JP2001338700A - Pigment sensitizing solar cell - Google Patents

Pigment sensitizing solar cell

Info

Publication number
JP2001338700A
JP2001338700A JP2000156733A JP2000156733A JP2001338700A JP 2001338700 A JP2001338700 A JP 2001338700A JP 2000156733 A JP2000156733 A JP 2000156733A JP 2000156733 A JP2000156733 A JP 2000156733A JP 2001338700 A JP2001338700 A JP 2001338700A
Authority
JP
Japan
Prior art keywords
solar cell
dye
electrolyte
monomer
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000156733A
Other languages
Japanese (ja)
Other versions
JP4805442B2 (en
Inventor
Ryosuke Yamanaka
良亮 山中
Reigen Kan
礼元 韓
Kazuhiro Enomoto
和弘 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000156733A priority Critical patent/JP4805442B2/en
Priority to US09/768,809 priority patent/US6479745B2/en
Publication of JP2001338700A publication Critical patent/JP2001338700A/en
Application granted granted Critical
Publication of JP4805442B2 publication Critical patent/JP4805442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell with macromolecular solid electrolyte which has excellent liquid preserving property and mechanical strength. SOLUTION: The pigment sensitization type solar cell installs a macromolecular solid electrolyte of which, electrolyte is stably preserved in a macromolecular compound with three dimensional bridge bond. The electrolyte is preserved in the macromolecular compound composed of unit constituent monomers shown by the formula (I), (where; R1 and R2, which can be either same with or different from each other, are hydrogen atom or methyl group, and A is a bonding position or a group with two valence derived from (poly) oxyalkylene group, and n is an integer of 0-2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子固体電解質
を用いた色素増感型太陽電池に関する。さら詳しくは、
本発明は、特定の構造を有するモノマーから形成された
構成単位を含む、三次元的に架橋された高分子化合物を
使用した色素増感型太陽電池に関する。
TECHNICAL FIELD The present invention relates to a dye-sensitized solar cell using a solid polymer electrolyte. More specifically,
The present invention relates to a dye-sensitized solar cell using a three-dimensionally crosslinked polymer compound containing a structural unit formed from a monomer having a specific structure.

【0002】[0002]

【従来の技術】色素増感型太陽電池(以下、「太陽電
池」と称する)は、有機系太陽電池の中で高変換効率を
示すため、広く注目されている。太陽電池は、半導体電
極と対極との間に狭持された電解液層から構成され、半
導体電極に光が照射されると、この電極側で電子が励起
され、励起された電子が電気回路を通って対極に移動
し、対極に移動した電子が電解質中をイオンとして移動
して半導体電極に戻り、このようなサイクルが繰り返さ
れることにより電気エネルギーが取り出されるものであ
る。
2. Description of the Related Art Dye-sensitized solar cells (hereinafter referred to as "solar cells") have received widespread attention because of their high conversion efficiency among organic solar cells. A solar cell is composed of an electrolyte layer sandwiched between a semiconductor electrode and a counter electrode.When light is irradiated on the semiconductor electrode, electrons are excited on the electrode side, and the excited electrons form an electric circuit. Then, the electrons move to the counter electrode, and the electrons that have moved to the counter electrode move as ions in the electrolyte and return to the semiconductor electrode, and electric energy is extracted by repeating such a cycle.

【0003】太陽電池の光電変換材料として用いられる
半導体電極としては、半導体表面に可視光領域に吸収を
もつ分光増感色素を吸着させたものが用いられている。
そのような太陽電池としては、例えば、遷移金属錯体か
らなる分光増感色素を半導体表面に吸着させた金属酸化
物半導体を用いた太陽電池(特許第2664194
号)、金属イオンでドープした酸化チタン半導体の表面
に遷移金属錯体などの分光増感色素層を有する太陽電池
(特公平8−15097号)および半導体表面に分光増
感剤のエタノール溶液を加熱還流することにより得られ
た光電変換材料用半導体を用いた太陽電池(特開平7−
249790号)などが挙げられる。
As a semiconductor electrode used as a photoelectric conversion material of a solar cell, a semiconductor electrode having a spectral sensitizing dye having absorption in a visible light region adsorbed on a semiconductor surface is used.
As such a solar cell, for example, a solar cell using a metal oxide semiconductor in which a spectral sensitizing dye composed of a transition metal complex is adsorbed on a semiconductor surface (Japanese Patent No. 2664194)
), A solar cell having a spectral sensitizing dye layer such as a transition metal complex on the surface of a titanium oxide semiconductor doped with metal ions (Japanese Patent Publication No. 8-15097), and heating and refluxing an ethanol solution of a spectral sensitizer on the semiconductor surface Cell using the semiconductor for a photoelectric conversion material obtained by the
249790).

【0004】図2は、酸化還元性電解液を用いた従来の
太陽電池の層構成を示す要部の断面概略図である。この
太陽電池は次のような手順により作製される。まず、透
明支持体21の表面に形成した透明導電体22上に、酸
化チタンなどの半導体電極23を形成し、その半導体電
極23に色素を吸着させる。対極25に白金26などの
触媒をコーティングし、半導体電極23と白金26を対
面するように透明支持体21と対極25を重ね合わせ、
その間に電解液24を注入し、透明支持体21と対極2
5の側面をエポキシ樹脂27などで封止する。
FIG. 2 is a schematic sectional view of a main part showing a layer structure of a conventional solar cell using an oxidation-reduction electrolyte. This solar cell is manufactured by the following procedure. First, a semiconductor electrode 23 such as titanium oxide is formed on a transparent conductor 22 formed on the surface of a transparent support 21, and a dye is adsorbed on the semiconductor electrode 23. The counter electrode 25 is coated with a catalyst such as platinum 26, and the transparent support 21 and the counter electrode 25 are overlapped so that the semiconductor electrode 23 and the platinum 26 face each other.
In the meantime, the electrolyte 24 is injected and the transparent support 21 and the counter electrode 2
5 is sealed with an epoxy resin 27 or the like.

【0005】また、特開平8−236165号および特
開平9−27352号には、電解液の液漏れを防止する
ために、一般式(III):
Japanese Patent Application Laid-Open Nos. 8-236165 and 9-27352 disclose a general formula (III) in order to prevent electrolyte leakage.

【0006】[0006]

【化3】 Embedded image

【0007】(式中、R4およびR5は同一または異なっ
て、水素原子またはメチル基であり、R6は水素原子ま
たは低級アルキル基であり、mは1以上の整数、lは0
以上の整数であり、l/mは0〜5の範囲である)で表
されるモノマーから形成された構成単位を含む高分子化
合物で、電解液の層を固体化した太陽電池が開示されて
いる。
Wherein R 4 and R 5 are the same or different and each is a hydrogen atom or a methyl group, R 6 is a hydrogen atom or a lower alkyl group, m is an integer of 1 or more, and 1 is 0
A solar cell in which a layer of an electrolytic solution is solidified with a polymer compound containing a structural unit formed from a monomer represented by the following formula (1 / m is a range of 0 to 5): I have.

