JP2001338674A - Method of manufacturing secondary battery and seal stopper for battery - Google Patents

Method of manufacturing secondary battery and seal stopper for battery

Info

Publication number
JP2001338674A
JP2001338674A JP2000156930A JP2000156930A JP2001338674A JP 2001338674 A JP2001338674 A JP 2001338674A JP 2000156930 A JP2000156930 A JP 2000156930A JP 2000156930 A JP2000156930 A JP 2000156930A JP 2001338674 A JP2001338674 A JP 2001338674A
Authority
JP
Japan
Prior art keywords
outer container
battery
sealing plug
sealing
closed valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000156930A
Other languages
Japanese (ja)
Inventor
Masahiko Suzuki
正彦 鈴木
Hideaki Nagura
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2000156930A priority Critical patent/JP2001338674A/en
Publication of JP2001338674A publication Critical patent/JP2001338674A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To drastically simplify a manufacturing process, especially a process around initial charging, and to avoid corruption of a production facility and lowering of cell capacity, and also, to avoid futility of further removing seal stopper which is once equipped. SOLUTION: In the method of manufacturing a secondary battery in which an initial charging process is performed after containing the power generation component including an electrolyte in an exterior container 21 of a sealing structure, the above exterior container 21 is temporarily sealed by a seal stopper 4 of a quality of rubber elasticity which has a full-time closed valve 41 structure which can be opened by forced deformation operation from outside. After performing the above initial charging process by the temporarily sealed state, a gas-liquid separation operation of the above exterior container 21 is performed. Then, gas discharge in the above exterior container 21 is performed by operating the above seal stopper 4, and further, after this, the full-time closed valve 41 structure of the seal stopper 4 is closed, and a complete seal of the exterior container 21 is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は二次電池の製造方
法および電池用封止栓、とくに製造時にガス発生を伴う
初充電が行なわれるタイプの密閉型二次電池の製造方法
とそれに使用する電池用封止栓に関し、たとえばリチウ
ムイオン二次電池に適用して有効な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a secondary battery and a sealing plug for a battery, and more particularly to a method of manufacturing a sealed secondary battery of a type in which initial charging with gas generation is performed during manufacturing and a battery used therefor. The present invention relates to a sealing plug for use, for example, to a technique which is effective when applied to a lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、電子技術のめざましい進歩により
電子機器は小形・軽量化の方向に進み、それに伴い電池
も小形・軽量化が進められ、さらに高エネルギー密度の
ものへとの要求が高まっている。このような要求に応え
るものとして、最近は、リチウムイオン電池に代表され
る非水電解液二次電池が提供されて広く使用されるよう
になってきた。
2. Description of the Related Art In recent years, with the remarkable progress of electronic technology, electronic devices have been reduced in size and weight, and accordingly, batteries have also been reduced in size and weight, and the demand for high energy density batteries has increased. I have. In response to such demands, recently, non-aqueous electrolyte secondary batteries represented by lithium ion batteries have been provided and widely used.

【0003】その中でもリチウムイオン電池は、二次電
池として使用することができるとともに、他のタイプの
二次電池に比べて、エネルギー密度および電池電圧がそ
れぞれ高い、メモリー効果がなくサイクル寿命が長い、
電子の損失が少なく自己放電が少ないなどの利点がある
ため、とくに携帯電子機器用としての利用が進んでい
る。
Among them, a lithium ion battery can be used as a secondary battery, and has a higher energy density and a higher battery voltage, a longer memory life and a longer cycle life than other types of secondary batteries.
It has advantages such as a small loss of electrons and a small self-discharge, and is particularly used for portable electronic devices.

【0004】この種の二次電池の製造に際しては、即使
用可能な充電済み製品として完成させるために、製造の
最終段階にて初充電を行う必要がある。上述したリチウ
ムイオン二次電池の場合も製造の最終段階で初充電を行
うが、この初充電にはガス発生が伴う。このガス発生は
とくに初充電時に集中的に起きるので、密閉構造の外装
容器を使用する密閉型の二次電池では、その外装容器を
封止する前にその発生ガスを放出させる必要がある。
[0004] In the manufacture of this type of secondary battery, it is necessary to perform an initial charge at the final stage of the manufacture in order to complete a ready-to-use charged product. In the case of the above-described lithium ion secondary battery, initial charging is performed at the final stage of manufacturing, and this initial charging involves gas generation. This gas generation occurs intensively, especially at the time of initial charging. Therefore, in a sealed secondary battery using a sealed outer container, it is necessary to release the generated gas before sealing the outer container.

