JP2001343326A - Moisture percentage measuring device and drying controller - Google Patents

Moisture percentage measuring device and drying controller

Info

Publication number
JP2001343326A
JP2001343326A JP2000162274A JP2000162274A JP2001343326A JP 2001343326 A JP2001343326 A JP 2001343326A JP 2000162274 A JP2000162274 A JP 2000162274A JP 2000162274 A JP2000162274 A JP 2000162274A JP 2001343326 A JP2001343326 A JP 2001343326A
Authority
JP
Japan
Prior art keywords
raw material
moisture content
drying
measuring
moisture percentage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000162274A
Other languages
Japanese (ja)
Inventor
Yuji Kakita
祐次 柿田
Kenjiro Ueda
健次郎 上田
Yutaka Kanzaki
裕 神崎
Ichiro Ohama
一郎 大濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000162274A priority Critical patent/JP2001343326A/en
Publication of JP2001343326A publication Critical patent/JP2001343326A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a moisture percentage measuring device capable of measuring the moisture percentage of a raw material in line in a drying process for the raw material without sampling the raw material from a dryer. SOLUTION: This infrared ray type moisture percentage measuring device for measuring the moisture percentage of a raw material is provided with a detector arranged apart from the raw material dryer filled with raw materials, a converter amplifying a signal from the detector, and a processor converting data from the converter into moisture percentage so that moisture percentage can be measured in a non-contact manner with the raw material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水分率測定装置およ
び乾燥制御装置に関し、さらに詳しくは、プラスチック
レジンなどの原料の乾燥装置に充填された原料の水分率
をインラインで測定する水分率測定装置およびそれを用
いた乾燥制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture content measuring device and a drying control device, and more particularly, to a moisture content measuring device for in-line measuring a moisture content of a raw material filled in a raw material drying device such as a plastic resin. The present invention relates to a drying control device using the same.

【0002】[0002]

【従来の技術】従来から、化合繊やフィルムなどの高分
子材料の生産工場における原料工程では一般的にペレッ
トと呼ばれる数mmφの形状粒子を乾燥する装置が設置
されている。乾燥装置は回転しながら蒸気あるいはヒー
タなどの加熱手段を利用して原料を真空中で加熱し、原
料の水分率が一定範囲内になるまで乾燥する。
2. Description of the Related Art Conventionally, in a raw material process in a factory for producing polymer materials such as synthetic fibers and films, a device for drying shaped particles having a diameter of several mm, generally called pellets, has been installed. The drying apparatus rotates the raw material in a vacuum using a heating means such as steam or a heater while rotating, and dries the raw material until the moisture content of the raw material falls within a certain range.

【0003】原料の水分率が許容値を外れると、次工程
の溶融押出、冷却固化、延伸といった工程で所望の品質
物性が得られない。そのため、原料の乾燥工程での水分
率測定は工程管理上極めて重要である。
[0003] If the water content of the raw material is out of the allowable range, desired quality properties cannot be obtained in the subsequent steps such as melt extrusion, cooling and solidification, and stretching. Therefore, the measurement of the moisture content in the drying step of the raw material is extremely important for the process control.

【0004】従来、上記のような原料の水分率測定は、
乾燥装置から原料を定期的な時間毎にサンプリングして
カールフィッシャー水分率計、赤外線式水分率計、乾量
式水分率計、クロマトグラフの原理を利用した水分率計
などの分析装置と呼ばれるオフライン水分率計で測定さ
れるのが一般的であった。
Conventionally, the measurement of the moisture content of the raw material as described above
Raw materials are sampled at regular intervals from the drying device, and the analyzer is called an off-line analyzer called a Karl Fischer moisture meter, an infrared moisture meter, a dry moisture meter, or a moisture meter that uses the principle of chromatography. It was generally measured with a moisture meter.

【0005】しかしながら、上記のオフライン水分率計
を生産工程で使用する場合、被測定物の原料を乾燥装置
からのサンプルングして測定試料台に載せて測定する必
要がある。このサンプリング作業は煩雑で、水分率計の
測定に数分間を要するなど生産性(生産効率)が低下す
るという問題があった。
[0005] However, when the above-mentioned off-line moisture content meter is used in a production process, it is necessary to sample the raw material of the object to be measured from a drying device and mount it on a measurement sample table for measurement. This sampling operation is complicated, and there is a problem that productivity (production efficiency) is reduced, for example, it takes several minutes for the measurement by the moisture content meter.

