JP2001345369A - Substrate sensor and method for sensing substrate - Google Patents

Substrate sensor and method for sensing substrate

Info

Publication number
JP2001345369A
JP2001345369A JP2000165275A JP2000165275A JP2001345369A JP 2001345369 A JP2001345369 A JP 2001345369A JP 2000165275 A JP2000165275 A JP 2000165275A JP 2000165275 A JP2000165275 A JP 2000165275A JP 2001345369 A JP2001345369 A JP 2001345369A
Authority
JP
Japan
Prior art keywords
substrate
light
wafer
sensor
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000165275A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakai
浩 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000165275A priority Critical patent/JP2001345369A/en
Publication of JP2001345369A publication Critical patent/JP2001345369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a damage due to a substrate conveying error by erroneously recognizing a substrate sensor provided at a substrate conveyor or the like of a semiconductor manufacturing apparatus, to recognize the presence or absence of the substrate due to a substrate material or a difference of reflectivity of a film on the surface of the substrate. SOLUTION: The substrate sensor comprises a light emitting element H for emitting an illumination light t to the surface of a wafer W, a photodetector J for receiving a reflected light (h) from the wafer W and a plate-like partial shield plate P installed between the element H and the photodetector J. If the wafer W excessively approaches a sensor mounting part S in the case of conveying, the light (t) or the light (h) is automatically shielded by the plate P so that the photodetector J does not detect the light (h) and can judge as the absence of the wafer. Even when the reflectivity of the wafer is different, a damage due to contact of the wafer with the mounting part S is eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ウエハ測定面の光
反射率の違いに対し安定した検知を行なう基板センサお
よび基板検知方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate sensor and a substrate detection method for performing stable detection of a difference in light reflectance on a wafer measurement surface.

【0002】[0002]

【従来の技術】半導体装置などの製造装置では、ウエハ
カセットからウエハを装置の処理室内へ供給収納する部
位などにおいて、ウエハが正常に送られているかどうか
センサで一枚毎に確認することを必要としている。この
ウエハは、シリコン基板や透明な石英基板などによる材
質の違いがあり、また製造プロセスを経るに従って特に
その裏面に付着する膜質や膜厚などの加工方法の違いに
よりウエハの色が異なるなど、ウエハにより光反射率が
異なる。例えば減圧CVDなど炉心管型のCVD装置で
膜を堆積するとウエハ裏面にも膜成長が起こるが、シリ
コン酸化膜、シリコン窒化膜などは反射率が低く、高融
点金属膜、アルミニウム膜などの金属膜は反射率が高
い。ウエハ裏面がこのような状況において、ウエハの半
導体製造装置上での有り無し確認においては、この光反
射率の違いに対してもウエハ有り無しを正確に検知でき
るセンサの信頼性が要求される。
2. Description of the Related Art In a manufacturing apparatus such as a semiconductor device, it is necessary to confirm each wafer by a sensor whether or not the wafer is normally transferred in a portion where a wafer is supplied from a wafer cassette into a processing chamber of the apparatus. And This wafer has different materials such as a silicon substrate and a transparent quartz substrate, and the color of the wafer varies depending on the processing method such as the film quality and film thickness that adheres to the back surface of the wafer as it goes through the manufacturing process. The light reflectivity varies depending on For example, when a film is deposited by a furnace tube type CVD apparatus such as a low pressure CVD, the film grows also on the back surface of the wafer, but a silicon oxide film, a silicon nitride film and the like have a low reflectance and a metal film such as a high melting point metal film and an aluminum film. Has high reflectance. In such a situation where the back surface of the wafer is in such a state, in checking the presence or absence of the wafer on the semiconductor manufacturing apparatus, the reliability of a sensor capable of accurately detecting the presence or absence of the wafer with respect to the difference in light reflectance is required.

【0003】図2は、上記ウエハ検知における従来の装
置の構成例を示す図である。この図に示されたものは、
半導体製造装置の搬送部位のウエハ検知部であって、通
常は平面を有するセンサ取り付け部Sに、発光素子Hと
受光素子Jとが斜めに対向して設置されている。そして
その上部にウエハWが例えばウエハカセットから金属製
のフォーク(図示せず)でセンサ取り付け部S上に、セ
ンサ部に接触することなく移送されてくる。
FIG. 2 is a diagram showing a configuration example of a conventional apparatus for detecting the wafer. What is shown in this figure is
A light emitting element H and a light receiving element J are obliquely installed on a sensor mounting section S, which is a wafer detection section at a transfer site of a semiconductor manufacturing apparatus, and usually has a flat surface. Then, the wafer W is transferred from the wafer cassette onto the sensor mounting portion S by, for example, a metal fork (not shown) without contacting the sensor portion.