【0008】しかしながら、上記の公報に記載の太陽電
池では、高分子化合物に対する電解質や電解液の保持能
力、および高分子化合物の機械的強度が充分ではなかっ
た。
However, in the solar cell described in the above-mentioned publication, the ability to hold the electrolyte and the electrolytic solution with respect to the polymer compound and the mechanical strength of the polymer compound were not sufficient.

【0009】[0009]

【発明が解決しようとする課題】本発明は、優れた液保
持力と機械的強度を有する高分子固体電解質を備えた太
陽電池を提供することを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a solar cell provided with a polymer solid electrolyte having excellent liquid holding power and mechanical strength.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を行った結果、特定のモノマーを
重合して得られる三次元的に架橋された高分子化合物
が、電解質に対する優れた保持力と機械的強度を発揮す
ることを見出し、本発明を完成するに到った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a three-dimensionally crosslinked polymer compound obtained by polymerizing a specific monomer has been found to be an electrolyte. The present invention has been found to exhibit excellent holding power and mechanical strength with respect to the present invention, and has completed the present invention.

【0011】かくして、本発明によれば、透明基板の表
面に形成された透明導電膜と導電性基板との間に、色素
を吸着した多孔性半導体層と電解質とを有する太陽電池
において、電解質が一般式(I):
Thus, according to the present invention, in a solar cell having a porous semiconductor layer in which a dye is adsorbed and an electrolyte between a transparent conductive film formed on the surface of the transparent substrate and the conductive substrate, the electrolyte is General formula (I):

【0012】[0012]

【化4】 Embedded image

【0013】(式中、R1およびR2は同一または異なっ
て、水素原子またはメチル基であり、Aは結合手または
(ポリ)アルキレンオキシ基から誘導された2価の基で
あり、nは0〜2の整数である)で表されるモノマーか
ら形成された構成単位を含む高分子化合物により保持さ
れていることを特徴とする太陽電池が提供される。
Wherein R 1 and R 2 are the same or different and each is a hydrogen atom or a methyl group, A is a bond or a divalent group derived from a (poly) alkyleneoxy group, and n is (It is an integer of 0 to 2) provided by a polymer compound including a structural unit formed from a monomer represented by the formula (1):

【0014】[0014]

【発明の実施の形態】本発明の高分子化合物は、三次元
的な架橋構造を有し、太陽電池の電解質に対する優れた
液保持力と機械的強度を有するものであり、一般式
(I)で表されるモノマーを単独で、もしくは一般式
(I)で表されるモノマーと他のメタクリル酸系モノマ
ーおよび/またはアクリル酸系モノマー(以下、「(メ
タ)アクリル酸系モノマー」と称する)とを、(共)重
合することにより得られる。一般式(I)のnが0のと
きは、結合手を表わす。
BEST MODE FOR CARRYING OUT THE INVENTION The polymer compound of the present invention has a three-dimensional cross-linking structure, and has excellent liquid holding power and mechanical strength for an electrolyte of a solar cell. Or a monomer represented by the general formula (I) and another methacrylic acid-based monomer and / or an acrylic acid-based monomer (hereinafter, referred to as “(meth) acrylic acid-based monomer”) Is obtained by (co) polymerization. When n in the general formula (I) is 0, it represents a bond.

【0015】一般式(I)のAが結合手であるモノマー
としては、例えば、メタクリル酸グリシル、アクリル酸
テトラヒドロフルフリル(テトラヒドロフルフリルアク
リレート)、メタクリル酸テトラヒドロフルフリルなど
が挙げられる。
Examples of the monomer in which A of the general formula (I) is a bond include glycyl methacrylate, tetrahydrofurfuryl acrylate (tetrahydrofurfuryl acrylate), tetrahydrofurfuryl methacrylate and the like.

【0016】また、一般式(I)のAが(ポリ)アルキ
レンオキシ基から誘導された2価の基であるモノマー、
特にAが(ポリ)エチレンオキシ基および(ポリ)プロ
ピレンオキシ基から誘導された、式(II):
A monomer wherein A in the general formula (I) is a divalent group derived from a (poly) alkyleneoxy group;
In particular, formula (II) wherein A is derived from (poly) ethyleneoxy and (poly) propyleneoxy groups:

【0017】[0017]

【化5】 Embedded image

【0018】(式中、aおよびbは同一または異なっ
て、0または正の整数であり、R3は水素原子またはメ
チル基である)で表される2価の基であるモノマーとし
ては、例えば、一般式(I)のR1がメチル基、R2が水
素原子、Aが8個のエチレンオキシ基と2個のプロピレ
ンオキシ基から誘導された2価の基(式(II)のaが
8、bが2)、nが1であるものが挙げられる。
(Wherein a and b are the same or different and are 0 or a positive integer, and R 3 is a hydrogen atom or a methyl group). In the general formula (I), R 1 is a methyl group, R 2 is a hydrogen atom, A is a divalent group derived from eight ethyleneoxy groups and two propyleneoxy groups (a in the formula (II) is 8, b is 2) and n is 1.

【0019】一般式(I)で表されるモノマーは、電解
液に使用される代表的な溶媒であるプロピレンカーボネ
ートあるいはエチレンカーボネートとの親和性がよいの
で好ましい。また、このようなモノマーを重合した高分
子化合物は、電解質に対して優れた保持能力を有するの
で好ましい。
The monomer represented by the general formula (I) is preferable because it has a good affinity for propylene carbonate or ethylene carbonate which is a typical solvent used for the electrolytic solution. Further, a polymer compound obtained by polymerizing such a monomer is preferable since it has excellent ability to retain an electrolyte.

