JP2001342557A - Method for manufacturing silicon oxide evaporation film - Google Patents

Method for manufacturing silicon oxide evaporation film

Info

Publication number
JP2001342557A
JP2001342557A JP2000162373A JP2000162373A JP2001342557A JP 2001342557 A JP2001342557 A JP 2001342557A JP 2000162373 A JP2000162373 A JP 2000162373A JP 2000162373 A JP2000162373 A JP 2000162373A JP 2001342557 A JP2001342557 A JP 2001342557A
Authority
JP
Japan
Prior art keywords
film
siox
silicon oxide
evaporation film
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000162373A
Other languages
Japanese (ja)
Other versions
JP4371539B2 (en
Inventor
Hiroshi Morizaki
弘 森崎
Yasuo Imamura
保男 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000162373A priority Critical patent/JP4371539B2/en
Publication of JP2001342557A publication Critical patent/JP2001342557A/en
Application granted granted Critical
Publication of JP4371539B2 publication Critical patent/JP4371539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon oxide(SiOx) evaporation film with a porous membrane columnar structure with a low dielectric constant and a high insulation property by an operation at a comparatively low temperature and low vacuum degree, and to provide a method for manufacturing a SiOx evaporation film improved an insulation property and a protecting performance by irradiating an electromagnetic wave and oxidizing the film. SOLUTION: The method for manufacturing the silicon oxide evaporation film is characterized by evaporating SiOx (x value: 0.8-1.4) at 900-1400 deg.C in 10-10000 Pa. The method for manufacturing a silicon oxide evaporation film is further characterized in irradiating an electromagnetic wave of a wavelength of 400 nm or less over the evaporation film of a relative permittivity of 1.5-8.0 manufactured by the above method. A quantity of the electromagnetic irradiation is preferably 0.1 <= irradiation time (time) × irradiance (W/cm2)<=10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低比誘電率かつ高
絶縁性の酸化けい素質(SiOx)蒸着膜の製造方法に
関する。
The present invention relates to a method for producing a silicon oxide (SiOx) deposited film having a low dielectric constant and a high insulation.

【0002】本発明によって製造されたSiOx蒸着膜
は、例えば半導体装置の層間絶縁膜、プラスチックフイ
ルムのガスバリア膜、液晶のパネル、反射防止膜等とし
て使用することができる。以下、本発明を半導体装置の
層間絶縁膜を例にとって説明する。
The SiOx deposited film produced according to the present invention can be used, for example, as an interlayer insulating film of a semiconductor device, a gas barrier film of a plastic film, a liquid crystal panel, an antireflection film and the like. Hereinafter, the present invention will be described by taking an interlayer insulating film of a semiconductor device as an example.

【0003】[0003]

【従来の技術】半導体装置の高集積化を進めるためには
金属配線の間隔を狭める必要がある。しかし、金属配線
の間隔が狭くなると、回路間の容量が信号の伝達遅延の
原因となり高速動作が妨げられる。この遅延を少なく
し、高速性を確保するためには回路間の容量を少なくす
る必要がある。すなわち、層間絶縁膜を低比誘電率化す
る必要がある。
2. Description of the Related Art In order to increase the degree of integration of a semiconductor device, it is necessary to reduce the distance between metal wirings. However, when the distance between the metal wirings is reduced, the capacitance between the circuits causes signal transmission delay, which hinders high-speed operation. In order to reduce this delay and ensure high speed, it is necessary to reduce the capacity between circuits. That is, it is necessary to lower the relative dielectric constant of the interlayer insulating film.

【0004】層間絶縁膜の低比誘電率化には、比誘電率
の低い材料を用いればよく、代表的な材料としてシリカ
ガラスやSiOF等が知られている。SiOFは、Si
−O−Si結合の末端をフッ素原子により終端させるこ
とにより低密度化を図ったものである。
In order to lower the relative dielectric constant of the interlayer insulating film, a material having a low relative dielectric constant may be used, and silica glass and SiOF are known as typical materials. SiOF is Si
This is intended to reduce the density by terminating the terminal of the -O-Si bond with a fluorine atom.

【0005】しかし、近年の半導体の進歩はシリカガラ
ス単体の比誘電率よりも低い値が要求されるようになっ
ている。この改善として、多孔質構造とすることで空気
層を取り入れることにより膜全体として低誘電率化を図
る方法が提案されている。
However, recent advances in semiconductors require a value lower than the relative dielectric constant of silica glass alone. As an improvement, there has been proposed a method of reducing the dielectric constant of the entire film by introducing an air layer by adopting a porous structure.