【0004】同図において、ウエハWの検知は発光素子
Hから発光された照射光tがウエハWで反射し反射光h
として受光素子Jに入る。この受光量に対し、アンプA
の感度調整部Kでは適当な受光量の時にウエハ有りと判
断するように設定されており、ウエハWの有無の検知を
行なう。このセンサはセンサ取り付け部Sの表面上ウエ
ハがある一定の距離Lだけ離れて通る時にウエハを検知
するような仕組みとなっている。測定結果によりウエハ
Wが有ると判断するとアンプAについたLED等により
表示される。
In FIG. 1, the detection of the wafer W is performed by irradiating the light t emitted from the light emitting element H with the reflected light h
And enters the light receiving element J. Amplifier A
The sensitivity adjustment section K is set so that it is determined that there is a wafer when the amount of received light is appropriate, and the presence or absence of the wafer W is detected. This sensor is configured to detect a wafer when the wafer on the surface of the sensor mounting portion S passes a certain distance L away. When it is determined from the measurement result that there is a wafer W, the result is displayed by an LED or the like attached to the amplifier A.

【0005】図5(a)〜図5(c)は一定のウエハを
測定するとき、センサがどのようにウエハの距離を検知
するかを示す図である。図5(a)はウエハWとセンサ
取り付け部S間の距離Lが設定距離より短い状態であ
り、図の配置からわかるようにウエハWの反射光hは受
光素子Jにほとんど入らない。図5(b)はウエハWと
センサ取り付け部S間の距離Lが適切である状態であ
り、反射光hが受光素子Jに入る状態を示している。図
5(c)はウエハWとセンサ取り付け部S間の距離Lが
設定距離よりも離れている状態であり、この時も図の反
射光hの経路より明らかなように反射光hは受光部Jに
ほとんど入らない。
FIGS. 5A to 5C are diagrams showing how a sensor detects the distance of a wafer when measuring a certain wafer. FIG. 5A shows a state in which the distance L between the wafer W and the sensor mounting portion S is shorter than the set distance, and the reflected light h of the wafer W hardly enters the light receiving element J as can be seen from the arrangement in the figure. FIG. 5B shows a state in which the distance L between the wafer W and the sensor mounting portion S is appropriate, and shows a state in which the reflected light h enters the light receiving element J. FIG. 5C shows a state in which the distance L between the wafer W and the sensor mounting portion S is longer than the set distance. At this time, as is clear from the path of the reflected light h in FIG. I hardly enter J.

【0006】図3は、照射光tが一定として受光部Jが
受け取る受光量の、センサ取り付け部Sの平面部とウエ
ハとの距離L依存性を示すグラフで、反射率の高いウエ
ハと低いウエハの2種類について示してある。反射率の
高いウエハのときは曲線1、反射率が低いウエハのとき
は曲線2となる。反射率の高いウエハの場合は、アンプ
Aがウエハ有無を判定する基準受光量を4のレベルに設
定する。すると、ウエハがあることをアンプAが確認で
きる距離Lは5、つまり曲線1と4の点線との交点で囲
まれたLの領域となる。一方、このような判定基準を設
けると、反射率の低いウエハの受光量曲線は2であり、
常にレベル4以下であるからウエハは検知できないこと
になる。
FIG. 3 is a graph showing the dependence of the amount of light received by the light receiving portion J on the distance L between the flat portion of the sensor mounting portion S and the wafer assuming that the irradiation light t is constant. Are shown. Curve 1 is for a wafer with a high reflectivity, and curve 2 is for a wafer with a low reflectivity. In the case of a wafer having a high reflectivity, the reference light receiving amount for determining the presence or absence of the wafer by the amplifier A is set to a level of four. Then, the distance L at which the amplifier A can confirm that a wafer is present is 5, that is, the area L surrounded by the intersection of the dotted lines of the curves 1 and 4. On the other hand, when such a criterion is provided, the light receiving amount curve of a wafer having a low reflectance is 2, and
Since the level is always lower than level 4, the wafer cannot be detected.

【0007】これとは反対に、反射率の低いウエハの有
無が検知できるように、アンプAの検出レベルを3の点
線で示される位置に設定すると、低反射率ウエハは、受
光曲線2と、レベル3を示す直線との交点で挟まれた部
分の距離Lにあるウエハを有ると判断できる。しかしな
がらこの状態では、反射率の高いウエハはウエハとセン
サ取付部の距離Lが0、すなわち、センサ取り付け部S
とウエハWとが接触した状態であっても、ウエハ有りと
判断する。
On the contrary, if the detection level of the amplifier A is set at the position indicated by the dotted line 3 so that the presence or absence of a wafer having a low reflectance can be detected, the low reflectance wafer has a light receiving curve 2 It can be determined that there is a wafer at a distance L of a portion sandwiched between intersections with the straight line indicating level 3. However, in this state, the distance L between the wafer and the sensor mounting portion of the wafer having a high reflectance is 0, that is, the sensor mounting portion S
It is determined that there is a wafer even when the wafer and the wafer W are in contact with each other.