【0020】一般式(I)のモノマーと共重合させる
(メタ)アクリル酸系モノマーとしては、一般に市販さ
れているものをいずれも用いることができる。具体的に
は、メタクリル酸メチル、メタクリル酸エチル、メタク
リル酸n-ブチル、メタクリル酸イソブチル、メタクリ
ル酸2−エチルヘキルシル、メタクリル酸ラウリル、メ
タクリル酸ベンジル、メタクリル酸トリデシル、メタク
リル酸ステアリル、メタクリル酸シクロヘキシルなどの
メタクリル酸系モノマー、ならびにアクリル酸イソボル
ニル、アクリル酸ジメチルアミノエチルエステル、アク
リル酸イソブチル、アクリル酸セチル(アクリル酸ヘキ
サデシル)、アクリル酸4−ヒドロキシブチル、アクリ
ル酸t-ブチル、アクリル酸2-メトキシエチル、アクリ
ル酸3-メトキシブチル、アクリル酸ラウリルなどのア
クリル酸系モノマーが挙げられる。
As the (meth) acrylic acid-based monomer to be copolymerized with the monomer of the general formula (I), any commercially available monomer can be used. Specifically, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, benzyl methacrylate, tridecyl methacrylate, stearyl methacrylate, cyclohexyl methacrylate and the like Methacrylic acid monomers, isobornyl acrylate, dimethylaminoethyl acrylate, isobutyl acrylate, cetyl acrylate (hexadecyl acrylate), 4-hydroxybutyl acrylate, t-butyl acrylate, 2-methoxyethyl acrylate, Acrylic monomers such as 3-methoxybutyl acrylate and lauryl acrylate are exemplified.

【0021】これらの中でも、メタクリル酸メチル、メ
タクリル酸エチル、メタクリル酸ラウリル、メタクリル
酸ステアリル、アクリル酸イソブチル、アクリル酸セチ
ル、アクリル酸3-メトキシブチル、アクリル酸ラウリ
ルが特に好ましい。
Of these, methyl methacrylate, ethyl methacrylate, lauryl methacrylate, stearyl methacrylate, isobutyl acrylate, cetyl acrylate, 3-methoxybutyl acrylate, and lauryl acrylate are particularly preferred.

【0022】一般式(I)のモノマーと(メタ)アクリ
ル酸系モノマーの割合は、各モノマーの種類やその組み
合わせにより異なり、また高分子化合物の架橋性および
太陽電池に求められる性能などにより適宜決定すればよ
い。通常、(メタ)アクリル酸系モノマー(Y)は、一
般式(I)のモノマー(X)に対して50〜98mol
%程度、すなわちX:Yのモル比が1:1〜49程度で
ある。
The ratio of the monomer of the general formula (I) to the (meth) acrylic acid-based monomer varies depending on the type of each monomer and the combination thereof, and is appropriately determined according to the crosslinking properties of the polymer compound and the performance required for the solar cell. do it. Usually, the (meth) acrylic acid-based monomer (Y) is used in an amount of 50 to 98 mol based on the monomer (X) of the general formula (I).
%, That is, the molar ratio of X: Y is about 1: 1 to 49.

【0023】高分子固体電解質は、主として高分子化合
物と、それに注入される電解質とから構成される。電解
質は、一般に電池や太陽電池などにおいて使用すること
ができる電解液であれば特に限定されない。さらに、電
解液中の電解質は酸化還元性のものがよく、これも一般
に電池や太陽電池などにおいて使用することができる電
解液であれば特に限定されないが、LiI、NaI、K
I、CaI2などの金属ヨウ化物とヨウ素の組み合わ
せ、およびLiBr、NaBr、KBr、CaBr2
どの金属臭化物と臭素の組み合わせが好ましく、これら
の中でも、金属ヨウ化物とヨウ素の組み合わせが好まし
い。
The solid polymer electrolyte is mainly composed of a polymer compound and an electrolyte injected into the polymer compound. The electrolyte is not particularly limited as long as it is an electrolyte that can be generally used in batteries and solar cells. Further, the electrolyte in the electrolyte is preferably an oxidation-reduction electrolyte, which is not particularly limited as long as it can be generally used in batteries and solar cells.
A combination of a metal iodide such as I and CaI 2 with iodine, and a combination of a metal bromide such as LiBr, NaBr, KBr, and CaBr 2 with bromine are preferred. Among these, a combination of a metal iodide and iodine is preferred.

【0024】電解質濃度としては、0.1〜1.5モル
/リットルの範囲が挙げられるが、この中で、0.1〜
0.7モル/リットルが好ましい。また、電解質の溶媒
としては、プロピレンカーボネートなどのカーボネート
化合物、アセトニトリルなどのニトリル化合物、エタノ
ールなどのアルコール類、その他、水や非プロトン極性
物質などが挙げられるが、これらの中でも、カーボネー
ト化合物やニトリル化合物が好ましい。
The concentration of the electrolyte may be in the range of 0.1 to 1.5 mol / liter.
0.7 mol / l is preferred. Examples of the solvent for the electrolyte include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, and other substances such as water and aprotic polar substances. Among these, carbonate compounds and nitrile compounds Is preferred.

【0025】高分子化合物中に電解質を注入するには、
電解質をポリカーボネートなどの溶媒に溶解した電解液
に、高分子化合物を浸して、高分子化合物中に電解液を
浸透させればよい。浸透時間は2時間程度必要である
が、浸透温度を高く設定すれば、電解液が活性化されて
浸透速度が速くなり、高分子固体電解質の作製時間が短
縮できるので好ましい。浸透温度は、ラジカル反応が起
こらない程度に抑える必要があり、具体的には35〜6
5℃程度である。
To inject the electrolyte into the polymer compound,
The polymer compound may be immersed in an electrolyte solution in which the electrolyte is dissolved in a solvent such as polycarbonate, and the electrolyte solution may be permeated into the polymer compound. The permeation time is about 2 hours, but it is preferable to set the permeation temperature high because the electrolyte solution is activated and the permeation speed is increased, and the time required for producing the polymer solid electrolyte can be shortened. The infiltration temperature needs to be suppressed to such an extent that a radical reaction does not occur.
It is about 5 ° C.

【0026】太陽電池では、多孔性半導体中に十分に高
分子固体電解質が注入されていなければ変換効率が悪く
なる。このため、通常、液状のモノマー、場合によって
はケトン系溶剤、カーボネート系溶剤などに溶解したモ
ノマーを、多孔性半導体中に含浸させ、その後にラジカ
ル重合させる。
In a solar cell, the conversion efficiency is deteriorated unless the solid polymer electrolyte is sufficiently injected into the porous semiconductor. For this reason, the porous semiconductor is usually impregnated with a liquid monomer, and in some cases, a monomer dissolved in a ketone-based solvent, a carbonate-based solvent, or the like, and then subjected to radical polymerization.

【0027】重合方法としては、光重合や熱重合などが
適用される。太陽電池においては、多孔性半導体に酸化
チタンを使用する場合が多い。酸化チタンは紫外線領域
で光触媒反応を起こす物質であるため、光重合を行う際
に紫外線光が照射されると光触媒反応が起こり、多孔性
半導体に吸着させた色素が分解するなどの問題が考えら
れるため、熱重合により重合を行うことが好ましい。
As the polymerization method, photopolymerization or thermal polymerization is applied. In solar cells, titanium oxide is often used for a porous semiconductor. Titanium oxide is a substance that causes a photocatalytic reaction in the ultraviolet region, so if ultraviolet light is irradiated during photopolymerization, a photocatalytic reaction occurs, which may cause problems such as decomposition of the dye adsorbed on the porous semiconductor. Therefore, the polymerization is preferably performed by thermal polymerization.