【0005】しかし、発生ガスを放出させるために電池
の外装容器を開放させたままで初充電を行うと、その外
装容器内の電解液がこぼれ、さらにこぼれた電解液が生
産設備に付着して腐蝕等の損傷を来す恐れがある。これ
を防ぐために、初充電は電池の外装容器を封止して行う
必要があるが、この場合は、初充電後に外装容器のガス
抜きを行う必要が生じる。
[0005] However, when the battery is initially charged with the battery outer container opened to release the generated gas, the electrolyte in the outer container spills, and the spilled electrolyte adheres to the production equipment and corrodes. Etc. may be damaged. In order to prevent this, the initial charge needs to be performed with the outer container of the battery sealed, but in this case, it is necessary to degas the outer container after the first charge.

【0006】そこで、従来は、初充電に先立って電池の
外装容器を取り外し可能な封止栓で密閉封止し、初充電
後にその封止栓をいったん取り外して容器内のガスを放
出させた後、その外装容器を再度封止し直すことで対応
していた。
Therefore, conventionally, prior to the first charge, the outer container of the battery is hermetically sealed with a removable sealing plug, and after the first charge, the sealing plug is once removed to release the gas in the container. This has been dealt with by resealing the outer container again.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た技術には、次のような問題のあることが判明した。す
なわち、電池の外装容器にいったん装着した封止栓を取
り外して、その外装容器を再度封止し直すという二重の
工程手間がかかる。また、いったん装着した封止栓は、
その取り外しの際に損傷あるいは破損することがあるた
め、必ずしも再利用はできない。さらに、封止栓を取り
外した瞬間に容器内圧が一気に開放されて、その容器内
の電解液が外部へ噴出し、これによって生産設備が汚損
されるとともに、完成電池の電解液が減量して電池容量
が低減させられてしまうことがある。
However, it has been found that the above technique has the following problems. That is, a double process of removing the sealing plug once attached to the battery outer container and resealing the outer container is required. Also, once the sealing stopper is attached,
Since it may be damaged or damaged during its removal, it cannot be reused. Furthermore, at the moment when the sealing stopper is removed, the pressure inside the container is released at a stretch, and the electrolyte in the container squirts to the outside, thereby contaminating the production equipment and reducing the amount of electrolyte in the completed battery. The capacity may be reduced.

【0008】この発明は、以上のような問題に鑑みてな
されたもので、その目的は、製造工程とくに初充電前後
での工程を大幅に簡略化するとともに、生産設備の汚損
や電池容量の低減を回避し、さらにいったん装着した封
止栓を取り外すという無駄も回避させることができる二
次電池の製造方法および電池用封止栓を提供することに
ある。
The present invention has been made in view of the above-mentioned problems, and has as its object to greatly simplify the manufacturing process, particularly before and after initial charging, and to reduce the contamination of production facilities and the reduction of battery capacity. It is an object of the present invention to provide a method of manufacturing a secondary battery and a battery sealing plug which can avoid waste and can also avoid waste of removing the sealing plug once attached.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明では、密閉構造の外装容器内に電解液を含む
発電要素を収納した後に初充電工程を行う二次電池の製
造方法において、外部からの加力変形操作で開弁させら
れる常閉弁構造を有するゴム弾性質の封止栓によって上
記外装容器を仮封止し、この仮封止状態で上記初充電工
程を行った後、上記外装容器内の気液分離操作を行って
から、上記封止栓を操作して上記外装容器内のガス放出
を行い、さらにこの後、上記封止栓の常閉弁構造を塞い
で上記外装容器の本封止を行う構成とした。このような
構成とすれば、いったん装着した封止栓を取り外して再
度封止し直すという二重の工程手間を省くことができる
とともに、ガス抜きの際の電解液の逸失を最小限に抑え
ることができ、さらに上記封止栓はそのまま残した状態
で完成電池の気密封止を担うことができる。これによ
り、製造工程とくに初充電前後での工程を大幅に簡略化
するとともに、生産設備の汚損や電池容量の低減を回避
し、さらにいったん装着した封止栓を取り外すという無
駄も回避させることができる(請求項1)。
Means for Solving the Problems In order to achieve the above object, the present invention provides a method for manufacturing a secondary battery, in which a power generation element containing an electrolyte is contained in an outer container having a closed structure and then a first charging step is performed. The outer container is temporarily sealed by a rubber elastic sealing stopper having a normally closed valve structure that can be opened by a force deformation operation from the outside, and after performing the first charging step in this temporarily sealed state, After performing the gas-liquid separation operation in the outer container, the sealing stopper is operated to release the gas in the outer container, and thereafter, the normally closed valve structure of the sealing stopper is closed to close the outer container. The container was completely sealed. With this configuration, it is possible to eliminate the double process of removing the sealing plug once attached and resealing it, and to minimize the loss of the electrolyte during degassing. In addition, it is possible to hermetically seal the completed battery while leaving the sealing plug as it is. This greatly simplifies the manufacturing process, especially before and after initial charging, and avoids the contamination of production equipment and the reduction of battery capacity, as well as the waste of removing the sealing plug once installed. (Claim 1).