【0008】ウエハWとセンサ取付部Sが接触してもウ
エハ有りと判断すると、半導体製造装置は次のステップ
へ進めるためにウエハをセンサ取り付け部Sと接触した
まま別の場所へ搬送してしまうが、この時、ウエハWに
対し傷やダメージを発生する事になる。これを防ぐた
め、従来は光反射率の違うウエハ毎にアンプAの基準受
光量設定を変更して使用していた。
If it is determined that there is a wafer even when the wafer W comes into contact with the sensor mounting portion S, the semiconductor manufacturing apparatus transports the wafer to another place while keeping the contact with the sensor mounting portion S in order to proceed to the next step. However, at this time, the wafer W is damaged or damaged. In order to prevent this, conventionally, the reference light receiving amount setting of the amplifier A is changed and used for each wafer having a different light reflectance.

【0009】[0009]

【発明が解決しようとする課題】以上のように上記従来
のウエハ検知方法では、ウエハの表面の成膜の種類・状
態が変わる都度、センサアンプの基準受光量設定をし直
す作業が発生していた。
As described above, in the above-described conventional wafer detection method, every time the type or state of film formation on the surface of the wafer changes, the work of resetting the reference light receiving amount of the sensor amplifier occurs. Was.

【0010】半導体製造装置においてウエハ有無を確認
するセンサは、処理前にウエハをキャリアから取り出す
部位や、処理後キャリアにウエハを収納する部位に使用
されており、その調整に多くの時間を要するという問題
点がある。
In a semiconductor manufacturing apparatus, a sensor for confirming the presence or absence of a wafer is used in a part where a wafer is taken out of a carrier before processing or a part where a wafer is stored in a carrier after processing, and it takes a lot of time to adjust the position. There is a problem.

【0011】反対にこのような作業を省略すると、反射
率の低いウエハに受光量基準設定したとき、反射率の高
いウエハにおいて、ウエハ有りと判断する距離Lの範囲
が広がり、センサ取付部Sとの接触により、搬送部位に
おける搬送エラーの要因となる。またセンサ取付部Sと
ウエハが接触した状態でもウエハ有りと判断するとウエ
ハを損傷する問題が発生する。
Conversely, if such an operation is omitted, when the light receiving amount is set as a reference for a wafer with a low reflectance, the range of the distance L for determining that there is a wafer in a wafer with a high reflectance is widened. Causes a transport error at the transport site. Further, if it is determined that there is a wafer even in a state where the wafer is in contact with the sensor mounting portion S, there is a problem that the wafer is damaged.

【0012】本発明は、以上のような従来のウエハ有無
を検知するセンサの問題を解決するものであり、基板毎
に反射率が異なるものであっても、基板センサに基板が
近づきすぎて接触し損傷することを防止することができ
る基板センサおよび基板検知方法を提供することを目的
とする。
The present invention solves the problem of the conventional sensor for detecting the presence / absence of a wafer as described above. Even if the reflectance differs for each substrate, the substrate comes too close to the substrate sensor and contacts the substrate sensor. It is an object of the present invention to provide a substrate sensor and a substrate detection method that can prevent the substrate from being damaged.

【0013】[0013]

【課題を解決するための手段】請求項1記載の基板セン
サは、基板の一主面上の所定の領域に光を照射する光照
射手段と、基板の所定領域からの反射光を受ける受光手
段と、光照射手段と受光手段との間に設置され、基板が
光照射手段または受光素子に所定距離に近づくと照射光
または反射光を所定の遮蔽量を超えて遮蔽可能であり、
かつ遮蔽量が調整可能な遮蔽体と、受光手段で受けた反
射光の受光量が所定の遮蔽量に対応する所定の値以上で
あるとき基板有りと判定する判定部とを備えたものであ
る。
According to a first aspect of the present invention, there is provided a substrate sensor, wherein a light irradiating means for irradiating a predetermined area on one principal surface of a substrate with light, and a light receiving means for receiving reflected light from a predetermined area of the substrate. And, installed between the light irradiating means and the light receiving means, it is possible to shield the irradiation light or reflected light beyond a predetermined shielding amount when the substrate approaches a predetermined distance to the light irradiating means or light receiving element,
A shielding body having an adjustable shielding amount, and a determining unit for determining that there is a substrate when the amount of reflected light received by the light receiving unit is equal to or greater than a predetermined value corresponding to the predetermined shielding amount. .