【0006】たとえば、特開平1−235254号公報
には、半導体素子を形成した半導体基板上に多孔質絶縁
膜を介して多層に金属配線を形成した半導体装置が記載
されている。そこでは、酸化ナトリウム、酸化カルシウ
ム等の塩基性酸化物と、二酸化珪素又は二酸化珪素と酸
化ホウ素の混合物等の酸性酸化物との混合物を絶縁膜と
して堆積させ、次いで熱処理を施し、塩基性酸化物又は
酸性酸化物のみを析出させた後、析出した酸化物のみを
溶出させて膜内部に多孔を形成させている。
For example, Japanese Patent Application Laid-Open No. Hei 1-253254 describes a semiconductor device in which metal wirings are formed in multiple layers on a semiconductor substrate on which semiconductor elements are formed via a porous insulating film. There, a mixture of a basic oxide such as sodium oxide and calcium oxide and a mixture of an acidic oxide such as silicon dioxide or a mixture of silicon dioxide and boron oxide is deposited as an insulating film, and then subjected to a heat treatment to form a basic oxide. Alternatively, after depositing only the acidic oxide, only the deposited oxide is eluted to form porosity inside the film.

【0007】特開2000−21245号公報では、中
空ポリマー微粒子と有機シリコン化合物とを用いて多孔
を形成する方法が提案されている。
Japanese Patent Application Laid-Open No. 2000-21245 proposes a method of forming porosity using hollow polymer fine particles and an organic silicon compound.

【0008】特開平11−289013号公報には、金
属シリコンを酸素含有雰囲気下で蒸発させて多孔質膜を
形成させる方法が記載されている。該方法では比誘電率
が2以下と優れた特性を示している。しかし、該発明の
膜組成はその段落0052に記載されているように、膜
の殆どはSiO2であり、SiOx分は数%である。ま
た、膜構造は、該公報の図15から分かるように粒状物
の重なりから構成されている。更には、金属シリコンの
蒸発には1500℃以上の高温操作が必要となるので、
膜形成に注意すべきことが多くあった。
Japanese Patent Application Laid-Open No. H11-289013 describes a method for forming a porous film by evaporating metallic silicon in an oxygen-containing atmosphere. In this method, the relative dielectric constant shows excellent characteristics of 2 or less. However, as described in paragraph 0052 of the film composition of the present invention, most of the film is SiO 2 and the content of SiOx is several%. Further, as can be seen from FIG. 15 of the gazette, the film structure is composed of overlapping granular materials. Furthermore, since high-temperature operation of 1500 ° C. or more is required for evaporation of metallic silicon,
There were many things to note about film formation.

【0009】一方、SiOx蒸着膜は反射防止膜、ガス
バリア膜としての用途が知られている。特に、ガスバリ
ア性と透明性とがSiOx蒸着膜により改善されたプラ
スチックは、内容物の確認が容易であるので、医薬品、
食品等の包装材に重宝されている。しかしその一方で、
SiOxは茶褐色の色調であるため、その改善要求があ
る。
[0009] On the other hand, a SiOx deposited film is known for use as an antireflection film and a gas barrier film. In particular, plastics whose gas barrier properties and transparency have been improved by a SiOx vapor-deposited film are easy to check the contents, so that pharmaceuticals,
It is useful for packaging materials such as food. But on the other hand,
Since SiOx has a brownish color tone, there is a demand for improvement.

【0010】たとえば、特開平8−197675号公報
では、SiOx蒸着膜に過酸化水素をコートする方法が
提案されており、酸素及び水蒸気透過度の改善に効果が
あったことが記載されている。しかし、過酸化水素を用
いることは、その後の洗浄が必要であり、半導体装置等
においてはその完全な除去が困難である。また、特開平
8−197674号公報では、光を照射してプラスチッ
クフィルム上のSiO膜の光透過度、酸素透過度を改善
しているが、その効果は数%にしか過ぎない。
For example, Japanese Patent Application Laid-Open No. Hei 8-197675 proposes a method of coating a SiOx vapor-deposited film with hydrogen peroxide, and describes that the method is effective in improving oxygen and water vapor permeability. However, the use of hydrogen peroxide requires subsequent cleaning, and it is difficult to completely remove it from a semiconductor device or the like. Further, in Japanese Patent Application Laid-Open No. Hei 8-197675, the light transmittance and oxygen permeability of the SiO film on the plastic film are improved by irradiating light, but the effect is only a few%.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、比較
的低温かつ低真空度での操作を行って、多孔膜柱状構造
にして低誘電率かつ高絶縁性のSiOx蒸着膜の製造方
法を提供することである。また、本発明の別の目的は、
SiOx蒸着膜に電磁波を照射し、その一部を積極的に
酸化させることによって、絶縁性・保護性能を向上させ
ることのできる、多孔膜柱状構造にして低誘電率かつ高
絶縁性のSiOx蒸着膜の製造方法を提供することであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a SiOx deposited film having a low dielectric constant and a high insulation by operating at a relatively low temperature and a low vacuum to form a porous film columnar structure. To provide. Another object of the present invention is to
A SiOx deposited film having a low dielectric constant and a high dielectric constant is formed into a porous film column structure capable of improving insulation and protection performance by irradiating the SiOx deposited film with electromagnetic waves and positively oxidizing a part thereof. Is to provide a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】すなわち、本発明は、S
iOx(x値0.8〜1.4)を900〜1400℃の
温度、10〜10000Paの圧力下で蒸着することを
特徴とする酸化けい素質(SiOx)蒸着膜の製造方法
である。また、本発明は、上記方法によって製造され、
比誘電率が1.3〜8.0であるSiOx蒸着膜に、波
長400nm以下の電磁波を照射することを特徴とする
酸化けい素質(SiOx)蒸着膜の製造方法である。こ
の場合において、電磁波照射量が、0.1≦照射時間
(時間)×照射量(W/cm2)≦10であることが好
ましい。
That is, the present invention provides an S
A method for producing a silicon oxide (SiOx) deposited film, characterized by depositing iOx (x value 0.8 to 1.4) at a temperature of 900 to 1400C and a pressure of 10 to 10000 Pa. Also, the present invention is produced by the above method,
A method for producing a silicon oxide (SiOx) vapor-deposited film, characterized in that an SiOx vapor-deposited film having a relative dielectric constant of 1.3 to 8.0 is irradiated with an electromagnetic wave having a wavelength of 400 nm or less. In this case, the irradiation amount of the electromagnetic wave is preferably 0.1 ≦ irradiation time (hour) × irradiation amount (W / cm 2 ) ≦ 10.