【0006】さらに。乾燥する前の原料中の水分率が必
ずしも一定ではないため、乾燥温度、時間、真空度と原
料水分率との間の関係は一義的には決まらないので、乾
燥〜サンプリング〜オフライン水分率測定という一連の
作業を何回か繰り返す場合があり、この場合の上記の問
題はなおさら顕著になる。
[0006] Further. Since the moisture content in the raw material before drying is not always constant, the relationship between the drying temperature, time, degree of vacuum and the raw material moisture ratio is not uniquely determined, so it is referred to as drying to sampling to offline moisture content measurement. The series of operations may be repeated several times, and in this case, the above problem becomes even more pronounced.

【0007】また、さらに上記オフライン水分率計は精
密な分析装置であるため、生産工程から隔離した分析室
などに丁寧に設置され、その分析室から乾燥装置までの
サンプリングに要する時間および労力も大きい。その
上、分析を正確に行うために分析室設置の設備的費用の
負担も大きいという問題もある。
Further, since the off-line moisture content meter is a precise analyzer, it is carefully installed in an analysis room or the like isolated from the production process, and the time and labor required for sampling from the analysis room to the drying device are large. . In addition, there is also a problem that the cost of equipment for installing the analysis room is large in order to perform the analysis accurately.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の実情に
鑑みてなされたもので、その目的は、原料の乾燥工程に
おいて原料中の水分率測定を乾燥装置から原料サンプリ
ングをすることなしにインラインで行うことができる水
分率測定装置を提供する点にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to measure the moisture content of a raw material in a drying process of the raw material without performing sampling of the raw material from a drying apparatus. Another object of the present invention is to provide a moisture content measuring device which can be carried out in the above.

【0009】さらにもう一つの目的は、原料の乾燥工程
において、原料の水分率を自動的に測定して、その測定
結果によって原料乾燥時間を決定することができる乾燥
制御装置を提供する点にある。
Still another object is to provide a drying control device capable of automatically measuring the water content of a raw material in a raw material drying step and determining the raw material drying time based on the measurement result. .

【0010】[0010]

【課題を解決するための手段】本発明の水分率測定装置
は、原料の水分率を測定する赤外線式水分率測定装置で
あって、原料を充填した原料乾燥装置に離隔して配置さ
れる検出器と、前記検出器からの信号を増幅する変換器
と、前記変換器からのデータを水分率に換算する処理装
置とを備え、原料に対して非接触で水分率を測定できる
ことを特徴とする。
SUMMARY OF THE INVENTION A moisture content measuring device according to the present invention is an infrared moisture content measuring device for measuring the moisture content of a raw material, wherein the detection device is provided separately from a raw material drying device filled with the raw material. Device, a converter that amplifies the signal from the detector, and a processing device that converts data from the converter into a moisture content, wherein the moisture content can be measured without contacting the raw material. .

【0011】この場合において、原料の乾燥時間に対す
る経時的な水分率の変化を原料のサンプリングをしない
でインラインで測定することを特徴とする水分率測定装
置が好適である。
In this case, it is preferable to use a moisture content measuring apparatus characterized in that the change of the moisture content with time with respect to the drying time of the raw material is measured in-line without sampling the raw material.

【0012】また、この場合において、前記水分率測定
装置を用いて、原料の乾燥工程において、原料の水分率
を自動的に測定して、その測定結果によって原料乾燥時
間を決定すること特徴とする乾燥制御装置が好適であ
る。
In this case, in the drying step of the raw material, the moisture percentage of the raw material is automatically measured by using the above-described moisture percentage measuring device, and the raw material drying time is determined based on the measurement result. Drying control devices are preferred.

【0013】[0013]

【作用】第1に発明では、水分の赤外線吸収の原理を利
用する。赤外線における水の吸収帯は、1.43μm、
1.94μm、2.95μmなどにあることが知られて
いる。光源ランプから光学フィルターを通してこれらの
波長の光を得て水を含んだ原料にあてると、含有水分量
に応じて光のエネルギーが吸収されるため、検出器によ
りその減衰量または反射量を計測することによって原料
の水分がわかる。
First, the present invention utilizes the principle of infrared absorption of water. The absorption band of water in the infrared is 1.43 μm,
It is known to be at 1.94 μm, 2.95 μm, and the like. When light of these wavelengths is obtained from a light source lamp through an optical filter and applied to a raw material containing water, the light energy is absorbed according to the water content, and the amount of attenuation or reflection is measured by a detector. This gives the moisture of the raw material.