【0014】請求項1記載の基板センサによれば、もし
ウエハなどの基板がセンサに近づきすぎたときは、遮蔽
体も基板に相対的に近づいて照射光または反射光がさら
に遮られることになるから、受光手段に到達する受光量
は所定の値以下となり、基板有りと判定されない。この
ことによって基板センサを搭載した装置は停止し、無理
な搬送によって基板損傷がなくなる。したがって、基板
毎に反射率が異なるものであっても、基板センサに基板
が近づきすぎて接触し損傷することを防止することがで
きる。
According to the substrate sensor of the first aspect, if a substrate such as a wafer is too close to the sensor, the shield is also relatively close to the substrate, so that irradiation light or reflected light is further blocked. Therefore, the amount of light reaching the light receiving means is equal to or less than a predetermined value, and it is not determined that the substrate is present. As a result, the device equipped with the substrate sensor is stopped, and the substrate is not damaged by excessive transport. Therefore, even if the reflectance is different for each substrate, it is possible to prevent the substrate from being too close to the substrate sensor and coming into contact with and being damaged.

【0015】請求項2記載の基板センサは、請求項1に
おいて、遮蔽体の遮蔽量が遮蔽体を移動することにより
調整するものである。
According to a second aspect of the present invention, in the first aspect, the shielding amount of the shield is adjusted by moving the shield.

【0016】請求項2記載の基板センサによれば、請求
項1と同様な効果がある。
According to the substrate sensor of the second aspect, the same effect as that of the first aspect is obtained.

【0017】請求項3記載の基板センサは、基板の一主
面上の所定の領域に光を照射する光照射手段と、基板の
所定領域からの反射光を受ける受光手段と、板状であっ
て光照射手段と受光手段との間の所定の領域を含む近傍
で基板の一主面に対してほぼ垂直に設置され、基板が光
照射手段または受光素子に所定距離近づくと照射光また
は反射光を所定の遮蔽量を超えて遮蔽可能な遮蔽体と、
受光手段で受けた反射光の受光量が所定の遮蔽量に対応
する所定の値以上であるとき基板有りと判定する判定部
とを備えたものである。
According to a third aspect of the present invention, there is provided a substrate sensor comprising: a light irradiating means for irradiating a predetermined area on one main surface of the substrate with light; a light receiving means for receiving light reflected from a predetermined area of the substrate; The light irradiating means and the light receiving means are installed substantially perpendicular to one principal surface of the substrate in the vicinity including a predetermined area, and when the substrate approaches the light irradiating means or the light receiving element by a predetermined distance, irradiating light or reflected light A shield capable of shielding a predetermined amount of shielding,
A determination unit that determines that there is a substrate when the amount of reflected light received by the light receiving unit is equal to or more than a predetermined value corresponding to a predetermined shielding amount.

【0018】請求項3記載の基板センサによれば、請求
項1と同様な効果がある。
According to the substrate sensor of the third aspect, the same effect as that of the first aspect is obtained.

【0019】請求項4記載の基板検知方法は、請求項
1、請求項2または請求項3記載の基板センサを用いて
基板の一主面の反射率が異なる基板を検知する基板検知
方法であって、反射光の受光量の所定の値を、反射率が
最小の基板の受光量に設定して行うことを特徴とするも
のである。
According to a fourth aspect of the present invention, there is provided a substrate detecting method for detecting a substrate having one principal surface having a different reflectance using the substrate sensor according to the first, second, or third aspect. Then, a predetermined value of the amount of received light of the reflected light is set to the amount of light received by the substrate having the minimum reflectance.

【0020】請求項4記載の基板検知方法によれば、基
板毎に反射率が異なるものであっても、基板センサに基
板が近づきすぎて接触し損傷することがなくなる。
According to the substrate detecting method of the fourth aspect, even if the reflectance differs for each substrate, the substrate does not come too close to the substrate sensor and is not damaged by contact.

【0021】[0021]