【0013】[0013]

【発明の実施の形態】以下、更に詳しく本発明について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0014】蒸着に用いるSiOx原料は、SiOxを
含有する粉末、成形体等であり、比表面積が10m2
g以上であることが好ましい。比表面積は高いほど蒸着
温度を1400℃以下に下げることができるので好まし
く、特に30m2/g以上、更には80m2/g以上であ
ることが特に好ましい。
The SiOx raw material used for the vapor deposition is a powder or a compact containing SiOx and has a specific surface area of 10 m 2 /
g or more. The higher the specific surface area, the more preferable it is because the deposition temperature can be lowered to 1400 ° C. or lower, and it is particularly preferable that the specific surface area be 30 m 2 / g or more, and more preferably 80 m 2 / g or more.

【0015】蒸着温度を下げるため、SiOxのX値は
1.4以下とする必要があり、好ましくは1.2以下で
ある。X値が1.0に近いほど蒸着温度が低く、蒸着残
査も少なくなる。しかし、X値が0.8未満では蒸着速
度がばらつきやすく安定性に欠ける。
In order to lower the vapor deposition temperature, the X value of SiOx needs to be 1.4 or less, preferably 1.2 or less. The closer the X value is to 1.0, the lower the deposition temperature and the less the deposition residue. However, when the X value is less than 0.8, the deposition rate tends to fluctuate and lacks stability.

【0016】SiOxには、少量のSi及びSiO2
を含んでいても良いが、その場合もSiとSiO2は等
モル又はその近傍で含有しているのが好ましい。本質的
にはSiOxの亜酸化物となっているのが蒸着の安定
性、操作性の点から重要である。本発明においてはSi
Ox原料は、少なくとも70%以上、好ましくは85%
以上のSiOxを含有するものを用いる。
[0016] SiOx is may contain a small amount of Si and SiO 2, etc., Si and SiO 2 may that case preferably contains an equimolar or near. The fact that the oxide is essentially a suboxide of SiOx is important from the viewpoint of vapor deposition stability and operability. In the present invention, Si
Ox raw material is at least 70% or more, preferably 85%
A material containing the above SiOx is used.

【0017】本発明において、Si、SiO2、SiO
xの量とX値は、後述のように、X線回折で大部分がア
モルファスであること、Si量と酸素量を化学分析しそ
のモル比を求めること、及びXPSによりSi2pの結
合エネルギーを調べることにより、測定することができ
る。
In the present invention, Si, SiO 2 , SiO
As described later, the amount of x and the X value are determined to be mostly amorphous by X-ray diffraction, to obtain a molar ratio by chemically analyzing the amounts of Si and oxygen, and to examine the binding energy of Si2p by XPS. Thus, it can be measured.

【0018】蒸着時の加熱方法は、抵抗加熱、電子ビー
ム等の常法の加熱手段を用いることができる。蒸着温度
は、900〜1400℃の範囲とする必要がある。90
0℃より低い温度では蒸着速度が低く生産性が著しく悪
化する。また、1400℃より高くすると膜の均一生成
が困難となり、またブツが生じ易い。好ましくは950
〜1350℃である。
As a heating method at the time of vapor deposition, conventional heating means such as resistance heating and electron beam can be used. The vapor deposition temperature needs to be in the range of 900 to 1400 ° C. 90
If the temperature is lower than 0 ° C., the deposition rate is low and productivity is significantly deteriorated. On the other hand, when the temperature is higher than 1400 ° C., it is difficult to form a uniform film, and the blemishes tend to occur. Preferably 950
131350 ° C.