【0028】通常、熱重合は、重合開始剤を使用して加
熱することにより行うが、重合開始剤の濃度および加熱
温度は使用するモノマーにより適宜決定される。一般に
ラジカル重合における重合速度は、重合開始剤の濃度の
0.5乗に比例するため、重合開始剤の濃度が低いと重
合時間が非常に長くなる。したがって、重合開始剤の濃
度はモノマーに対して0.5〜10wt%程度が好まし
い。
Usually, thermal polymerization is carried out by heating using a polymerization initiator, and the concentration of the polymerization initiator and the heating temperature are appropriately determined depending on the monomer used. Generally, the polymerization rate in radical polymerization is proportional to the 0.5th power of the concentration of the polymerization initiator, so that when the concentration of the polymerization initiator is low, the polymerization time becomes extremely long. Therefore, the concentration of the polymerization initiator is preferably about 0.5 to 10% by weight based on the monomer.

【0029】多孔性半導体層を構成する多孔性半導体と
しては、酸化チタン、酸化亜鉛、酸化タングステン、チ
タン酸バリウム、チタン酸ストロンチウム、硫化カドミ
ウムなどの公知の半導体が挙げられる。これらの多孔性
半導体は2種以上を混合して用いることもできる。これ
らの中でも、変換効率、安定性、安全性の点から酸化チ
タンが特に好ましい。このような酸化チタンとしては、
アナターゼ型酸化チタン、ルチル型酸化チタン、無定形
酸化チタン、メタチタン酸、オルソチタン酸などの種々
の酸化チタン、含酸化チタン複合体などが挙げられる
が、これらはいずれであってもよい。
Examples of the porous semiconductor constituting the porous semiconductor layer include known semiconductors such as titanium oxide, zinc oxide, tungsten oxide, barium titanate, strontium titanate, and cadmium sulfide. These porous semiconductors can be used as a mixture of two or more kinds. Among them, titanium oxide is particularly preferred from the viewpoint of conversion efficiency, stability and safety. As such a titanium oxide,
Various titanium oxides such as anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, metatitanic acid, and orthotitanic acid, and a titanium-oxide-containing composite are exemplified, and any of these may be used.

【0030】多孔性半導体は、粒子状、膜状など種々の
形態のものを用いることができるが、基板上に形成され
た膜状の多孔性半導体が好ましい。膜状の多孔性半導体
を形成する場合の基板としては、例えば、ガラス基板、
プラスチック基板などが挙げられ、中でも透明性の高い
基板(透明基板)が特に好ましい。
As the porous semiconductor, various forms such as a particle form and a film form can be used, but a film form porous semiconductor formed on a substrate is preferable. As a substrate when forming a film-shaped porous semiconductor, for example, a glass substrate,
A plastic substrate and the like can be mentioned, and among them, a highly transparent substrate (transparent substrate) is particularly preferable.

【0031】基板上に膜状の多孔性半導体を形成する方
法としては、公知の種々の方法を使用することができ
る。具体的には、基板上に半導体粒子を含有する懸濁
液を塗布し、乾燥・焼成する方法、基板上に所望の原
料ガスを用いたCVD法またはMOCVD法などにより
半導体膜を成膜する方法、および原料固体を用いたP
VD法、蒸着法、スパッタリング法またはゾルーゲル法
などにより半導体膜を形成する方法などが挙げられる。
As a method for forming a film-like porous semiconductor on a substrate, various known methods can be used. Specifically, a method of applying a suspension containing semiconductor particles on a substrate, followed by drying and baking, and a method of forming a semiconductor film on a substrate by a CVD method or a MOCVD method using a desired source gas. , And P using raw material solids
Examples include a method of forming a semiconductor film by a VD method, an evaporation method, a sputtering method, a sol-gel method, or the like.

【0032】多孔性半導体の膜厚は、特に限定されるも
のではないが、透過性、変換効率などの観点より、0.
5〜20μm程度が好ましい。また、変換効率を向上さ
せるためには、膜状の多孔性半導体に、後述する色素を
より多く吸着させることが必要である。このために、膜
状の多孔性半導体は比表面積が大きなものが好ましく、
具体的には10〜200m2/g程度が好ましい。
Although the thickness of the porous semiconductor is not particularly limited, it may be from the viewpoint of transparency, conversion efficiency, and the like.
It is preferably about 5 to 20 μm. Further, in order to improve the conversion efficiency, it is necessary to make the film-shaped porous semiconductor adsorb a larger amount of the dye described below. For this reason, the film-like porous semiconductor preferably has a large specific surface area,
Specifically, it is preferably about 10 to 200 m 2 / g.

【0033】半導体粒子としては、市販されているもの
のうち適当な平均粒径、例えば1nm〜500nm程度
の単一または化合物半導体の粒子などが挙げられる。ま
た、この半導体粒子を懸濁するために使用される溶媒
は、エチレングリコールモノメチルエテールなどのグラ
イム系溶媒、イソプロピルアルコールなどのアルコール
系溶媒、イソプロピルアルコール/トルエンなどの混合
溶媒、水などが挙げられる。
Examples of the semiconductor particles include commercially available particles having a suitable average particle diameter, for example, particles of a single or compound semiconductor having a diameter of about 1 nm to 500 nm. Examples of the solvent used for suspending the semiconductor particles include grime solvents such as ethylene glycol monomethyl ether, alcohol solvents such as isopropyl alcohol, mixed solvents such as isopropyl alcohol / toluene, and water. .

【0034】膜状の多孔性半導体の形成方法における
多孔性半導体の乾燥・焼成は、使用する基板や半導体粒
子の種類により、温度、時間、雰囲気などの条件を適宜
調整して行われる。例えば、大気下または不活性ガス雰
囲気下、50〜800℃程度の範囲内で、10秒から1
2時間程度行うことができる。この乾燥・焼成は、単一
の温度で1回または温度を変化させて2回以上行うこと
ができる。
Drying and baking of the porous semiconductor in the method for forming a film-like porous semiconductor are performed by appropriately adjusting conditions such as temperature, time and atmosphere depending on the type of substrate and semiconductor particles used. For example, in the range of about 50 to 800 ° C. in the atmosphere or in an inert gas atmosphere, for 10 seconds to 1 hour.
It can be performed for about 2 hours. The drying and baking can be performed once at a single temperature or twice or more at different temperatures.