【0014】ここで計測された減衰量または反射量の値
は、カールフィッシャー水分率計、赤外線式水分率計、
乾量式水分率計、クロマトグラフの原理を利用した水分
率計などのオフライン水分率計との間に相関がある。こ
の関係式を一般に検量線と呼び、この特性から変換器お
よびデータ処理装置によって最終的な水分率を得る。光
源ランプの波長および出力特性を選択することと、検出
器の選定により反射方式で赤外線吸収を計測することで
被測定物の原料に非接触で水分率測定ができる。
The value of the attenuation or reflection measured here is determined by a Karl Fischer moisture meter, an infrared moisture meter,
There is a correlation between the dry moisture meter and the offline moisture meter such as a moisture meter using the principle of chromatography. This relational expression is generally called a calibration curve, from which the final moisture content is obtained by a converter and a data processor. By selecting the wavelength and output characteristics of the light source lamp and measuring infrared absorption by a reflection method by selecting a detector, the moisture content can be measured without contacting the raw material of the object to be measured.

【0015】第2に発明では、原料乾燥装置はその内部
が真空圧で高温なために検出器を内蔵させることができ
ないので、原料乾燥装置表面にガラス製のサイトグラス
を設け、検出器から前記ガラスを通して原料乾燥装置に
充填された原料の水分率を測定する。水分の吸収帯と同
じ波長に吸収帯を持たないガラスを選定することで光の
減衰がなく、精度よく水分率測定ができる。好ましく
は、上記ガラスは真空圧に対して十分耐圧のある厚さ強
度を持った石英ガラスである。本方式により原料の乾燥
時間に対する経時的な水分率の変化を原料のサンプリン
グをしないでインラインで測定することができる。
In the second aspect of the present invention, the raw material drying device cannot incorporate a detector because the inside thereof is at a high temperature due to the vacuum pressure. Therefore, a glass sight glass is provided on the surface of the raw material drying device, and The moisture content of the raw material charged into the raw material drying device through the glass is measured. By selecting a glass that does not have an absorption band at the same wavelength as the absorption band of water, there is no light attenuation and the moisture content can be measured accurately. Preferably, the glass is quartz glass having a thickness strength enough to withstand a vacuum pressure. According to this method, the change of the water content over time with respect to the drying time of the raw material can be measured in-line without sampling the raw material.

【0016】第3に発明では、前記データ処理装置から
送信される水分率が予め規定していた許容水分率の範囲
に入っているかどうか定期的に自動で水分率測定を行
い、その結果で原料乾燥装置の運転制御をしている制御
装置と信号の送受を行い、乾燥時間を決定する。好まし
くは、上記原料乾燥装置の運転制御装置はプログラマブ
ルコントローラーである。
According to a third aspect of the present invention, the moisture content is automatically and periodically measured to determine whether the moisture content transmitted from the data processing device falls within a predetermined allowable moisture content range. A signal is transmitted / received to / from the control device that controls the operation of the drying device, and the drying time is determined. Preferably, the operation control device of the raw material drying device is a programmable controller.

【0017】[0017]

【実施の形態】以下、この発明の実施の形態を図面を参
照して説明する。なお、図中同一または相当部分には同
一符号を付してその説明は繰返さない。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated.

【0018】[実施の形態1]図1は本発明の実施の形
態による水分率測定装置及び乾燥制御装置の構成を示
す。本発明ではブレンダーと呼ばれる原料乾燥装置2に
原料1を充填する。原料乾燥装置2はその形状・大きさ
から混合乾燥装置、ミキシング装置、乾燥装置など名称
は多種あるが、原料を乾燥する目的のものであれば、ブ
レンダーに限定しない。
[First Embodiment] FIG. 1 shows a configuration of a moisture content measuring device and a drying control device according to an embodiment of the present invention. In the present invention, the raw material 1 is charged into a raw material drying device 2 called a blender. The raw material drying device 2 has various names such as a mixing drying device, a mixing device, and a drying device because of its shape and size, but is not limited to a blender as long as it is for drying the raw material.

【0019】また本発明では原料1はナイロン系樹脂ペ
レットを用いたがその他高分子材料をはじめ、米・麦な
どの穀物、パン粉・ぬか・大豆・茶などの食品、タイル
・レンガ・陶土などの硝子窯業セメント原料、触媒・洗
剤・顔料・肥料・農薬などの化学原料であっても構わな
い。乾燥させる必要のある原料であれば限定しない。
In the present invention, the raw material 1 is made of nylon resin pellets, but other polymer materials, grains such as rice and wheat, foods such as bread crumbs, bran, soybeans, tea, tiles, bricks, clay, etc. Glass ceramic cement raw materials, chemical raw materials such as catalysts, detergents, pigments, fertilizers, and agricultural chemicals may be used. There is no limitation as long as the raw material needs to be dried.