【0019】蒸着は減圧下で行われるが、本発明におい
ては高真空の領域よりガスを導入して10〜10000
Paの圧力とすることが重要なことである。10Paよ
り低い圧力では生成する膜は緻密となり比誘電率の低い
膜を得ることができない。また、10000Paを越え
る圧力では、膜の生成速度が遅くなり、蒸着に長時間を
要すると共に、生成膜の多孔を形成するSiOx相互の
付着が弱くなって、膜が脆いものとなる。好ましくは、
100〜5000Paであり、更に好ましくは、500
〜2000Paである。
The vapor deposition is performed under reduced pressure. In the present invention, a gas is introduced from a high vacuum region to 10 to 10,000.
It is important that the pressure be Pa. At a pressure lower than 10 Pa, the resulting film becomes dense and a film having a low relative dielectric constant cannot be obtained. If the pressure exceeds 10,000 Pa, the film formation rate is slowed down, a long time is required for vapor deposition, and the adhesion of SiOx forming the porosity of the formed film is weakened, and the film becomes brittle. Preferably,
100 to 5000 Pa, more preferably 500
20002000 Pa.

【0020】圧力を調整するためには単に空気をリーク
させるのではなく、アルゴンと酸素ガスの混合ガス、特
にアルゴン酸素比(Ar/O2)が0.001〜0.1
である混合ガスを導入することが望ましい。酸素ガスを
必要とするのは、蒸着中にSiOを酸化し、X値が1.
3〜1.8のSiOx膜を製造することにある。酸素濃
度が高いと、生成膜のSiOxのX値が1.8を越えた
り、膜が柱状構造を形成することができず、生成膜が脆
いものになりやすくなる。一方、酸素濃度が低いと、生
成膜は原料のSiOxと同等のX値を持つ膜となるが、
絶縁性にやや劣るため生成膜のX値を1.3以上である
のが好ましい。
In order to adjust the pressure, a mixture of argon and oxygen gas, particularly an argon oxygen ratio (Ar / O 2 ) of 0.001 to 0.1
It is desirable to introduce a mixed gas of Oxygen gas is required because SiO is oxidized during vapor deposition and the X value is 1.
An object of the present invention is to manufacture a 3-1.8 SiOx film. When the oxygen concentration is high, the X value of SiOx of the formed film exceeds 1.8, or the film cannot form a columnar structure, and the formed film tends to be brittle. On the other hand, when the oxygen concentration is low, the resulting film is a film having an X value equivalent to the raw material SiOx,
The X value of the resulting film is preferably 1.3 or more because the insulating property is slightly inferior.

【0021】圧力調整用ガスとして、窒素ガスや、炭化
水素系のガスを用いると、窒化物、炭化物等の副成分を
生じ、それらは生成膜の誘電率を上げる作用があるが、
他の目的で、例えば膜の強度を上げる、膜の構造を調整
する等の目的で用いても構わない。
When a nitrogen gas or a hydrocarbon-based gas is used as a pressure adjusting gas, subcomponents such as nitrides and carbides are generated, which have an effect of increasing the dielectric constant of a formed film.
For other purposes, for example, it may be used for the purpose of increasing the strength of the film, adjusting the structure of the film, or the like.

【0022】蒸着物を堆積させる基板温度は、室温と同
等であればよいが、0℃以下と低いほど柱状構造を維持
しやすくなるので好ましい。
The temperature of the substrate on which the deposit is deposited may be equal to room temperature, but is preferably lower than 0 ° C. because the columnar structure is easily maintained.

【0023】次に、本発明の電磁波照射によるSiOx
蒸着膜の絶縁改善方法について説明する。
Next, according to the present invention, SiOx
A method for improving insulation of a deposited film will be described.

【0024】上記した本発明によれば、SiOx蒸着膜
からなる多孔質構造の低比誘電膜を得ることができる
が、そのままでは半導体製造工程において外部環境から
の薬液、腐食性のガスの浸透が懸念される。また、Si
OxのX値を増加させることは絶縁性の向上に有利であ
る。これを空気中で外部加熱によって実施すると、少な
くとも700℃以上の加熱が必要であり、高温操作は半
導体装置の特性に悪影響を与える。さらには、高温操作
による酸化では、SiOxの焼結が始まり、微細な空隙
が減少し材料自体の比誘電率は低下し、膜全体としては
空隙も減少するため比誘電率はかえって上昇する場合も
ある。
According to the present invention described above, a low-dielectric-constant film having a porous structure made of a SiOx vapor-deposited film can be obtained, but as it is, permeation of a chemical solution or a corrosive gas from the external environment in a semiconductor manufacturing process. I am concerned. In addition, Si
Increasing the X value of Ox is advantageous for improving insulation. If this is performed by external heating in air, heating at least 700 ° C. or more is required, and high-temperature operation adversely affects the characteristics of the semiconductor device. Furthermore, in the oxidation by the high-temperature operation, the sintering of SiOx starts, the fine voids decrease, the relative dielectric constant of the material itself decreases, and the relative dielectric constant of the film as a whole also decreases because the voids decrease as a whole. is there.

【0025】このような観点から、本発明者らは、柱状
構造を維持したままで室温近辺での酸化方法(SiOx
膜の絶縁改善方法)を検討した結果、比誘電率1.5〜
8.0のSiOx膜に400nm以下の波長の電磁波を
照射すると、比較的短時間に膜の上部は緻密化するが他
の大部分は多孔質構造を維持したままX値を増大できる
ことを見いだした。
From such a viewpoint, the present inventors have proposed an oxidation method (SiOx) near room temperature while maintaining the columnar structure.
As a result of examining the method of improving the insulation of the film,
When an 8.0 SiOx film is irradiated with an electromagnetic wave having a wavelength of 400 nm or less, it has been found that the upper portion of the film can be densified in a relatively short time, but the X value can be increased while maintaining the porous structure in most other parts. .