【0035】電極として使用することができる透明導電
膜は、特に限定されるものではないが、例えばITO、
SnO2などの透明導電膜が好ましい。これらの電極の
作製方法および膜厚などは、適宜選択することができ
る。
The transparent conductive film that can be used as an electrode is not particularly limited.
A transparent conductive film such as SnO 2 is preferred. The manufacturing method, the film thickness, and the like of these electrodes can be appropriately selected.

【0036】多孔性半導体上に光増感剤として機能する
色素(以下、「色素」と称する)を吸着させる。その方
法としては、例えば基板上に形成された多孔性半導体膜
を、色素を溶解した溶液に浸漬する方法が挙げられる。
A dye functioning as a photosensitizer (hereinafter referred to as "dye") is adsorbed on the porous semiconductor. As the method, for example, there is a method of immersing a porous semiconductor film formed on a substrate in a solution in which a dye is dissolved.

【0037】用いられる色素は、種々の可視光領域およ
び赤外光領域に吸収を持つものであって、半導体層に強
固に吸着させるために、色素分子中にカルボキシル基、
アルコキシ基、ヒドロキシル基、ヒドロキシアルキル
基、スルホン酸基、エステル基、メルカプト基、ホスホ
ニル基などのインターロック基を有するものが好まし
い。
The dye used has an absorption in various visible light regions and infrared light regions, and a carboxyl group or a carboxyl group is contained in the dye molecule in order to strongly adsorb the semiconductor layer.
Those having an interlock group such as an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group and a phosphonyl group are preferred.

【0038】インターロック基は、励起状態の色素と半
導体の導電帯との間の電子移動を容易にする電気的結合
を提供するものである。これらインターロック基を含有
する色素としては、例えばルテニウムビピリジン系色
素、アゾ系色素、キノン系色素、キノンイミン系色素、
キナクリドン系色素、スクアリリウム系色素、シアニン
系色素、メロシアニン系色素、トリフェニルメタン系色
素、キサンテン系色素、ポリフィリン系色素、フタロシ
アニン系色素、ベリレン系色素、インジゴ系色素、ナフ
タロシアニン系色素などが挙げられる。
The interlocking group provides an electrical bond that facilitates electron transfer between the dye in the excited state and the conduction band of the semiconductor. Examples of dyes containing these interlock groups include, for example, ruthenium bipyridine dyes, azo dyes, quinone dyes, quinone imine dyes,
Quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes, berylen dyes, indigo dyes, naphthalocyanine dyes, and the like. .

【0039】色素を溶解する溶媒は、色素を溶解するも
のであれば特に限定されず、例えば、エタノールなどの
アルコール類、アセトンなどのケトン類、ジエチルエー
テル、テトラヒドロフランなどのエーテル類、アセトニ
トリルなどの窒素化合物類、クロロホルムなどのハロゲ
ン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、
ベンゼン、トルエンなどの芳香族炭化水素、酢酸エチル
などのエステル類、水などが挙げられる。これらの溶媒
は2種以上を混合して用いることもできる。
The solvent for dissolving the dye is not particularly limited as long as it can dissolve the dye, and examples thereof include alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, and nitrogen such as acetonitrile. Compounds, halogenated aliphatic hydrocarbons such as chloroform, aliphatic hydrocarbons such as hexane,
Examples include aromatic hydrocarbons such as benzene and toluene, esters such as ethyl acetate, and water. These solvents can be used as a mixture of two or more kinds.

【0040】溶液中の色素濃度は、使用する色素および
溶媒の種類により適宜調整することができるが、吸着機
能を向上さすためにはできるだけ高濃度である方が好ま
しい。色素濃度は、例えば5×10-5モル/リットル以
上の濃度であればよい。
The concentration of the dye in the solution can be appropriately adjusted depending on the types of the dye and the solvent to be used, but it is preferable that the concentration is as high as possible in order to improve the adsorption function. The dye concentration may be, for example, 5 × 10 −5 mol / liter or more.

【0041】色素を溶解した溶液を半導体に浸漬すると
きの条件、例えば、溶液温度、雰囲気温度および圧力は
特に限定されるものではなく、例えば室温程度で、かつ
大気圧下が挙げられる。浸漬時間は、使用する色素と溶
媒の種類、溶液の濃度などにより適宜調整することがで
きる。なお、効果的に行うには使用溶媒の沸点以下の加
熱下にて浸漬を行えばよい。これにより、多孔性半導体
上に色素が吸着され易くなるので好ましい。
The conditions for immersing the solution in which the dye is dissolved in the semiconductor, such as the solution temperature, the ambient temperature and the pressure, are not particularly limited, and include, for example, about room temperature and atmospheric pressure. The immersion time can be appropriately adjusted depending on the type of the dye and the solvent to be used, the concentration of the solution, and the like. In order to effectively perform the immersion, the immersion may be performed under heating at or below the boiling point of the solvent used. This is preferable because the dye is easily adsorbed on the porous semiconductor.

【0042】[0042]

【実施例】本発明を実施例によりさらに具体的に説明す
るが、これらの実施例により本発明が限定されるもので
はない。
EXAMPLES The present invention will be described more specifically with reference to examples, but the present invention is not limited by these examples.

【0043】(実施例1)図1の(a)〜(e)に示さ
れる作製手順で、高分子固体電解質を用いた太陽電池の
作製した。図1において、1は透明基板、2は透明電導
膜、3は酸化チタン膜、4はセパレーター、5はPET
フィルム、6は押さえ版、7は高分子モノマー、8は高
分子化合物、9は電解液、10は容器、11は封止剤、
12は白金膜、13は導電性基板を示す。
Example 1 A solar cell using a solid polymer electrolyte was manufactured by the manufacturing procedure shown in FIGS. 1 (a) to 1 (e). In FIG. 1, 1 is a transparent substrate, 2 is a transparent conductive film, 3 is a titanium oxide film, 4 is a separator, and 5 is PET.
Film, 6 a press plate, 7 a polymer monomer, 8 a polymer compound, 9 an electrolyte, 10 a container, 11 a sealant,
Reference numeral 12 denotes a platinum film, and 13 denotes a conductive substrate.