【0020】原料乾燥装置2に石英ガラスなどの材質で
作製したサイトグラス3を表面に設け原料乾燥装置2の
内部が見えるようにする。原料乾燥装置2は回転しなが
ら乾燥するので、予め定めておいた測定位置に図示しな
い近接スイッチなどの電気的スイッチで位置検出を行
い、その位置に対して対向する地点にサイトグラス3か
ら数十mm離隔して検出器4を配置する。この離隔距離
は原料乾燥装置2の回転に物理的に支障がなければ近づ
けることが望ましい。光源ランプの出力特性に応じて離
隔距離を決める。
A sight glass 3 made of a material such as quartz glass is provided on the surface of the raw material drying device 2 so that the inside of the raw material drying device 2 can be seen. Since the raw material drying device 2 dries while rotating, the position is detected at a predetermined measurement position by an electric switch such as a proximity switch (not shown), and several tens of sight glass is placed at a point opposed to the position. The detector 4 is arranged at a distance of mm. It is desirable that the separation distance is reduced as long as the rotation of the raw material drying apparatus 2 is not physically hindered. The separation distance is determined according to the output characteristics of the light source lamp.

【0021】検出器4は小型で高温使用が可能な光ファ
イバー型反射方式赤外線水分率計を使用した。検出器4
と変換器5を光ファイバーで接続し、変換器5で光の減
衰量または反射量から予め定めた検量線から水分率を換
算する。データ処理装置6では変換器5から水分率のデ
ータを受信し、水分率の表示、トレンド表示(乾燥時間
と水分率の関係図の表示)、乾燥時間計算、その他任意
に作成したソフトウェアでマンマシンインターフェース
を構築する。
As the detector 4, an optical fiber type reflection type infrared moisture meter which is small and can be used at high temperature was used. Detector 4
And the converter 5 are connected by an optical fiber, and the converter 5 converts the moisture content from a predetermined calibration curve based on the amount of light attenuation or reflection. The data processor 6 receives the data of the moisture content from the converter 5 and displays the moisture content, displays a trend (displays a diagram showing the relationship between the drying time and the moisture content), calculates the drying time, and uses any other software created by man-machine. Build the interface.

【0022】乾燥運転制御装置7は駆動装置8に運転指
令を出し、回転駆動モータ9の回転数を制御する。また
蒸気弁10の開閉度指令を出し、蒸気供給により温度制
御を行う。好ましくは、上記乾燥運転制御装置7はプロ
グラマブルコントローラ、駆動装置8はインバータ、回
転駆動モータ9はかご形誘導電動機である。真空ポンプ
11により原料乾燥装置内を真空引きして真空圧に保
ち、乾燥を速める。この真空ポンプ11の制御も乾燥運
転制御装置7で行う。
The drying operation control device 7 issues an operation command to the driving device 8 to control the number of rotations of the rotary drive motor 9. Also, an opening / closing degree command of the steam valve 10 is issued, and the temperature is controlled by steam supply. Preferably, the drying operation control device 7 is a programmable controller, the drive device 8 is an inverter, and the rotary drive motor 9 is a cage induction motor. The inside of the raw material drying device is evacuated by the vacuum pump 11 to maintain a vacuum pressure, thereby speeding up drying. The control of the vacuum pump 11 is also performed by the drying operation control device 7.

【0023】図2は、検出器4の内部構成を示す。キセ
ノンランプやハロゲンランプなどの光源ランプ12から
光学フィルター13を通して水の吸収帯1.43μmの
波長の光をミラー14で光路変更してサイトグラス3越
しに原料1に当てる。その反射光を凹面鏡16で反射ミ
ラー15に集光して受光素子17で受ける。この微弱な
信号をアンプ18で増幅して電気信号に変える。
FIG. 2 shows the internal configuration of the detector 4. Light from a light source lamp 12 such as a xenon lamp or a halogen lamp is passed through an optical filter 13, and light having a wavelength of 1.43 μm in a water absorption band is changed in a mirror 14 to the raw material 1 through a sight glass 3. The reflected light is condensed on the reflection mirror 15 by the concave mirror 16 and received by the light receiving element 17. This weak signal is amplified by the amplifier 18 and converted into an electric signal.

【0024】図3は、水の分光吸収特性を示す。透過率
(%)=(透過光量/投光量)×100で定義される。
この図では縦軸に透過率をとったが、反射率を使用する
場合もある。反射率(%)=(反射光量/投光量)×1
00で定義され、両者には当然、透過率+反射率=10
0%の関係が成り立つ。この図より水の吸収帯が1.4
3μm、1.94μm、2.95μmにあることがわか
る。
FIG. 3 shows the spectral absorption characteristics of water. Transmittance (%) = (transmitted light quantity / projected light quantity) × 100.
Although the transmittance is plotted on the vertical axis in this figure, the reflectance may be used in some cases. Reflectance (%) = (reflection light amount / projection light amount) × 1
00, and both naturally have transmittance + reflectance = 10
A relationship of 0% holds. From this figure, the water absorption band is 1.4.
It can be seen that they are 3 μm, 1.94 μm, and 2.95 μm.