【0026】照射する電磁波は、波長400nm以下の
波長を主成分とするものであることが好ましく、紫外
光、軟X線に相当する光が望ましい。400nm超の電
磁波は副成分として存在していても良いが、波長400
nm超の、可視光、赤外線等を主成分とする電磁波で
は、膜上部が緻密化するが、その内部までX値を増加さ
せる作用には乏しい。
The radiated electromagnetic wave preferably has a wavelength of 400 nm or less as a main component, and preferably ultraviolet light or light corresponding to soft X-rays. An electromagnetic wave of more than 400 nm may exist as a sub-component,
In the case of an electromagnetic wave having a main component of visible light, infrared ray or the like exceeding nm, the upper portion of the film becomes denser, but the effect of increasing the X value to the inside is poor.

【0027】電磁波の照射量は、波長400nm以下の
光の照射量を、例えばエプレイ社製の「サーモパイルN
o17808」照度計によって得られる照射強度(W/
cm 2)と照射時間(時間)との積が0.1〜10とな
る値であることが好ましい。特に好ましくは、0.2〜
8、更に好ましくは0.5〜5である。照射量が0.1
未満では酸化作用に乏しく十分な効果が得られず、また
10超であると、膜が基板から剥離しやすくなる。
The irradiation amount of the electromagnetic wave has a wavelength of 400 nm or less.
The amount of light irradiation is, for example, “Thermopile N” manufactured by Eprey.
o17808 "illumination intensity (W /
cm Two) And the irradiation time (hour) are 0.1 to 10
It is preferable that the value be Particularly preferably, 0.2 to
8, more preferably 0.5 to 5. The irradiation amount is 0.1
If it is less than 10, the oxidizing effect is poor and a sufficient effect cannot be obtained.
If it exceeds 10, the film is easily peeled from the substrate.

【0028】電磁波照射による酸化の確認は、XPSに
てSi2p結合エネルギーを測定することによって行う
ことができる。また、電磁波照射による酸化によって、
膜は厚さ方向に膨張するので、照射前後の膜厚を比較す
ることによって、膜全体としてどの程度の酸化が行われ
たのかを知ることができる。
Confirmation of oxidation by electromagnetic wave irradiation can be performed by measuring Si2p binding energy by XPS. In addition, by oxidation by electromagnetic wave irradiation,
Since the film expands in the thickness direction, by comparing the film thickness before and after irradiation, it is possible to know how much oxidation has been performed on the entire film.

【実施例】【Example】

【0029】実施例1〜12 比較例1〜4 SiOx粉末として、電気化学工業(株)の気相法によ
る試作品を用意した。この粉末のBET法による比表面
積は110m2/gであった。X線回折でほぼアモルフ
ァスであり、シリコンと酸素の分析から計算されたSi
OxのX値は1.05であった。また、この粉末の蛍光
X線による分析では、金属分の不純物はアルミニウム2
00ppm、Fe100ppm程度のものであり、Si
Ox純度は99%以上であった。さらには、XPSでS
iの2p結合エネルギーをカーボンで補正して測定した
ところ、101.5evであった。この粉末を金型プレ
ス及びCIPを用いて直径10mm×高さ10mm程度
の円柱状に成形した。成形後の比表面積は103m2
gであり、成形前後で比表面積の変化は殆どなかった。
Examples 1 to 12 Comparative Examples 1 to 4 Prototypes prepared by the gas phase method of Denki Kagaku Kogyo KK were prepared as SiOx powders. The specific surface area of this powder as measured by the BET method was 110 m 2 / g. Almost amorphous by X-ray diffraction, Si calculated from analysis of silicon and oxygen
The X value of Ox was 1.05. In the analysis of the powder by fluorescent X-ray, the impurities of the metal were aluminum 2
About 100 ppm and about 100 ppm of Fe.
Ox purity was 99% or more. Furthermore, S by XPS
When the 2p binding energy of i was corrected with carbon and measured, it was 101.5 ev. This powder was formed into a cylindrical shape having a diameter of about 10 mm and a height of about 10 mm using a mold press and CIP. The specific surface area after molding is 103 m 2 /
g, and there was almost no change in the specific surface area before and after molding.