【発明の実施の形態】以下本発明の実施の形態につい
て、図1および図2を参照しながら説明する。図1は本
発明の一実施の形態におけるセンサの構成を示すもので
あり、図1において、Hは光照射手段である発光素子、
Jは受光素子、Aは判定部を構成するアンプ、Wはウエ
ハ、Pは遮蔽板、tは照射光、hは反射光、Kは感度調
整部、Sはセンサ取付部である。発光素子Hと受光素子
Jの取り付け角度は、センサ取り付け部Sの平面とウエ
ハWとの距離Lが許容される適切な距離にあるとき反射
光hが、受光素子Jに入射するように調整され、発光素
子H、受光素子J共にセンサ取り付け部Sの平面より埋
め込まれている。そして、遮蔽板Pの先端はセンサ取り
付け部Sの平面よりも上にある。また、遮蔽板Pの水平
方向の位置は、距離Lが許容される適切な距離にあると
き発光素子Hからの照射光tが当たるウエハWの表面上
の点の真下あたりに取り付けられている。具体的にはセ
ンサ取付部Sの上面の略中央に例えば断面V字形の凹部
10を形成し、凹部10の対向する斜面にそれぞれ穴1
1、12を設け、穴11、12の底部に発光素子Hおよ
び受光素子Jを埋設している。また遮光板Pは例えば板
状であり、下端部を凹部10の中央に埋設して立ててい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 shows a configuration of a sensor according to an embodiment of the present invention. In FIG.
J is a light receiving element, A is an amplifier constituting a determination unit, W is a wafer, P is a shielding plate, t is irradiation light, h is reflected light, K is a sensitivity adjustment unit, and S is a sensor mounting unit. The mounting angle of the light emitting element H and the light receiving element J is adjusted such that the reflected light h enters the light receiving element J when the distance L between the plane of the sensor mounting portion S and the wafer W is at an appropriate allowable distance. , The light emitting element H and the light receiving element J are embedded from the plane of the sensor mounting portion S. The tip of the shielding plate P is located above the plane of the sensor mounting portion S. Further, the horizontal position of the shielding plate P is attached immediately below a point on the surface of the wafer W to which the irradiation light t from the light emitting element H is applied when the distance L is at an appropriate allowable distance. More specifically, a recess 10 having a V-shaped cross section, for example, is formed substantially at the center of the upper surface of the sensor mounting portion S, and a hole 1 is formed on the opposite slope of the recess 10.
1 and 12 are provided, and the light emitting element H and the light receiving element J are buried in the bottoms of the holes 11 and 12. The light-shielding plate P is, for example, plate-shaped, and its lower end is buried in the center of the concave portion 10 to stand.

【0022】このように構成されたセンサにおいて、発
光素子Hから照射光tがウエハWに向かって照射され
る。照射光tはウエハWと遮蔽板Pの間を通ってウエハ
W表面に照射され、したがって反射光hが通る量は制限
を受ける。そしてウエハWと遮蔽板Pの距離によって制
限された反射光hが受光素子Jにはいる。
In the sensor configured as described above, the irradiation light t is emitted from the light emitting element H toward the wafer W. The irradiation light t passes between the wafer W and the shielding plate P to irradiate the surface of the wafer W, and therefore the amount of the reflected light h is limited. Then, the reflected light h limited by the distance between the wafer W and the shielding plate P enters the light receiving element J.

【0023】図2は本発明のセンサにおいて受光量の、
センサ取り付け部平面とウエハWの距離Lに対する関係
を示すグラフである。反射率の高いウエハのときは曲線
1、反射率が低いウエハのときは曲線2となる。反射率
の高いウエハの場合、アンプAがウエハ有りと判断する
境界である受光量の基準値を4の線に設定すると、アン
プAがウエハ有りと判断する領域は曲線1と4の線との
交点に挟まれた距離Lにウエハがあるときである。
FIG. 2 shows the amount of received light in the sensor of the present invention.
5 is a graph showing a relationship between a sensor attachment portion plane and a distance L between a wafer W. Curve 1 is for a wafer with a high reflectivity, and curve 2 is for a wafer with a low reflectivity. In the case of a wafer having a high reflectivity, if the reference value of the amount of received light, which is the boundary at which the amplifier A determines that there is a wafer, is set to the line 4, the region where the amplifier A determines that there is a wafer is defined by the curve 1 and the line 4 This is when the wafer is located at a distance L between the intersections.

【0024】しかしながら受光量の基準値を4のレベル
に設定したのでは、従来J同様に低反射率のウエハの場
合は図のように検知できないので本発明では低反射率ウ
エハも検知されるように受光量基準値をレベル3まで下
げる。このようにすれば高反射率および低反射率ウエハ
に対して曲線1,2と直線3との交点で挟まれる距離L
にあるときにウエハが検知できるようになる。
However, if the reference value of the amount of received light is set to the level of 4, a low-reflectance wafer cannot be detected as shown in FIG. Then, the received light amount reference value is lowered to level 3. In this way, the distance L between the intersections of the curves 1 and 2 and the straight line 3 with respect to the high-reflectance and low-reflectance wafers
The wafer can be detected.