【0025】図4は、ナイロン系樹脂ペレットの分光反
射率特性を示す。水分率が0.05%、0.5%、5%
の3種類の原料サンプルの分光反射率特性をとった。図
4ではわかりやすいように波長1.8μm(1800n
m)の反射光量を1と規格化しており、各波長の反射率
比を縦軸にとった。反射率比=(その波長の反射光量)
/(波長1.8μm(1800nm)の反射光量)であ
る。波長1.43μm(1430nm)のところを見る
と、水分率が0.05%から0.5%、5%と順に大き
くなるにつれ反射率比が大きくなっていることがわか
る。明らかに水分率と反射光量との間に相関がある。
FIG. 4 shows the spectral reflectance characteristics of nylon resin pellets. Moisture content is 0.05%, 0.5%, 5%
The spectral reflectance characteristics of the three types of raw material samples were obtained. In FIG. 4, the wavelength is 1.8 μm (1800 n
The reflected light amount of m) is normalized to 1, and the reflectance ratio of each wavelength is plotted on the vertical axis. Reflectance ratio = (reflected light amount at that wavelength)
/ (Reflected light amount at a wavelength of 1.8 μm (1800 nm)). Looking at the wavelength of 1.43 μm (1430 nm), it can be seen that the reflectance ratio increases as the water content increases in the order of 0.05% to 0.5% and 5%. Clearly, there is a correlation between the moisture content and the amount of reflected light.

【0026】図5は、ナイロン系樹脂ペレットの検量線
(吸光度と水分率との関係)を示す。この図では検量線
は2次式の傾向線あてはめを行ったが、要求誤差に収ま
るように次数を上げて精度よい検量線を作成して良い。
また原料の種類や形状により複数の検量線を登録でき、
原料銘柄設定により最適な検量線が自動選択される。
FIG. 5 shows a calibration curve (relation between absorbance and moisture content) of nylon resin pellets. In this figure, a quadratic trend line is applied to the calibration curve. However, an accurate calibration curve may be created by increasing the order so as to be within the required error.
Also, multiple calibration curves can be registered depending on the type and shape of the raw material,
The optimum calibration curve is automatically selected by setting the raw material brand.

【0027】図6は、乾燥時間と水分率の関係による乾
燥運転制御方法を示す。乾燥開始(A点)と同時に初期
水分率を測定し、以降定期的に測定時間が来れば測定地
点で原料乾燥装置2が回転停止し直ちに自動で水分率測
定を行う。この間わずか数十秒であり、測定完了で原料
乾燥装置2は回転を再開する。この動作を繰り返して数
時間の乾燥工程が進む。
FIG. 6 shows a drying operation control method based on the relationship between the drying time and the moisture content. The initial moisture content is measured at the same time as the start of drying (point A), and if the measurement time comes periodically thereafter, the rotation of the raw material drying device 2 is stopped at the measurement point, and the moisture content is automatically measured immediately. It takes only a few tens of seconds during this time, and upon completion of the measurement, the raw material drying device 2 restarts rotation. By repeating this operation, the drying process proceeds for several hours.

【0028】予め設定していた許容水分率の範囲の上限
(UL)(B点)に水分率が達した段階で、これまでの
水分率の曲線に対して傾向線あてはめ(回帰式の計算)
を行い、回帰式y=ax2+bx+cの係数a,b,c
を求める。次に許容水分率の範囲の下限(LL)(C
点)に至る時間Tを上記回帰式より予測・計算する。よ
ってB点から時間T/2後に乾燥停止すれば、水分率は
許容上下限のほぼ真中になり、乾燥過不足の危険性が少
なくなる。
When the moisture content reaches the upper limit (UL) (point B) of the preset allowable moisture content range, a trend line is applied to the previous moisture content curve (calculation of regression equation).
And the coefficients a, b, c of the regression equation y = ax 2 + bx + c
Ask for. Next, the lower limit (LL) (C
The time T up to the point is predicted and calculated from the regression equation. Therefore, if the drying is stopped after the time T / 2 from the point B, the moisture content becomes almost in the middle of the allowable upper and lower limits, and the risk of excessive or insufficient drying is reduced.

【0029】[0029]

【実施例】以下、この発明の実施の態様を実施例をもっ
て説明するが、これによって限定されるものではない。 (実施例1)本実施例において使用した水分率測定装置
及び乾燥制御装置を以下に示す。原料として、ナイロン
系樹脂ペレットで形状は円柱で断面積2〜5mmφ、長
さ2〜10mmで白色〜黄白色粒子である。原料乾燥装
置は容積5m3、真空度は絶対真空、内部温度130〜
150℃、原料充填量3〜4tの使用条件である。
The embodiments of the present invention will be described below by way of examples, but the invention is not limited thereto. (Example 1) The moisture content measuring device and the drying control device used in this example are shown below. The raw material is white to yellowish white particles having a cylindrical shape, a cylindrical shape, a cross-sectional area of 2 to 5 mmφ, and a length of 2 to 10 mm. Raw material drying apparatus volume 5 m 3, the degree of vacuum absolute vacuum, internal temperature 130 to
It is a use condition of 150 ° C. and a raw material filling amount of 3 to 4 t.

【0030】サイトグラスは石英ガラス製で厚さ8m
m、大きさ100mmφで原料乾燥装置表面にフランジ
取付している。検出器は光ファイバー型反射方式赤外線
水分計(3波長式)を用いてサイトグラスから15mm
離隔・対向した位置に設置した。光ファイバー測定径は
20mmφ、ファイバー長さは2mとした。データ処理
装置は市販のパソコン(NEC製PC9821Xa1
3)を用い、乾燥運転制御装置は市販のプログラマブル
コントローラ(三菱製AIS)を使用した。蒸気弁は空
気式調節弁(山武製HCT)を用い、駆動装置はインバ
ータ(三菱製FR−A520)を使用した。回転駆動モ
ータは容量37kWの汎用かご形誘導電動機、真空ポン
プも容量30kWのかご形誘導電動機を用いた。
The sight glass is made of quartz glass and has a thickness of 8 m.
m, a size of 100 mmφ, and a flange mounted on the surface of the raw material drying apparatus. The detector is 15mm from the sight glass using an optical fiber type reflection type infrared moisture meter (3 wavelength type).
It was installed at a position facing away and facing. The optical fiber measurement diameter was 20 mmφ, and the fiber length was 2 m. The data processing device is a commercially available personal computer (PC9821Xa1 manufactured by NEC).
Using 3), a commercially available programmable controller (Mitsubishi AIS) was used as the drying operation control device. The steam valve used was a pneumatic control valve (HCT manufactured by Yamatake), and the drive unit used was an inverter (FR-A520 manufactured by Mitsubishi). The rotary drive motor used was a general-purpose cage-type induction motor having a capacity of 37 kW, and the vacuum pump used a cage-type induction motor having a capacity of 30 kW.

【0031】なお、本実施例による測定結果の妥当性を
評価するため、本実施例にて使用したナイロン系樹脂ペ
レットの水分率測定結果について従来の重量乾燥式オフ
ライン水分率計の測定結果との比較を図7に示す。この
結果、本実施例により測定した水分率は、従来の重量乾
燥式オフライン水分率計により測定した水分率と相関係
数0.999以上で一致した。
In order to evaluate the validity of the measurement results according to the present embodiment, the measurement results of the moisture content of the nylon-based resin pellets used in the present embodiment were compared with the measurement results of the conventional dry weight off-line moisture content meter. The comparison is shown in FIG. As a result, the moisture content measured according to the present example coincided with the moisture content measured using the conventional dry weight offline moisture content meter with a correlation coefficient of 0.999 or more.

【0032】[0032]

【発明の効果】この発明に従った水分率測定装置による
と、原料の乾燥工程において原料中の水分率測定を乾燥
装置からの原料サンプリングをすることなしにインライ
ンで行うことができる。さらに本発明の乾燥制御装置に
よると、原料の乾燥工程において、原料の水分率を自動
的に測定して、その測定結果によって原料乾燥時間を決
定することができるので、乾燥の過不足の危険性が極め
て少ない。原料の初期水分が一定しない場合でも規定の
水分率になるような乾燥制御が実現できる。上記の効果
を合せて原料の乾燥工程におけるサイクルタイムの低減
および品質管理強化が図れる。
According to the moisture content measuring device according to the present invention, the moisture content of the raw material can be measured in-line without sampling the raw material from the drying device in the drying process of the raw material. Furthermore, according to the drying control device of the present invention, in the drying step of the raw material, the moisture content of the raw material is automatically measured, and the raw material drying time can be determined based on the measurement result. Is extremely small. Even when the initial moisture content of the raw material is not constant, drying control can be realized so that a prescribed moisture content is obtained. By combining the above effects, it is possible to reduce the cycle time and strengthen the quality control in the raw material drying step.

【0033】さらにソフトウェアの構築により乾燥工程
の進捗異常監視や乾燥装置内の圧力・温度制御へのフィ
ードバックなど設備監視・傾向管理が可能となる。
Further, the construction of the software makes it possible to monitor the facility and monitor the tendency, such as monitoring the progress abnormality of the drying process and feeding back the pressure / temperature control in the drying apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係わる水分率測定装置及
び乾燥制御装置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a moisture content measuring device and a drying control device according to an embodiment of the present invention.

【図2】検出器4の内部構成を示す図である。FIG. 2 is a diagram showing an internal configuration of a detector 4.

【図3】水の分光吸収特性を示す図である。FIG. 3 is a diagram showing spectral absorption characteristics of water.

【図4】ナイロン系樹脂ペレットの分光反射率特性を示
す図である。
FIG. 4 is a diagram showing spectral reflectance characteristics of nylon resin pellets.

【図5】ナイロン系樹脂ペレットの検量線(吸光度と水
分率との関係)を示す図である。
FIG. 5 is a diagram showing a calibration curve (relation between absorbance and moisture content) of nylon resin pellets.

【図6】乾燥時間と水分率の関係による乾燥運転制御方
法を示す図である。
FIG. 6 is a diagram illustrating a drying operation control method based on a relationship between a drying time and a moisture content.

【図7】ナイロン系樹脂ペレットの水分率測定結果につ
いて従来の重量乾燥式オフライン水分率計の測定結果と
の比較を示す図である。
FIG. 7 is a diagram showing a comparison between the measurement results of the moisture content of the nylon-based resin pellets and the measurement results of a conventional dry weight offline moisture meter.

【符号の説明】[Explanation of symbols]

1 原料 2 原料乾燥装置 3 サイトグラス 4 検出器 5 変換器 6 データ処理装置 7 乾燥運転制御装置 8 駆動装置 9 回転駆動モータ 10 蒸気弁 11 真空ポンプ 12 光源ランプ 13 光学フィルター 14 ミラー 15 反射ミラー 16 凹面鏡 17 受光素子 18 アンプ REFERENCE SIGNS LIST 1 raw material 2 raw material drying device 3 sight glass 4 detector 5 converter 6 data processing device 7 drying operation control device 8 driving device 9 rotation drive motor 10 steam valve 11 vacuum pump 12 light source lamp 13 optical filter 14 mirror 15 reflection mirror 16 concave mirror 17 Light receiving element 18 Amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大濱 一郎 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 Fターム(参考) 2G059 AA01 BB08 BB11 BB15 CC09 DD16 EE02 GG10 HH01 HH06 JJ02 JJ13 JJ14 JJ17 KK01 MM12 PP04 3L113 AA07 AB06 AC24 AC63 AC68 AC80 BA02 BA03 BA15 BA18 BA20 CA02 CB16 CB29 CB34 DA10 DA24 DA25 4F201 AA29 AC01 AP20 AQ01 AR11 BA04 BC02 BC12 BC15 BN21 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Ichiro Ohama 2-1-1 Katata, Otsu-shi, Shiga F-Term in Toyobo Co., Ltd. Research Laboratory 2G059 AA01 BB08 BB11 BB15 CC09 DD16 EE02 GG10 HH01 HH06 JJ02 JJ13 JJ14 JJ17 KK01 MM12 PP04 3L113 AA07 AB06 AC24 AC63 AC68 AC80 BA02 BA03 BA15 BA18 BA20 CA02 CB16 CB29 CB34 DA10 DA24 DA25 4F201 AA29 AC01 AP20 AQ01 AR11 BA04 BC02 BC12 BC15 BN21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料の水分率を測定する赤外線式水分率
測定装置であって、原料を充填した原料乾燥装置に離隔
して配置される検出器と、前記検出器からの信号を増幅
する変換器と、前記変換器からのデータを水分率に換算
する処理装置とを備え、原料に対して非接触で水分率を
測定できることを特徴とする水分率測定装置。
1. An infrared moisture content measuring device for measuring the moisture content of a raw material, comprising: a detector arranged at a distance from a raw material drying device filled with the raw material; and a converter for amplifying a signal from the detector. An apparatus for measuring moisture content, comprising: a device and a processing device for converting data from the converter into a moisture content, wherein the moisture content can be measured without contacting the raw material.
【請求項2】 原料の乾燥時間に対する経時的な水分率
の変化を原料のサンプリングをしないでインラインで測
定することを特徴とする、請求項1に記載の水分率測定
装置。
2. The moisture content measuring apparatus according to claim 1, wherein a change in moisture content over time with respect to a drying time of the material is measured in-line without sampling the material.
【請求項3】 請求項1または2記載の水分率測定装置
を用いることによって、原料の乾燥工程において、原料
の水分率を自動的に測定して、その測定結果によって原
料乾燥時間を決定すること特徴とする乾燥制御装置。
3. A method for drying a raw material, comprising: automatically measuring a water content of a raw material in a raw material drying step, and determining a raw material drying time based on the measurement result. Characteristic drying control device.
JP2000162274A 2000-05-31 2000-05-31 Moisture percentage measuring device and drying controller Pending JP2001343326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162274A JP2001343326A (en) 2000-05-31 2000-05-31 Moisture percentage measuring device and drying controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162274A JP2001343326A (en) 2000-05-31 2000-05-31 Moisture percentage measuring device and drying controller