【0030】この成形ペレットを、BNとTiB2の複
合焼結体からなる抵抗発熱体の容器に入れて容器に通電
して加熱を行い、SiOxを蒸発させSiOx蒸着膜を
シリコン基板上に堆積させた。蒸着温度は赤外輻射温度
計で測定した。蒸着室内の圧力は、アルゴン/酸素比の
調整された混合ガスの流量を排気系のゲート及びガス流
入用バルブの開度を調節して制御した。蒸着室内の圧力
は、蒸着時間の範囲においておよそ±20%のばらつき
を持つものであった。また、シリコン基板は蒸着による
加熱を避けるため冷却水を流したホルダーに保持した。
The molded pellet is placed in a container of a resistance heating element composed of a composite sintered body of BN and TiB 2 , heated by energizing the container to evaporate SiOx and deposit a SiOx deposited film on a silicon substrate. Was. The deposition temperature was measured with an infrared radiation thermometer. The pressure in the vapor deposition chamber was controlled by controlling the flow rate of the mixed gas having an adjusted argon / oxygen ratio by adjusting the opening of the exhaust system gate and the gas inflow valve. The pressure in the deposition chamber had a variation of about ± 20% in the range of the deposition time. Further, the silicon substrate was held in a holder in which cooling water was flown in order to avoid heating by vapor deposition.

【0031】10分間の蒸着後に、シリコン基板と共に
SiOx蒸着膜を取り出し、以下の膜物性を測定した。
それらの結果を表1に示す。
After the deposition for 10 minutes, the SiOx deposited film was taken out together with the silicon substrate, and the following film properties were measured.
Table 1 shows the results.

【0032】(1)膜厚は、DEKTAK社製のSTス
テップメータを用いて測定した。 (2)比誘電率は、平行平板電極にSiOx蒸着膜が挟
まれた素子を用い、容量をLCZメーターで測定し、電
極面積及び膜厚から比誘電率を算出した。測定は、周波
数1MHzで行った。 (3)絶縁抵抗は、リーク電流を直流電気抵抗測定法に
よって容量測定と同じ素子を用いて測定した。まず、主
電極とガード電極を等電位にし、主電極−対向電極間に
電圧を印可する。このときの主電極側のリーク電流だけ
を読み取れば、表面電流の影響が無い状態で測定するこ
とができる。面積0.03cm2の平行平板電極を膜
(素子)にあて、20Vの電圧を印可したときの漏れ電
流を測定した。1nA以下であれば、層間絶縁膜として
十分な絶縁性を示すものといえる。 (4)膜構造は、SEMによって膜断面を観察して行っ
た。クラック剥離等は光学顕微鏡により観察した。
(1) The film thickness was measured using an ST step meter manufactured by DEKTAK. (2) The relative permittivity was determined by using a device in which a SiOx vapor deposition film was sandwiched between parallel plate electrodes, measuring the capacitance with an LCZ meter, and calculating the relative permittivity from the electrode area and the film thickness. The measurement was performed at a frequency of 1 MHz. (3) The insulation resistance was measured by measuring the leak current by the DC electric resistance measurement method using the same element as the capacitance measurement. First, the main electrode and the guard electrode are set to the same potential, and a voltage is applied between the main electrode and the counter electrode. If only the leakage current on the main electrode side at this time is read, the measurement can be performed without any influence of the surface current. A leak current was measured when a parallel plate electrode having an area of 0.03 cm 2 was applied to the film (element) and a voltage of 20 V was applied. If it is 1 nA or less, it can be said that the film exhibits sufficient insulating properties as an interlayer insulating film. (4) The film structure was obtained by observing the cross section of the film by SEM. Crack peeling and the like were observed with an optical microscope.

【0033】実施例3のサンプルについては、蒸着過程
におけるSiOxのX値の変化をみるために蒸着後のS
iOx膜の表面をアルゴンでエッチングし、XPS(島
津製作所UV−3100 UV−VIS−NR)によ
り、膜内部のSi2pの結合エネルギーを測定した。そ
の結果、結合エネルギーの主要ピークは102.5eV
であった。
With respect to the sample of Example 3, in order to observe the change in the X value of SiOx during the vapor deposition process, S
The surface of the iOx film was etched with argon, and the bonding energy of Si2p inside the film was measured by XPS (Shimadzu Corporation UV-3100 UV-VIS-NR). As a result, the main peak of the binding energy is 102.5 eV
Met.

【0034】SiとSiO2のSi2P結合エネルギー
は、それぞれ99.1eV、103.6eVであり、こ
の値よりSiOxのX=1の時の結合エネルギーをその
中間の101.4eVと考えると、実施例3の膜内部の
結合エネルギー102.5eVはX=1.5のSiOx
膜であることが分かった。同様にして、他のSiOx蒸
着膜のX値を測定した。
The Si 2 P bond energies of Si and SiO 2 are 99.1 eV and 103.6 eV, respectively. From this value, it is considered that the bond energy when X = 1 of SiOx is considered to be 101.4 eV in the middle. The binding energy 102.5 eV inside the film of No. 3 is SiOx of X = 1.5.
It turned out to be a membrane. Similarly, X values of other SiOx deposited films were measured.