【0025】本発明では、Lが小さい値で通過した時、
図1からわかるように遮蔽板Pとウエハ表面によって照
射光tの光路幅が制限を受け、受光素子Jが受光する光
量は急激に減少する。Lが小さければますます受光量が
減少するのでLの小さい領域では図2のような曲線1,
2となるのである。これにより、反射率の低いウエハで
アンプAの基準値を3のレベルに設定しても、反射率の
高いウエハWが近づいてもアンプAの基準値以下となる
領域、すなわちウエハWが所定距離近づくと遮蔽板Pが
所定の遮蔽量以上遮蔽して受光量を所定の値以上に減少
させる領域が存在し、ウエハを無しと判断できる。
In the present invention, when L passes through a small value,
As can be seen from FIG. 1, the light path width of the irradiation light t is restricted by the shielding plate P and the wafer surface, and the light amount received by the light receiving element J decreases sharply. When L is small, the amount of received light is further reduced.
It becomes 2. Thus, even if the reference value of the amplifier A is set to the level of 3 for a wafer having a low reflectance, even when the wafer W having a high reflectance approaches, the area is equal to or less than the reference value of the amplifier A, that is, the wafer W When approaching, there is a region where the shielding plate P blocks more than a predetermined shielding amount and reduces the received light amount to a predetermined value or more, and it can be determined that there is no wafer.

【0026】このようにしてアンプAの判断基準値を3
のレベル1種類に設定し、固定してもウエハ反射率の高
低に関わらず正しい判断が可能であり、センサ取り付け
部に接触した場合は、半導体製造装置においてウエハの
搬送を停止することになり、ウエハに損傷を与えて不良
品にすることがなくなる。またアンプAでのウエハ有無
の判断に際して受光量判断基準値を1度設定すればよ
く、半導体基板表面の反射率の相違に応じて基準値の設
定、調整をし直す作業時間が必要でなくなるという効果
を有する。
Thus, the criterion value of the amplifier A is set to 3
It is possible to make a correct judgment regardless of the level of the wafer reflectance even if the level is set to one type and fixed, and when the sensor comes into contact with the sensor mounting portion, the wafer transfer is stopped in the semiconductor manufacturing apparatus, The wafer will not be damaged and become a defective product. In addition, when the amplifier A determines the presence or absence of a wafer, the reference value for determining the amount of received light only needs to be set once, which eliminates the time required for setting and adjusting the reference value in accordance with the difference in the reflectance of the semiconductor substrate surface. Has an effect.

【0027】光遮蔽板Pは図1の例では板状をしてウエ
ハWの面に対して垂直であるが、それに限らず照射光h
の半導体基板Wへの入射量を制限する遮蔽体となるもの
であればよい。また、アンプAで基準となる受光量を決
定したとき、この遮蔽体Pは、図1を参照して発光素子
Hと受光素子Jの間にあって、ウエハW方向すなわち上
下方向、水平方向すなわち左右方向に移動させ、発光素
子H、受光素子Jあるいはそれらを支持するセンサ取り
付け部SとウエハWとの距離Lが適切な範囲でウエハ有
りと判断できるように調整することができる。
In the example shown in FIG. 1, the light shielding plate P has a plate shape and is perpendicular to the surface of the wafer W.
Any material may be used as long as it becomes a shield that limits the amount of light incident on the semiconductor substrate W. When the reference light receiving amount is determined by the amplifier A, the shielding body P is located between the light emitting element H and the light receiving element J with reference to FIG. And the distance L between the light emitting element H, the light receiving element J, or the sensor mounting portion S supporting them and the wafer W can be adjusted in an appropriate range so that it can be determined that there is a wafer.

【0028】しかしながら通常は、Lが適切な距離であ
るときのウエハW上の光照射点の直下を含む近傍に遮蔽
体Pを設置すれば充分であり、ウエハWが遮蔽体Pの先
端に近づけば受光量が自動的に減少し、どのような場合
でもウエハ無しとアンプA部で判断できる。
Normally, however, it is sufficient to install the shield P near and immediately below the light irradiation point on the wafer W when L is an appropriate distance. In this case, the amount of received light automatically decreases, and the amplifier A can determine that there is no wafer in any case.

【0029】以上のように本発明は、発光素子H、受光
素子Jとその取り付け部Sからなるセンサにおいて、発
光素子H・受光素子J間に遮蔽体を用いウエハからの反
射光を制限することにより、ウエハの材質や加工に伴う
膜の違いより反射率が異なるウエハに対し、ウエハとセ
ンサ取り付け部Sを接触させずにウエハの有無判断を安
定して実現することができる。
As described above, according to the present invention, in a sensor comprising a light emitting element H, a light receiving element J and a mounting portion S thereof, a shield is provided between the light emitting element H and the light receiving element J to limit the reflected light from the wafer. Accordingly, it is possible to stably determine the presence or absence of a wafer without bringing the sensor attachment portion S into contact with a wafer having a different reflectivity due to a difference in the material of the wafer or a film due to processing.

【0030】[0030]

【発明の効果】請求項1記載の基板センサによれば、も
しウエハなどの基板がセンサに近づきすぎたときは、遮
蔽体も基板に相対的に近づいて照射光または反射光がさ
らに遮られることになるから、受光手段に到達する受光
量は所定の値以下となり、基板有りと判定されない。こ
のことによって基板センサを搭載した装置は停止し、無
理な搬送によって基板損傷がなくなる。したがって、基
板毎に反射率が異なるものであっても、基板センサに基
板が近づきすぎて接触し損傷することを防止することが
できる。
According to the substrate sensor according to the first aspect, if a substrate such as a wafer is too close to the sensor, the shield is also relatively close to the substrate to further block the irradiation light or the reflected light. Therefore, the amount of light reaching the light receiving means is equal to or less than a predetermined value, and it is not determined that the substrate is present. As a result, the device equipped with the substrate sensor is stopped, and the substrate is not damaged by excessive transport. Therefore, even if the reflectance is different for each substrate, it is possible to prevent the substrate from being too close to the substrate sensor and coming into contact with and being damaged.

【0031】請求項2記載の基板センサによれば、請求
項1と同様な効果がある。
According to the substrate sensor of the second aspect, the same effect as that of the first aspect is obtained.

【0032】請求項3記載の基板センサによれば、請求
項1と同様な効果がある。
According to the substrate sensor of the third aspect, the same effect as that of the first aspect is obtained.

【0033】請求項4記載の基板検知方法によれば、基
板毎に反射率が異なるものであっても、基板センサに基
板が近づきすぎて接触し損傷することがなくなる。
According to the substrate detecting method of the fourth aspect, even if the reflectance is different for each substrate, the substrate is not too close to the substrate sensor and does not contact and be damaged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による基板センサの構成
図である。
FIG. 1 is a configuration diagram of a substrate sensor according to an embodiment of the present invention.

【図2】本発明による基板センサにおけるセンサとウエ
ハーの距離に対する受光量の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a distance between a sensor and a wafer in a substrate sensor according to the present invention and a received light amount;

【図3】従来の基板センサの構成図である。FIG. 3 is a configuration diagram of a conventional substrate sensor.

【図4】従来の基板センサにおけるセンサとウエハーの
距離に対する受光量の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the distance between a sensor and a wafer in a conventional substrate sensor and the amount of received light.

【図5】基板センサによるウエハの有無の判断の原理を
説明する図である。
FIG. 5 is a diagram illustrating the principle of determining the presence or absence of a wafer by a substrate sensor.

【符号の説明】[Explanation of symbols]

H 発光素子 J 受光素子 A アンプ W ウエハ P 遮蔽板 t 照射光 h 反射光 K 受光量調整部 L ウエハとセンサ取付部の距離 S センサ取付部 1 反射率の高いウエハの受光量曲線 2 反射率が低いウエハの受光量曲線 3 基準受光量レベル 4 基準受光量レベル 5 ウエハ有りの判断領域 6 ウエハ有りの判断領域 H Light-emitting element J Light-receiving element A Amplifier W Wafer P Shielding plate t Irradiation light h Reflected light K Light-receiving amount adjustment unit L Distance between wafer and sensor mounting unit S Sensor mounting unit 1 Light-receiving amount curve of wafer with high reflectivity 2 Reflectivity Light reception curve of low wafer 3 Reference light reception level 4 Reference light reception level 5 Judgment area with wafer 6 Judgment area with wafer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板の一主面上の所定の領域に光を照射
する光照射手段と、前記基板の所定領域からの反射光を
受ける受光手段と、前記光照射手段と前記受光手段との
間に設置され、前記基板が前記光照射手段または前記受
光素子に所定距離に近づくと前記照射光または前記反射
光を所定の遮蔽量を超えて遮蔽可能であり、かつ前記遮
蔽量が調整可能な遮蔽体と、前記受光手段で受けた反射
光の受光量が前記所定の遮蔽量に対応する所定の値以上
であるとき前記基板有りと判定する判定部とを備えた基
板センサ。
A light irradiating means for irradiating a predetermined area on one main surface of the substrate with light; a light receiving means for receiving reflected light from a predetermined area of the substrate; and a light irradiating means and the light receiving means. Installed in between, the substrate can close the irradiation light or the reflected light beyond a predetermined shielding amount when the substrate approaches a predetermined distance to the light irradiating means or the light receiving element, and the shielding amount is adjustable A substrate sensor, comprising: a shield; and a determining unit that determines that the substrate is present when the amount of reflected light received by the light receiving unit is equal to or greater than a predetermined value corresponding to the predetermined shielding amount.
【請求項2】 遮蔽体の遮蔽量は前記遮蔽体を移動する
ことにより調整する請求項1記載の基板センサ。
2. The substrate sensor according to claim 1, wherein the shielding amount of the shield is adjusted by moving the shield.
【請求項3】 基板の一主面上の所定の領域に光を照射
する光照射手段と、前記基板の所定領域からの反射光を
受ける受光手段と、板状であって前記光照射手段と前記
受光手段との間の前記所定の領域を含む近傍で前記基板
の一主面に対してほぼ垂直に設置され、前記基板が前記
光照射手段または前記受光素子に所定距離近づくと前記
照射光または前記反射光を所定の遮蔽量を超えて遮蔽可
能な遮蔽体と、前記受光手段で受けた反射光の受光量が
前記所定の遮蔽量に対応する所定の値以上であるとき前
記基板有りと判定する判定部とを備えた基板センサ。
3. A light irradiating means for irradiating a predetermined area on one principal surface of a substrate with light, a light receiving means for receiving reflected light from a predetermined area of the substrate, and a plate-shaped light irradiating means. It is installed substantially perpendicular to one main surface of the substrate in the vicinity including the predetermined region between the light receiving means and the irradiation light or the light when the substrate approaches the light irradiation means or the light receiving element by a predetermined distance. A shield capable of blocking the reflected light exceeding a predetermined shielding amount, and determining that the substrate is present when the amount of reflected light received by the light receiving unit is equal to or greater than a predetermined value corresponding to the predetermined shielding amount. A substrate sensor comprising:
【請求項4】 請求項1、請求項2または請求項3記載
の基板センサを用いて基板の一主面の反射率が異なる基
板を検知する基板検知方法であって、前記反射光の受光
量の所定の値を、前記反射率が最小の前記基板の受光量
に設定して行うことを特徴とする基板検知方法。
4. A substrate detection method for detecting a substrate having a different reflectance on one principal surface of a substrate using the substrate sensor according to claim 1, wherein the amount of the reflected light received is Wherein the predetermined value is set to the amount of light received by the substrate having the minimum reflectance.
JP2000165275A 2000-06-02 2000-06-02 Substrate sensor and method for sensing substrate Pending JP2001345369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165275A JP2001345369A (en) 2000-06-02 2000-06-02 Substrate sensor and method for sensing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165275A JP2001345369A (en) 2000-06-02 2000-06-02 Substrate sensor and method for sensing substrate