【0044】まず、多孔性半導体層としての酸化チタン
膜3を作製する塗液を調製した。すなわち、市販の酸化
チタン粒子(テイカ株式会社社製、商品名:AMT-6
00、アナターゼ型結晶、平均粒径30nm、比表面積
50m2/g)4.0gとジエチレングリコールモノメ
チルエーテル20mlとを、ガラスビーズを使用し、ペ
イントシェイカーで6時間分散処理して、酸化チタン懸
濁液を調製した。
First, a coating liquid for preparing a titanium oxide film 3 as a porous semiconductor layer was prepared. That is, commercially available titanium oxide particles (manufactured by Teica Co., Ltd., trade name: AMT-6)
00, anatase type crystal, average particle size 30 nm, specific surface area 50 m 2 / g) 4.0 g and diethylene glycol monomethyl ether 20 ml were dispersed in glass paint for 6 hours using a paint shaker to obtain a titanium oxide suspension. Was prepared.

【0045】透明基板1としてのガラス基板上に、透明
導電膜2としてSnO2膜を形成した(図1(a))。
次いで、透明基板1の透明導電膜2側に、調製した酸化
チタン懸濁液をドクターブレードで塗布し、膜厚10μ
m程度、面積10mm×10mm程度の塗膜を得た。塗
膜を100℃で30分間予備乾燥し、さらに酸素雰囲気
下、460℃で40分間焼成し、膜厚8μm程度の酸化
チタン膜3を得た。
An SnO 2 film was formed as a transparent conductive film 2 on a glass substrate as a transparent substrate 1 (FIG. 1A).
Next, the prepared titanium oxide suspension was applied to the transparent conductive film 2 side of the transparent substrate 1 with a doctor blade, and the film thickness was 10 μm.
m, and a coating film having an area of about 10 mm × 10 mm was obtained. The coating film was pre-dried at 100 ° C. for 30 minutes, and baked at 460 ° C. for 40 minutes in an oxygen atmosphere to obtain a titanium oxide film 3 having a thickness of about 8 μm.

【0046】次に、ルテニウム色素(Solaroni
x社製、商品名:Ruthenium535)を無水エ
タノールに溶解して、色素濃度4×10-4モル/リット
ルの吸着用色素溶液を調製した。透明導電膜2と酸化チ
タン膜3とを具備した透明基板1を、調製した吸着用色
素溶液に約4時間浸漬させて、酸化チタン膜3に色素を
吸着させた。その後、透明基板1を無水エタノールで数
回洗浄し、約60℃で約20分間乾燥させた(図1
(b))。
Next, a ruthenium dye (Solaroni)
x, trade name: Ruthenium 535) was dissolved in anhydrous ethanol to prepare a dye solution for adsorption having a dye concentration of 4 × 10 −4 mol / l. The transparent substrate 1 provided with the transparent conductive film 2 and the titanium oxide film 3 was immersed in the prepared dye solution for adsorption for about 4 hours, so that the dye was adsorbed on the titanium oxide film 3. Thereafter, the transparent substrate 1 was washed several times with anhydrous ethanol and dried at about 60 ° C. for about 20 minutes (FIG. 1).
(B)).

【0047】次に、一般式(I)のR1がメチル基、R2
が水素原子、Aが8個のエチレンオキシ基と2個のプロ
ピレンオキシ基から誘導された2価の基(式(II)のa
が8、bが2)、nが1であるモノマーを、モノマー濃
度が20wt%になるようにプロピレンカーボネート
(以下、「PC」と称する)に溶解し、さらに熱重合開
始剤としてアゾビスイソブチロニトリル(AIBN)を
モノマーに対して1wt%の濃度になるように添加・溶
解して、モノマー溶液を調製した。
Next, R 1 in the general formula (I) is a methyl group, R 2
Is a hydrogen atom, and A is a divalent group derived from eight ethyleneoxy groups and two propyleneoxy groups (a in the formula (II)
Is dissolved in propylene carbonate (hereinafter referred to as “PC”) so that the monomer concentration becomes 20 wt%, and azobisisobuty is used as a thermal polymerization initiator. Ronitrile (AIBN) was added and dissolved to a concentration of 1 wt% with respect to the monomer to prepare a monomer solution.

【0048】次のような手順で、得られたモノマー溶液
を酸化チタン膜3に含浸させた。 真空容器内にビーカーを設置し、その中に透明導電膜
2と酸化チタン膜3とを具備した透明基板1を入れ、ロ
ータリーポンプで約10分間真空引きした。 真空容器内を真空状態に保ちながらモノマー溶液をビ
ーカーに注入し、約15分間保持して、酸化チタン膜3
中にモノマー溶液を十分に含浸させた。 ポリエチレン製のセパレーター4、PET(ポリエチ
レンテレフタレート)フィルム5と押さえ板6を透明基
板1に設置し、冶具で固定した。次いで、透明基板1を
約85℃で30分間加熱することにより、モノマーを熱
重合させて、有機溶媒不溶性の高分子化合物8を得た
(図1(c))。
The titanium oxide film 3 was impregnated with the obtained monomer solution in the following procedure. A beaker was set in a vacuum vessel, and the transparent substrate 1 provided with the transparent conductive film 2 and the titanium oxide film 3 was put therein, and evacuated by a rotary pump for about 10 minutes. The monomer solution is poured into a beaker while maintaining the vacuum state in the vacuum vessel, and is maintained for about 15 minutes.
The monomer solution was sufficiently impregnated therein. A separator 4 made of polyethylene, a PET (polyethylene terephthalate) film 5 and a holding plate 6 were placed on the transparent substrate 1 and fixed with a jig. Next, the monomer was thermally polymerized by heating the transparent substrate 1 at about 85 ° C. for 30 minutes to obtain a polymer compound 8 insoluble in an organic solvent (FIG. 1C).

【0049】次に、高分子化合物8に含浸させる電解液
9を調製した。すなわち、ヨウ化リチウムが濃度0.5
モル/リットルになるように、かつヨウ素が濃度0.0
5モル/リットルになるように、ヨウ化リチウムとヨウ
素をPCに溶解した。
Next, an electrolytic solution 9 for impregnating the polymer compound 8 was prepared. That is, when lithium iodide has a concentration of 0.5
Mol / liter and iodine at a concentration of 0.0
Lithium iodide and iodine were dissolved in PC so as to be 5 mol / l.

【0050】得られた電解液9に、高分子化合物8を形
成した透明基板1を、浸透温度50℃で1時間浸漬し、
高分子化合物8中に電解液9を十分に染み込ませて、高
分子固体電解質を作製した(図1(d))。
The transparent substrate 1 on which the polymer compound 8 was formed was immersed in the obtained electrolytic solution 9 at an infiltration temperature of 50 ° C. for 1 hour.
The electrolyte solution 9 was sufficiently impregnated into the polymer compound 8 to prepare a polymer solid electrolyte (FIG. 1D).