【0035】[0035]

【表1】 [Table 1]

【0036】実施例13〜20 参考例1〜3 次に、SiOx膜に対する電磁波照射の実験例について
説明する。参考例1は、温度1500℃、蒸着時ガス圧
Pa、アルゴン酸素比(Ar/O 2)0.01の条件で
金属シリコンの蒸着を行い、シリコン単結晶基板上に膜
厚350nmの蒸着膜を形成させたものである。この膜
は、X値=0.9、比誘電率8.8であり、SEM観察
の結果は緻密な膜であった。
Examples 13 to 20 Reference Examples 1 to 3 Next, experimental examples of electromagnetic wave irradiation on the SiOx film will be described.
explain. Reference Example 1 was at a temperature of 1500 ° C. and a gas pressure during vapor deposition.
Pa, argon oxygen ratio (Ar / O Two) Under the condition of 0.01
Deposits metal silicon and forms a film on a silicon single crystal substrate
This is one in which a deposited film having a thickness of 350 nm is formed. This membrane
Indicates that the X value is 0.9 and the relative dielectric constant is 8.8, and the SEM observation
Was a dense film.

【0037】実施例13では、実施例1で得られたSi
Ox蒸着膜に、また実施例14〜20、参考例2、3で
は、実施例3で得られたSiOx蒸着膜に、400nm
以下の紫外線(潮社製高圧水銀ランプ「USH−102
D」を使用)、又は可視光(市販の白熱ランプを使用)
を表2に示す条件で照射した。照射強度は、0.25W
/cm2となるように照射計を用いてランプからの距離
を調節した。
In Example 13, the Si obtained in Example 1 was used.
In the Ox vapor-deposited film, and in Examples 14 to 20 and Reference Examples 2 and 3, the SiOx vapor-deposited film obtained in Example 3 was 400 nm thick.
The following ultraviolet light (Shiosha's high-pressure mercury lamp "USH-102"
D ”) or visible light (using a commercially available incandescent lamp)
Was irradiated under the conditions shown in Table 2. Irradiation intensity is 0.25W
The distance from the lamp was adjusted using an irradiometer so as to be / cm 2 .

【0038】照射前後の膜について、比誘電率、XPS
によるSiOxのX値、膜厚、SEM断面観察を行い、
照射による影響を調べた。それらの結果を表2に示す。
参考例1では、照射後の膜表面観察において、クラック
が発生していた。なお、実施例16、21は、請求項3
の条件を逸脱した例である。
The relative dielectric constant, XPS
Observation of X value, film thickness and SEM cross section of SiOx by
The effects of irradiation were investigated. Table 2 shows the results.
In Reference Example 1, cracks occurred in the film surface observation after irradiation. Embodiments 16 and 21 correspond to claim 3.
Is an example deviating from the condition of

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】本発明によれば、比較的低温かつ低真空
度で操作を行って、多孔膜柱状構造にして低誘電率かつ
高絶縁性の酸化けい素質(SiOx)蒸着膜を容易に製
造することができる。また、このSiOx蒸着膜に波長
400nm以下の電磁波照射を行い、その一部を積極的
に酸化させることによって、絶縁性・保護性能を向上さ
せた、多孔膜柱状構造にして低誘電率かつ高絶縁性の酸
化けい素質(SiOx)蒸着膜を容易に製造することが
できる。
According to the present invention, a silicon oxide (SiOx) vapor deposited film having a low dielectric constant and a high insulating property can be easily produced by operating at a relatively low temperature and a low vacuum to form a porous film columnar structure. can do. In addition, the SiOx deposited film is irradiated with an electromagnetic wave having a wavelength of 400 nm or less, and a part thereof is positively oxidized, thereby improving insulation and protection performance. A silicon oxide (SiOx) vapor-deposited film can be easily manufactured.

【0041】本発明で製造されたSiOx蒸着膜は、高
絶縁性かつ低比誘電率であるので、半導体装置の層間絶
縁膜として使用される。
The SiOx deposited film manufactured according to the present invention has a high insulating property and a low relative dielectric constant, and is therefore used as an interlayer insulating film of a semiconductor device.

【0042】さらに、SiOx蒸着膜の表層が緻密化す
る、また比誘電率が低いことは低屈折率となることよ
り、ガスバリア性、光の反射防止性能を有し、食品包材
等のガスバリア膜、プラスチックス製液晶パネルの表面
コート等として用いることができる。
Further, since the surface layer of the SiOx vapor-deposited film becomes dense and has a low relative dielectric constant, it has a low refractive index, so that it has gas barrier properties and antireflection properties for light, and is a gas barrier film for food packaging materials and the like. It can be used as a surface coat of a liquid crystal panel made of plastics.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 SiOx(x値0.8〜1.4)を90
0〜1400℃の温度、10〜10000Paの圧力下
で蒸着することを特徴とする酸化けい素質蒸着膜の製造
方法。
1. The method according to claim 1, wherein the SiOx (x value 0.8 to 1.4) is 90
A method for producing a silicon oxide vapor-deposited film, characterized in that vapor deposition is performed at a temperature of 0 to 1400 ° C. and a pressure of 10 to 10000 Pa.
【請求項2】 請求項1によって製造され、比誘電率が
1.5〜8.0である蒸着膜に、波長400nm以下の
電磁波を照射することを特徴とする酸化けい素質蒸着膜
の製造方法。
2. A method for producing a silicon oxide vapor-deposited film, comprising irradiating an electromagnetic wave having a wavelength of 400 nm or less to a vapor-deposited film produced according to claim 1 and having a relative dielectric constant of 1.5 to 8.0. .
【請求項3】 電磁波照射量が、0.1≦照射時間(時
間)×照射量(W/cm2)≦10であることを特徴と
する請求項2記載の酸化けい素質蒸着膜の製造方法。
3. The method according to claim 2, wherein the irradiation amount of the electromagnetic wave is 0.1 ≦ irradiation time (hour) × irradiation amount (W / cm 2 ) ≦ 10. .
JP2000162373A 2000-05-31 2000-05-31 Method for producing silicon oxide deposited film Expired - Fee Related JP4371539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162373A JP4371539B2 (en) 2000-05-31 2000-05-31 Method for producing silicon oxide deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162373A JP4371539B2 (en) 2000-05-31 2000-05-31 Method for producing silicon oxide deposited film