Publications (1)

Publication Number Publication Date
JP2001343326A true JP2001343326A (en) 2001-12-14

Family

ID=18666193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162274A Pending JP2001343326A (en) 2000-05-31 2000-05-31 Moisture percentage measuring device and drying controller

Country Status (1)

Country Link
JP (1) JP2001343326A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156474A (en) * 2007-12-25 2009-07-16 Panasonic Corp Solvent drying device and method
JP2009228990A (en) * 2008-03-24 2009-10-08 Panasonic Corp Solvent drying device and method thereof
WO2012046756A1 (en) * 2010-10-06 2012-04-12 中村科学工業 株式会社 Method for detecting moisture in plastic material, and system for removing moisture from plastic material
JP2017129291A (en) * 2016-01-18 2017-07-27 株式会社クボタ Drying machine and measuring device for drying machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156474A (en) * 2007-12-25 2009-07-16 Panasonic Corp Solvent drying device and method
JP2009228990A (en) * 2008-03-24 2009-10-08 Panasonic Corp Solvent drying device and method thereof
WO2012046756A1 (en) * 2010-10-06 2012-04-12 中村科学工業 株式会社 Method for detecting moisture in plastic material, and system for removing moisture from plastic material
JP2012078304A (en) * 2010-10-06 2012-04-19 Nakamura Kagakukogyo Co Ltd Method for detecting moisture in plastic, and removal system of moisture of plastic material
CN102959381A (en) * 2010-10-06 2013-03-06 中村科学工业株式会社 Method for detecting moisture in plastic material, and system for removing moisture from plastic material
CN102959381B (en) * 2010-10-06 2015-11-25 中村科学工业株式会社 Detect the method for water in plastics and the water scavenging system of plastic material
JP2017129291A (en) * 2016-01-18 2017-07-27 株式会社クボタ Drying machine and measuring device for drying machine
WO2017126498A1 (en) * 2016-01-18 2017-07-27 株式会社クボタ Drier and measurement device for drier
CN108369064A (en) * 2016-01-18 2018-08-03 株式会社久保田 Drying machine and drying machine measuring device

Similar Documents

Publication Publication Date Title
JP3947399B2 (en) Method and apparatus for measuring wall thickness of plastic containers
US7354538B2 (en) Container manufacturing inspection and control system
JPH02256254A (en) Temperature measuring method for semiconductor wafer and semiconductor manufacturing apparatus
CA2343195C (en) Method and apparatus for measuring volatile content
CN100582765C (en) Method for testing insulating property of textile
WO2019095608A1 (en) Indomethacin detection method
CA2782714C (en) A rotary drum comprising a measuring unit with an optical sensor
US20200232850A1 (en) Temperature measuring device and method, and agitation/defoaming method
JP2011529785A (en) Apparatus for detecting the dryness of a paint film in a non-contact manner, and method for non-contact detecting the dryness of a paint film
JP2004501334A (en) Lyophilization process monitoring method
PL373803A1 (en) Analytical system and method for measuring and controlling a production process
WO2023040674A1 (en) Spectrum testing device, method and system for real-time monitoring of film thickness, and vacuum coating machine
JP2001343326A (en) Moisture percentage measuring device and drying controller
CN113109285B (en) Moisture monitoring system for noodle production line
US8046176B2 (en) Device and method for determining material moisture by thermogravimetry
FR2881522A1 (en) Device for detecting liquid, pasty or gaseous substances in near-IR spectrometer comprises an image acquiring unit assigned to the spectrometer so that an image data set is acquired and transferred to a data processing unit
CN110967301B (en) In-situ sum frequency vibration spectrum detection device with laser heating function
JPWO2012161287A1 (en) Thin film material thermal response measuring method and thin film thickness measuring device
CN214011049U (en) Water mill glutinous rice flour moisture real-time on-line measuring device
CN206875839U (en) A kind of electric drying oven with forced convection
CN108918335B (en) Device and method for rapidly measuring water content of filament-ball-shaped object
US11099201B2 (en) Device for the automated analysis of solids or fluids
JPH0298610A (en) Inspecting device for container made of synthetic resin
JPH0915146A (en) Device and method for measuring moisture in tea leaves in tea manufacturing process
JPH07107925A (en) Method of heating and boiling food and system therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060202