【0051】次いで、高分子固体電解質を作製した透明
基板1の酸化チタン膜3側と、白金膜12を具備した導
電性基板13の白金膜12側を合わせ、エポキシ系の封
止剤11で周囲を封止した(図1(e))。
Next, the side of the titanium oxide film 3 of the transparent substrate 1 on which the polymer solid electrolyte was prepared and the side of the platinum film 12 of the conductive substrate 13 provided with the platinum film 12 were put together, and the surroundings were sealed with an epoxy sealant 11. Was sealed (FIG. 1 (e)).

【0052】以上のようにして本発明の高分子固体電解
質を用いた太陽電池を得た。得られた太陽電池の性能を
測定条件:AM−1.5で測定したところ、短絡電流が
17.6[mA/cm2]、開放電圧が0.6[V]、
フィルファクターが0.68、変換効率が7.3[%]
であった。これらの性能は、電解液を固体化しない太陽
電池と同等であった。
As described above, a solar cell using the solid polymer electrolyte of the present invention was obtained. When the performance of the obtained solar cell was measured under the measurement conditions: AM-1.5, the short-circuit current was 17.6 [mA / cm 2 ], the open-circuit voltage was 0.6 [V],
Fill factor 0.68, conversion efficiency 7.3 [%]
Met. These performances were equivalent to a solar cell in which the electrolyte was not solidified.

【0053】このことから、本発明の太陽電池は、従来
品と比べて性能面で遜色がなく、かつ用いるモノマーの
構造から、高分子固体電解質を用いた従来品よりも優れ
た液保持力と機械的強度が期待できる。
From the above, the solar cell of the present invention has the same performance as the conventional solar cell, and has a liquid holding power superior to that of the conventional solar cell using the solid polymer electrolyte, due to the structure of the monomer used. High mechanical strength can be expected.

【0054】(実施例2〜4)一般式(I)のモノマー
を表1に示すものに代えた以外は実施例1と同様にし
て、太陽電池を作製し、その変換効率を測定した。得ら
れた結果を用いた一般式(I)のモノマーと共に表1に
示す。
(Examples 2 to 4) A solar cell was produced and its conversion efficiency was measured in the same manner as in Example 1 except that the monomers of the general formula (I) were changed to those shown in Table 1. The results are shown in Table 1 together with the monomer of the general formula (I).

【0055】[0055]

【表1】 [Table 1]

【0056】表1の結果から、モノマーを代えることに
より、太陽電池の変換効率が変化すること、ならびにモ
ノマーが3員環を有するメタクリル酸グリシル(一般式
(I)のnが0の場合)よりも、モノマーが5員環を有
する(メタ)アクリル酸テトラヒドロフルフリル(一般
式(I)のnが2の場合)の方がより高い変換効率が得
られることがわかる。これは、環を有するモノマーが重
合のときに開環するため、環の大きさが太陽電池の変換
効率に影響を与えているものと考えられる。
From the results in Table 1, it can be seen that the conversion efficiency of the solar cell is changed by replacing the monomer, and that the monomer has a three-membered ring of glycyl methacrylate (when n in the general formula (I) is 0). Also, it can be seen that tetrahydrofurfuryl (meth) acrylate in which the monomer has a 5-membered ring (when n in the general formula (I) is 2) can obtain higher conversion efficiency. This is thought to be because the size of the ring has an effect on the conversion efficiency of the solar cell because the monomer having a ring opens during polymerization.

【0057】(実施例5〜12)高分子化合物として、
表2に示す一般式(I)のモノマーと(メタ)アクリル
酸系モノマーとの共重合体を用いる以外は実施例1と同
様にして、太陽電池を作製し、その変換効率を測定し
た。得られた結果を用いた一般式(I)のモノマーおよ
び(メタ)アクリル酸系モノマーと共に表2に示す。
Examples 5 to 12 As polymer compounds,
A solar cell was prepared and the conversion efficiency was measured in the same manner as in Example 1, except that a copolymer of the monomer of the general formula (I) and the (meth) acrylic acid-based monomer shown in Table 2 was used. The results are shown in Table 2 together with the monomer of the general formula (I) and the (meth) acrylic acid-based monomer.

【0058】[0058]

【表2】 [Table 2]

【0059】表2の結果から、一般式(I)のモノマー
と共重合させる(メタ)アクリル酸系モノマーの側鎖が
長いほど、高い変換効率が得られることがわかる。これ
はモノマーの側鎖が長いほど、高分子固体電解質の膨潤
性が大きくなることと関係しているものと考えられる。
From the results shown in Table 2, it can be seen that the longer the side chain of the (meth) acrylic acid monomer copolymerized with the monomer of the general formula (I), the higher the conversion efficiency can be obtained. This is considered to be related to the fact that the longer the side chain of the monomer, the higher the swelling property of the solid polymer electrolyte.

【0060】[0060]

【発明の効果】本発明の太陽電池は、三次元的に架橋し
た高分子化合物に多量の電解液が安定に保持された、電
解液と同等レベルのイオン伝導率を有する高分子固体電
解質を有する。したがって、本発明は、電解液を使用し
た太陽電池と同等の性能を有し、かつ優れた機械的強度
を有する太陽電池を提供することができる。
The solar cell of the present invention has a solid polymer electrolyte having the same level of ionic conductivity as an electrolyte in which a large amount of the electrolyte is stably retained in a three-dimensionally crosslinked polymer compound. . Therefore, the present invention can provide a solar cell having the same performance as a solar cell using an electrolytic solution and having excellent mechanical strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽電池の作製手順を追った太陽電池
の断面概要図である。
FIG. 1 is a schematic cross-sectional view of a solar cell according to a manufacturing procedure of the solar cell of the present invention.