【0010】また、前記封止栓として、電池の外装容器
に設けられたガス抜き孔を閉塞するゴム弾性質の封止栓
であって、外部からの加力変形操作で開弁させられて上
記外装容器のガス抜き路を形成する常閉弁構造を有する
電池用封止栓を使用すれば、たとえば合成系ゴムの一体
成形により得ることができる、低コスト化および量産化
に適した構成でもって、電池の外装容器に装着された状
態でのガス抜き作業を外部からの簡単な操作で円滑に行
わせることができる(請求項2)。
The sealing plug is a rubber-elastic sealing plug for closing a gas vent hole provided in an outer container of a battery, and the valve is opened by an externally applied deformation operation. If a battery sealing plug having a normally closed valve structure for forming a gas vent path of the outer container is used, for example, it can be obtained by integral molding of synthetic rubber, and has a configuration suitable for cost reduction and mass production. In addition, the degassing operation in a state where the battery is attached to the outer container of the battery can be smoothly performed by a simple operation from the outside (claim 2).

【0011】さらに、前記封止栓を、前記ガス抜き孔を
塞ぐ埋込部と前記外装容器の外壁面より突出する突起部
とが一体形成されているとともに、前記常閉弁構造とし
て、上記突起部の側部を特定方向から挟圧操作したとき
の弾性変形によって開口させられて前記ガス抜き路を形
成する切り込みが設けられた構成とすれば、常閉弁構造
を切り込みという非常に単純な構造によって簡単かつ確
実に構成することができるとともに、上記挟圧操作の加
減によって上記外装容器内のガスを電解液と区別して選
択的に抜く作業をさらに円滑に行わせることができる
(請求項3)。
Further, the sealing plug is formed integrally with an embedding portion for closing the gas vent hole and a projection projecting from an outer wall surface of the outer container. A very simple structure in which a normally closed valve structure is cut into a notch that is opened by elastic deformation when a side portion of the portion is pressed from a specific direction to form the gas vent path. In addition to this, it is possible to easily and reliably construct the apparatus, and it is possible to more smoothly perform the operation of selectively removing the gas in the outer container from the electrolyte by selectively controlling the pressing operation (claim 3). .

【0012】さらにまた、前記封止栓は、熱溶融性材料
で構成されるとともに、熱溶融によって塞がれる常閉弁
構造が形成された構成とすれば、たとえば適度に加熱し
たコテをあてて上記封止栓の表面を熱融着させるといっ
た非常に簡単な工程でもって、上記外装容器の本封止を
瞬時に効率良く行うことができる(請求項4)。
Further, if the sealing plug is made of a heat-fusible material and has a normally-closed valve structure which is closed by heat melting, for example, an appropriately heated iron may be applied. With a very simple process of heat-sealing the surface of the sealing plug, the final sealing of the outer container can be performed instantaneously and efficiently (claim 4).

【0013】[0013]

【発明の実施の形態】以下、この発明の好適な実施形態
について、添付図面に基づき詳細に説明する。なお、各
図間にて同一符号を付した部分は同一または相当部分を
示すものとする。図1はこの発明の製造方法が適用され
る二次電池の要部断面図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Note that the portions denoted by the same reference numerals between the drawings indicate the same or corresponding portions. FIG. 1 is a sectional view of a main part of a secondary battery to which the manufacturing method of the present invention is applied.