Publications (1)

Publication Number Publication Date
JP2001345369A true JP2001345369A (en) 2001-12-14

Family

ID=18668771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165275A Pending JP2001345369A (en) 2000-06-02 2000-06-02 Substrate sensor and method for sensing substrate

Country Status (1)

Country Link
JP (1) JP2001345369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006104121A1 (en) * 2005-03-29 2008-09-11 株式会社日立国際電気 Semiconductor manufacturing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006104121A1 (en) * 2005-03-29 2008-09-11 株式会社日立国際電気 Semiconductor manufacturing equipment
JP4672010B2 (en) * 2005-03-29 2011-04-20 株式会社日立国際電気 Semiconductor manufacturing apparatus, semiconductor device manufacturing method, and substrate discrimination method

Similar Documents

Publication Publication Date Title
US6779386B2 (en) Method and apparatus for detecting topographical features of microelectronic substrates
US6788991B2 (en) Devices and methods for detecting orientation and shape of an object
CN102414821A (en) SOI wafer inspection method
JP5189759B2 (en) Inspection method and inspection apparatus
JP4139607B2 (en) Multifunction wafer aligner
US20050024630A1 (en) Device for examining end part
JP2001345369A (en) Substrate sensor and method for sensing substrate
US6671576B1 (en) Wafer carrier
US6950181B2 (en) Optical wafer presence sensor system
JP2010021460A (en) Wafer alignment device, and wafer conveyance device using the same
KR101489963B1 (en) Thin film deposition apparatus and method thereof
JP2007165655A (en) Direction sensor of wafer
US20020075478A1 (en) Inspection device having wafer exchange stage
KR20080008443A (en) Equipment for detecting wafer flat zone of semiconductor coating device
US20040100298A1 (en) Method and apparatus for measuring contamination of a semiconductor substrate
KR20050067992A (en) Apparatus and method for detecting particles on a wafer
JPH1050796A (en) Wafer detection mechanism
US20220415690A1 (en) Aligner apparatus
JPH04304651A (en) Semiconductor wafer conveyor
JPS6042843A (en) Semiconductor wafer
KR20020048120A (en) Apparatus for detecting breakage at the outside and edge of a wafer
JPH0312946A (en) Wafer prealignment method
JPH10204637A (en) Method for discriminating front and rear of transparent plate, optical sensor and apparatus for inspecting front and rear of transparent plate
JP2001044263A (en) Substrate carrying method and substrate carrying apparatus
JPH10311709A (en) Method for measuring thickness of wafer where thin film is formed