【図2】従来の太陽電池の層構成を示す要部の断面概略
図である。
FIG. 2 is a schematic sectional view of a main part showing a layer structure of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1 透明基板 2 透明導電膜 3 酸化チタン膜 4 セパレーター 5 PETフィルム 6 押さえ板 7 高分子モノマー 8 高分子化合物 9、24 電解液 10 容器 11 封止剤 12 白金膜 13 導電性基板 21 透明支持体 22 透明導電体 23 半導体電極 25 対極 26 白金 27 エポキシ樹脂 DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent conductive film 3 Titanium oxide film 4 Separator 5 PET film 6 Press plate 7 Polymer monomer 8 Polymer compound 9, 24 Electrolyte 10 Container 11 Sealant 12 Platinum film 13 Conductive substrate 21 Transparent support 22 Transparent conductor 23 Semiconductor electrode 25 Counter electrode 26 Platinum 27 Epoxy resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎本 和弘 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 4J100 AL03Q AL04Q AL05Q AL08P AL08Q AL09Q BA05Q BA08P BA09P BC54P CA04 FA03 5F051 AA11 AA14 FA02 FA06 5H032 AA06 AS16 CC17 EE04 EE08 EE16  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Enomoto 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka F-term (reference) 4J100 AL03Q AL04Q AL05Q AL08P AL08Q AL09Q BA05Q BA08P BA09P BC54P CA04 FA03 5F051 AA11 AA14 FA02 FA06 5H032 AA06 AS16 CC17 EE04 EE08 EE16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透明基板の表面に形成された透明導電膜
と導電性基板との間に、色素を吸着した多孔性半導体層
と電解質とを有する色素増感型太陽電池において、電解
質が一般式(I): 【化1】 (式中、R1およびR2は同一または異なって、水素原子
またはメチル基であり、Aは結合手または(ポリ)アル
キレンオキシ基から誘導された2価の基であり、nは0
〜2の整数である)で表されるモノマーから形成された
構成単位を含む高分子化合物により保持されていること
を特徴とする色素増感型太陽電池。
1. A dye-sensitized solar cell having a porous semiconductor layer in which a dye is adsorbed and an electrolyte between a conductive film and a transparent conductive film formed on the surface of the transparent substrate, wherein the electrolyte has a general formula (I): Wherein R 1 and R 2 are the same or different and are a hydrogen atom or a methyl group, A is a bond or a divalent group derived from a (poly) alkyleneoxy group, and n is 0
A dye-sensitized solar cell, which is held by a polymer compound containing a structural unit formed from a monomer represented by the following formula:
【請求項2】 一般式(I)のAが、式(II): 【化2】 (式中、aおよびbは同一または異なって、0または正
の整数であり、R3は水素原子またはメチル基である)
で表される2価の基である請求項1に記載の色素増感型
太陽電池。
2. A of the general formula (I) is represented by the formula (II): (Where a and b are the same or different and are 0 or a positive integer, and R 3 is a hydrogen atom or a methyl group)
The dye-sensitized solar cell according to claim 1, which is a divalent group represented by the formula:
【請求項3】 高分子化合物が、一般式(I)で表され
るモノマーと、メタクリル酸系モノマーおよび/または
アクリル酸系モノマーとの共重合体である請求項1また
は2に記載の色素増感型太陽電池。
3. The dye sensitizer according to claim 1, wherein the polymer compound is a copolymer of a monomer represented by the general formula (I) and a methacrylic acid-based monomer and / or an acrylic acid-based monomer. Sensitive solar cell.
【請求項4】 多孔性半導体層が、酸化チタンにより構
成されている請求項1〜3のいずれか1つに記載の色素
増感型太陽電池。
4. The dye-sensitized solar cell according to claim 1, wherein the porous semiconductor layer is made of titanium oxide.
【請求項5】 電解質が、ヨウ素とヨウ素化合物からな
る請求項1〜4のいずれか1つに記載の色素増感型太陽
電池。
5. The dye-sensitized solar cell according to claim 1, wherein the electrolyte comprises iodine and an iodine compound.
JP2000156733A 2000-01-26 2000-05-26 Dye-sensitized solar cell Expired - Lifetime JP4805442B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000156733A JP4805442B2 (en) 2000-05-26 2000-05-26 Dye-sensitized solar cell
US09/768,809 US6479745B2 (en) 2000-01-26 2001-01-25 Dye-sensitized solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000156733A JP4805442B2 (en) 2000-05-26 2000-05-26 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2001338700A true JP2001338700A (en) 2001-12-07
JP4805442B2 JP4805442B2 (en) 2011-11-02

Family

ID=18661482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000156733A Expired - Lifetime JP4805442B2 (en) 2000-01-26 2000-05-26 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4805442B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515783A (en) * 2003-11-17 2007-06-14 コミツサリア タ レネルジー アトミーク PN-semiconductor inorganic / organic hybrid material, method for producing the same, and photovoltaic cell containing the material
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP5374704B2 (en) * 2005-03-10 2013-12-25 国立大学法人茨城大学 Photophysical chemical battery
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123632A (en) * 1998-10-13 2000-04-28 Daiso Co Ltd Polymer solid electrolyte and its application
JP2000150006A (en) * 1998-11-06 2000-05-30 Daiso Co Ltd Photoelectric conversion element using polymer solid electrolyte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123632A (en) * 1998-10-13 2000-04-28 Daiso Co Ltd Polymer solid electrolyte and its application
JP2000150006A (en) * 1998-11-06 2000-05-30 Daiso Co Ltd Photoelectric conversion element using polymer solid electrolyte

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515783A (en) * 2003-11-17 2007-06-14 コミツサリア タ レネルジー アトミーク PN-semiconductor inorganic / organic hybrid material, method for producing the same, and photovoltaic cell containing the material
JP5374704B2 (en) * 2005-03-10 2013-12-25 国立大学法人茨城大学 Photophysical chemical battery
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP4805442B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
US6479745B2 (en) Dye-sensitized solar cell and method of manufacturing the same
EP1494246B1 (en) Solid electrolyte, photoelectric converter and process for producing the same
JP3982968B2 (en) Dye-sensitized solar cell using polymer electrolyte and method for producing the same
Wang et al. Exploitation of ionic liquid electrolyte for dye-sensitized solar cells by molecular modification of organic-dye sensitizers
EP1858108A1 (en) Modified titanium oxide microparticle and photoelectric transducer making use of the same
JP2004214129A (en) Photoelectric conversion element, its manufacturing method, electronic device, and its manufacturing method
EP1724871B1 (en) Composition for Preparing Polymer Electrolyte for use in Dye-Sensitized Solar Cell
JP2004220920A (en) Photoelectric conversion element
KR20050030759A (en) Dye-sensitized solar cell
JP2004234988A (en) Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
JP4312991B2 (en) Method for producing dye-sensitized solar cell
JP2004152613A (en) Dye-sensitized solar cell
JP2002222971A (en) Photoelectric converter
JP2006302530A (en) Dye-sensitized solar cell and its manufacturing method
JP2004335366A (en) Dye-sensitized solar cell
JP4561073B2 (en) Photoelectric conversion element and electronic device
JP2004235011A (en) Electrolyte liquid using iodine-cyclodextrin clathrate compound and photoelectric conversion device using same
JP4897226B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4805442B2 (en) Dye-sensitized solar cell
JP4344120B2 (en) Dye-sensitized solar cell
JP2002184477A (en) Optical semiconductor electrode, its method of manufacture, and photoelectric conversion element using the same
JP2005268107A (en) Dye-sensitized solar cell and its manufacturing method
JP2003249274A (en) Dye sensitized solar cell and its manufacturing method
JP2008041320A (en) Electrolyte composition for dye-sensitized solar cell
JP5439869B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Ref document number: 4805442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

EXPY Cancellation because of completion of term