Publications (2)

Publication Number Publication Date
JP2001342557A true JP2001342557A (en) 2001-12-14
JP4371539B2 JP4371539B2 (en) 2009-11-25

Family

ID=18666277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162373A Expired - Fee Related JP4371539B2 (en) 2000-05-31 2000-05-31 Method for producing silicon oxide deposited film

Country Status (1)

Country Link
JP (1) JP4371539B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119956A (en) * 2002-09-24 2004-04-15 Au Optronics Corp Method of forming polysilicon layer
JP2009024253A (en) * 2007-06-20 2009-02-05 Dainippon Printing Co Ltd Raw powder for ion plating evaporation source material, ion plating evaporation source material, method for producing the same, gas barrier sheet and method for producing the same
JP2011150154A (en) * 2010-01-22 2011-08-04 Showa Shinku:Kk Thin film and method of forming thin film
JP2012184496A (en) * 2011-03-08 2012-09-27 Toppan Printing Co Ltd Deposition film
JP2015231948A (en) * 2010-07-27 2015-12-24 コーニング インコーポレイテッド Mechanically stable air-tight thin film subjected to self-passivation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119956A (en) * 2002-09-24 2004-04-15 Au Optronics Corp Method of forming polysilicon layer
JP2009024253A (en) * 2007-06-20 2009-02-05 Dainippon Printing Co Ltd Raw powder for ion plating evaporation source material, ion plating evaporation source material, method for producing the same, gas barrier sheet and method for producing the same
JP2011150154A (en) * 2010-01-22 2011-08-04 Showa Shinku:Kk Thin film and method of forming thin film
JP2015231948A (en) * 2010-07-27 2015-12-24 コーニング インコーポレイテッド Mechanically stable air-tight thin film subjected to self-passivation
JP2012184496A (en) * 2011-03-08 2012-09-27 Toppan Printing Co Ltd Deposition film

Also Published As

Publication number Publication date
JP4371539B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP5236791B2 (en) Low dielectric constant SiOx film manufacturing method
TWI225105B (en) Method for producing metal oxide thin film
EP2546388A1 (en) Coated substrates and methods for their preparation
US20060251825A1 (en) Low dielectric constant insulating film and method of forming the same
WO2013035689A1 (en) Gas barrier film
Min et al. Atomic layer deposition of Al2O3 thin films from a 1-methoxy-2-methyl-2-propoxide complex of aluminum and water
JPH07304127A (en) Gas barrier packaging material and production thereof
JP2976924B2 (en) Thin film temperature-sensitive resistance material and method of manufacturing the same
JP2005126813A (en) Method for producing silicon oxide film, and method for producing optical multi-layer film
JP4987716B2 (en) Substrate coated with hydrogenated silicon oxycarbide (H: SiOC) and method for producing the same
JP4371539B2 (en) Method for producing silicon oxide deposited film
JPH0699536A (en) Gas barrier transparent conductive laminate and manufacture thereof
JP4106931B2 (en) Transparent gas barrier thin film coating film
JP2018052041A (en) Laminate
JP2007016272A (en) Protective film covered on substrate, and its manufacturing method
US6316055B1 (en) Near-room temperature thermal chemical vapor deposition of oxide films
Ohishi et al. Preparation and gas barrier characteristics of polysilazane derived multi-layered silica thin films formed on alicyclic polyimide film using ultraviolet irradiation
JP2870003B2 (en) Manufacturing method of vapor-deposited film
Khanna et al. Effects of deposition parameters on the structure of AlN coatings grown by reactive magnetron sputtering
Shimizu et al. Characterization of sol–gel derived and crystallized ZrO2 thin films
US20040023032A1 (en) Method for producing a conducting doped diamond-like nanocomposite film and a conducting doped diamond-like nanocomposite film
Chung et al. Microstructure and electric properties of the PZT thin films fabricated by ECR PECVD: the effects of an interfacial layer and rapid thermal annealing
RU2767482C1 (en) Method for manufacturing a chemically and thermally stable metal absorbing structure of tungsten on a silicate substrate
JP4556610B2 (en) Surface-coated plastic material
Yoon et al. Effect of substrate bias on properties of silicon nitride films prepared by activated reactive evaporation

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Effective date: 20090414

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees