성 | Wind power generator and its control methods |
JP2007205225A (en) * | 2006-02-01 | 2007-08-16 | Fuji Heavy Ind Ltd | Wind power generator |
JP2008025993A (en) * | 2006-07-18 | 2008-02-07 | Photonics:Kk | Lightning detection device for blade |
CN101846547A (en) * | 2010-05-11 | 2010-09-29 | 无锡风电设计研究院有限公司 | Vibration detecting device of wind-driven generator |
CN101907062A (en) * | 2009-06-03 | 2010-12-08 | 通用电气公司 | The system and method that is used for control of wind turbine noise and damage detection |
JP2012117448A (en) * | 2010-11-30 | 2012-06-21 | Mitsubishi Heavy Ind Ltd | Lightning strike detector for hollow structure, and wind turbine rotor blade and wind turbine generator equipped with the same |
CN102621281A (en) * | 2012-04-10 | 2012-08-01 | 南京理工大学 | Automatic crack detection and alarm system and method for vane of wind driven generator |
CN102628834A (en) * | 2012-03-30 | 2012-08-08 | 广东电网公司电力科学研究院 | Method for diagnosing blade breakage failure of large-sized steam turbine |
JP2013231409A (en) * | 2012-05-01 | 2013-11-14 | Tokyo Institute Of Technology | Wind power generator |
WO2013183313A1 (en) * | 2012-06-06 | 2013-12-12 | 日本電気株式会社 | Structure analysis device and structure analysis method |
WO2013183314A1 (en) * | 2012-06-06 | 2013-12-12 | 日本電気株式会社 | Structure analysis device and structure analysis method |
KR101365573B1 (en) * | 2012-10-31 | 2014-02-21 | 주식회사 우진 | Method and system of detecting crack of wind turbine rotor blade |
KR101458798B1 (en) | 2014-02-20 | 2014-11-07 | 두산중공업 주식회사 | a wind farm, an arranging structure thereof and a control method thereof, a wind generator unit |
US8922037B2 (en) | 2008-04-15 | 2014-12-30 | Aloys Wobben | Wind energy system having busbars |
JP2015105653A (en) * | 2013-12-02 | 2015-06-08 | ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド | Method for controlling power generation amount at wind power generation complex |
JP2015161247A (en) * | 2014-02-27 | 2015-09-07 | 三菱重工業株式会社 | Wind turbine blade damage detection method and wind turbine |
JP2017025779A (en) * | 2015-07-22 | 2017-02-02 | 株式会社日立製作所 | Wind power generation device and radio communication method in wind power generation device |
JP2017537305A (en) * | 2014-10-01 | 2017-12-14 | ジーイー・リニューワブル・テクノロジーズ | Rotating machines and equipment for energy conversion including such machines |
WO2022054483A1 (en) | 2020-09-11 | 2022-03-17 | 不動技研工業株式会社 | Abnormality determination method for wind power generation device. abnormality determination system for wind power generation device, and abnormality determination program for wind power generation device |
-
2000
- 2000-06-07 JP JP2000171244A patent/JP2001349775A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007205225A (en) * | 2006-02-01 | 2007-08-16 | Fuji Heavy Ind Ltd | Wind power generator |
JP2008025993A (en) * | 2006-07-18 | 2008-02-07 | Photonics:Kk | Lightning detection device for blade |
KR100743931B1 (en) | 2006-09-01 | 2007-07-30 | 주식회사 효성 | Wind power generator and its control methods |
US8922037B2 (en) | 2008-04-15 | 2014-12-30 | Aloys Wobben | Wind energy system having busbars |
EP2258942A3 (en) * | 2009-06-03 | 2014-03-12 | General Electric Company | System and method for wind turbine noise control and damage detection |
CN101907062A (en) * | 2009-06-03 | 2010-12-08 | 通用电气公司 | The system and method that is used for control of wind turbine noise and damage detection |
US7896613B2 (en) * | 2009-06-03 | 2011-03-01 | General Electric Company | System and method for wind turbine noise control and damage detection |
CN101846547A (en) * | 2010-05-11 | 2010-09-29 | 无锡风电设计研究院有限公司 | Vibration detecting device of wind-driven generator |
JP2012117448A (en) * | 2010-11-30 | 2012-06-21 | Mitsubishi Heavy Ind Ltd | Lightning strike detector for hollow structure, and wind turbine rotor blade and wind turbine generator equipped with the same |
CN102628834A (en) * | 2012-03-30 | 2012-08-08 | 广东电网公司电力科学研究院 | Method for diagnosing blade breakage failure of large-sized steam turbine |
CN102621281A (en) * | 2012-04-10 | 2012-08-01 | 南京理工大学 | Automatic crack detection and alarm system and method for vane of wind driven generator |
JP2013231409A (en) * | 2012-05-01 | 2013-11-14 | Tokyo Institute Of Technology | Wind power generator |
JPWO2013183313A1 (en) * | 2012-06-06 | 2016-01-28 | 日本電気株式会社 | Structure analyzing apparatus and structure analyzing method |