【0014】同図に示す二次電池1は角形リチウムイオ
ン二次電池であって、まず、密閉構造の外装容器21内
に電解液を含む発電要素が収納されている。外装容器2
1は負極端子を兼ねる有底角形筒状の金属缶であって、
その開口部は蓋部22によって塞がれている。蓋部22
には、ガスケット23を介して正極端子24が取り付け
られている。また、その蓋部22の一部にはガス抜き用
の小孔(ガス抜き孔)26が設けられているが、このガ
ス抜き小孔26はゴム弾性質の封止栓4で閉塞されてい
る。
The secondary battery 1 shown in FIG. 1 is a prismatic lithium ion secondary battery. First, a power generating element containing an electrolyte is housed in an outer container 21 having a sealed structure. Outer container 2
1 is a bottomed rectangular cylindrical metal can also serving as a negative electrode terminal,
The opening is closed by the lid 22. Lid 22
, A positive electrode terminal 24 is attached via a gasket 23. A small hole (gas vent hole) 26 for venting gas is provided in a part of the lid portion 22, and the vent hole 26 is closed by a rubber elastic sealing plug 4. .

【0015】上記外装容器21の内部には、発電要素と
して、コバルト酸リチウム(LiCoO)を活物質と
する正極31、ポリプロビレン製多孔質フィルムからな
るセパレータ32、炭素(黒鉛)を活物質とする負極3
3が電解液とともに収納されている。この場合、正極3
1と負極33はセパレータ32を挟んだ状態でシート状
に形成されるとともにスパイラル状に巻回され、この巻
回要素が上記外装容器21内に収納されている。
Inside the outer container 21, as a power generating element, a positive electrode 31 made of lithium cobalt oxide (LiCoO 2 ) as an active material, a separator 32 made of a porous film made of polypropylene, and carbon (graphite) as an active material. Negative electrode 3
3 is stored together with the electrolyte. In this case, the positive electrode 3
The negative electrode 1 and the negative electrode 33 are formed in a sheet shape with the separator 32 interposed therebetween, and are wound in a spiral shape. The wound element is accommodated in the outer container 21.

【0016】正極31と負極33はそれぞれ、図示を省
略するが、金属箔の集電体面に接触状態で層状に形成さ
れている。正極側の集電体は正極リード35を介して正
極端子24に接続され、負極側の集電体は負極リード3
7を介して負極端子を兼ねる外装容器21に接続されて
いる。
Although not shown, each of the positive electrode 31 and the negative electrode 33 is formed in a layered state in contact with a current collector surface of a metal foil. The current collector on the positive electrode side is connected to the positive electrode terminal 24 via the positive electrode lead 35, and the current collector on the negative electrode side is connected to the negative electrode lead 3.
7 is connected to an outer container 21 also serving as a negative electrode terminal.

【0017】上記封止栓4は、外部からの加力変形操作
で開弁させられて上記外装容器21のガス抜き路を形成
する常閉弁41の構造を有するものであって、同図に示
すように、押さえ部材27によって上記蓋部22に固定
されている。押さえ部材27は金属板を用いて形成さ
れ、上記封止栓4を上記ガス抜き用小孔26に嵌着させ
た状態で、上記蓋部22に溶接により固定されている。
The sealing plug 4 has the structure of a normally closed valve 41 which is opened by an externally applied deforming operation to form a gas vent path for the outer container 21. As shown, it is fixed to the lid 22 by a pressing member 27. The holding member 27 is formed using a metal plate, and is fixed to the lid 22 by welding with the sealing plug 4 fitted in the gas vent small hole 26.

【0018】図2は上記封止栓4の部分を取り出して示
す。まず、同図の(A)に示すように、上記封止栓4
は、エチレンプロピレン系ゴム、フッ素系ゴム、シリコ
ン系ゴムなどのゴム弾性質素材で形成されている。この
ゴム弾性質からなる封止栓4は、上記ガス抜き用小孔2
6を塞ぐ埋込部45と、上記外装容器21の上部外壁面
をなす蓋部22の表面より突出する突起部43とが一体
形成されている。また、その埋込部45と突起部43の
間には、上記押さえ部材27(図1)で固定するための
フランジ部44が一体形成されている。
FIG. 2 shows a part of the sealing plug 4 taken out. First, as shown in FIG.
Is formed of a rubber elastic material such as ethylene propylene rubber, fluorine rubber, or silicon rubber. The sealing plug 4 made of rubber elastic material is used for the gas vent small hole 2.
An embedding part 45 for closing the outer case 6 and a projection 43 protruding from the surface of the lid part 22 forming the upper outer wall surface of the outer container 21 are integrally formed. Further, a flange portion 44 for fixing with the pressing member 27 (FIG. 1) is integrally formed between the embedding portion 45 and the protruding portion 43.