WO2013183313A1 (en) * | 2012-06-06 | 2013-12-12 | 日本電気株式会社 | Structure analysis device and structure analysis method |
US9851331B2 (en) | 2012-06-06 | 2017-12-26 | Nec Corporation | Structure analyzing device and a structure analyzing method |
WO2013183314A1 (en) * | 2012-06-06 | 2013-12-12 | 日本電気株式会社 | Structure analysis device and structure analysis method |
KR101365573B1 (en) * | 2012-10-31 | 2014-02-21 | 주식회사 우진 | Method and system of detecting crack of wind turbine rotor blade |
JP2015105653A (en) * | 2013-12-02 | 2015-06-08 | ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド | Method for controlling power generation amount at wind power generation complex |
US10190574B2 (en) | 2013-12-02 | 2019-01-29 | DOOSAN Heavy Industries Construction Co., LTD | System and method for controlling generation output quantity of a wind power plant using dust detector |
US9382900B2 (en) | 2014-02-20 | 2016-07-05 | Doosan Heavy Industries & Construction Co., Ltd. | Wind power generation unit, wind farm, and arrangement structure and control method of the same |
KR101458798B1 (en) | 2014-02-20 | 2014-11-07 | 두산중공업 주식회사 | a wind farm, an arranging structure thereof and a control method thereof, a wind generator unit |
JP2015161247A (en) * | 2014-02-27 | 2015-09-07 | 三菱重工業株式会社 | Wind turbine blade damage detection method and wind turbine |
JP2017537305A (en) * | 2014-10-01 | 2017-12-14 | ジーイー・リニューワブル・テクノロジーズ | Rotating machines and equipment for energy conversion including such machines |
US10533530B2 (en) | 2014-10-01 | 2020-01-14 | Ge Renewable Technologies | Rotating machine and installation for converting energy comprising such a machine |
JP2017025779A (en) * | 2015-07-22 | 2017-02-02 | 株式会社日立製作所 | Wind power generation device and radio communication method in wind power generation device |
WO2022054483A1 (en) | 2020-09-11 | 2022-03-17 | 不動技研工業株式会社 | Abnormality determination method for wind power generation device. abnormality determination system for wind power generation device, and abnormality determination program for wind power generation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001349775A (en) | Breakage detecting device for windmill vane | |
DK2258942T3 (en) | System and method for wind noise control and skadedetektering | |
CN104075795B (en) | Method and system for monitoring vibration state of impeller of wind generating set | |
US7086834B2 (en) | Methods and apparatus for rotor blade ice detection | |
CN107850513B (en) | Abnormality diagnostic apparatus and sensor separation detection method | |
EP2026160B1 (en) | Event monitoring via combination of signals | |
US8186950B2 (en) | Aerodynamic device for detection of wind turbine blade operation | |
EP3043062B2 (en) | Condition monitoring apparatus for wind turbine | |
US10337502B2 (en) | Early detection of wind turbine degradation using acoustical monitoring | |
US8757003B1 (en) | Multi-frequency-band blade condition monitoring system | |
JP6440367B2 (en) | Wind turbine blade damage detection method and wind turbine | |
DK2075465T3 (en) | System and method for individually measuring the wind noise of wind turbines | |
JP4054310B2 (en) | Method and apparatus for detecting shocking mechanical action on equipment part | |
JP6184771B2 (en) | Turbine blade condition monitoring method and apparatus | |
EP4212722A1 (en) | Abnormality determination method for wind power generation device. abnormality determination system for wind power generation device, and abnormality determination program for wind power generation device | |
US10018184B2 (en) | Method for detecting a state change of an installation | |
CN117028164A (en) | Vibration detection method and equipment for wind turbine generator | |
JP2019120219A (en) | Windmill blade lightning strike determination system and method | |
EP3237753B1 (en) | A method of operating a wind turbine | |
CN112432771B (en) | Method for detecting installation reliability of electric eddy current vibration sensor of steam turbine | |
JPH07128133A (en) | Method and apparatus for measuring vibration of rotary wing | |
CN115855461B (en) | Wind turbine generator fan blade noise abnormity system and method | |
CN111615588B (en) | Stall induced vibration control | |
WO2011058063A1 (en) | Method of operating a wind turbine based on turbine blade monitoring |