【0019】この封止栓4には上下方向に貫通する切り
込み42が形成されている。この切り込み42は、外部
から加力操作を加えない定常状態では、同図の(A)に
示すように、封止栓4のゴム弾性によって密に閉じて気
密封止状態を保持しているが、同図の(B)に示すよう
に、上記突起部43の側部を特定方向すなわちこの場合
は側方から挟圧操作すると、この挟圧操作による弾性変
形によって開口させられて、上記外装容器21のガス抜
き路を形成する。つまり、上記切り込み42は、外部か
らの加力変形操作で開弁させられる常閉弁41の構造を
なしている。
A notch 42 is formed in the sealing plug 4 so as to penetrate in the vertical direction. The cut 42 is closed tightly by the rubber elasticity of the sealing plug 4 in the steady state where no external force is applied, as shown in FIG. As shown in FIG. 3B, when the side portion of the projection 43 is squeezed from a specific direction, that is, in this case, from the side, the projection 43 is opened by elastic deformation due to the squeezing operation, and the outer container is opened. 21 gas vent paths are formed. That is, the notch 42 has a structure of the normally closed valve 41 which is opened by an externally applied deformation operation.

【0020】上述のように構成された常閉弁41は、上
記突起部43の側方から機械的力を作用させる加力操作
を行ったときだけ開弁状態となって、上記容器21のガ
ス抜き路を形成するが、上記加力操作以外の力、すなわ
ち外装容器21の内圧によって作用する力に対しては、
上記切り込み42は密に閉じてままであって開弁作動は
行なわれない。つまり、外部から所定の加力操作が行な
われたときだけ開弁してガス抜き路を形成し、それ以外
の定常状態では封止状態を保っている。
The normally-closed valve 41 configured as described above is opened only when a force is applied from the side of the projection 43 to apply a mechanical force, and the gas in the container 21 is opened. Although forming an escape path, the force other than the above-described force operation, that is, the force acting due to the internal pressure of the outer container 21,
The notch 42 remains tightly closed and no valve opening operation is performed. In other words, the valve is opened only when a predetermined force operation is performed from the outside to form a gas vent path, and the sealed state is maintained in other steady states.

【0021】この場合、上記加力操作は、上記突起部4
3を鉗子あるいはピンセット状のもので挟むだけの簡単
な操作で良く、さらにその挟む力の加減によって切り込
み42の開き具合すなわち開弁の度合を任意に調節する
ことができる。
In this case, the pressing operation is performed by the protrusion 4
A simple operation of simply pinching 3 with forceps or tweezers is sufficient, and the degree of opening of the cut 42, that is, the degree of valve opening, can be arbitrarily adjusted by adjusting the pinching force.

【0022】次に、上述した電池封止栓4を用いた二次
電池の製造方法について述べる。まず、図1および図2
の(A)に示すように、密閉構造の外装容器21内に電
解液を含む発電要素を収納した初充電前の電池1構造を
形成するとともに、その外装容器21の蓋部22にあら
かじめ設けられたガス抜き小孔26を上記封止栓4で閉
塞封止した状態を形成する。この場合、外装容器21へ
の封止栓4の装着は、蓋部22を形成するときに行うの
が簡単であるが、初充電の直前に行ってもよい。この
後、上記封止栓4で封止された電池1に初充電を行う。
Next, a method of manufacturing a secondary battery using the battery sealing plug 4 will be described. First, FIGS. 1 and 2
As shown in (A), the battery 1 structure before the initial charge in which the power generation element containing the electrolytic solution is stored in the outer container 21 having a closed structure is formed, and the battery 1 is provided in advance on the lid portion 22 of the outer container 21. The gas vent small hole 26 is closed and sealed by the sealing plug 4. In this case, attachment of the sealing plug 4 to the outer container 21 is simple when forming the lid portion 22, but may be performed immediately before the first charge. Thereafter, the battery 1 sealed with the sealing plug 4 is initially charged.

【0023】この初充電の後、所定時間の静置または遠
心分離などによる気液分離操作を行ってから、図2の
(B)に示すように、上記封止栓4を外部から加力操作
して開弁させる。これにより、初充電時に発生して上記
外装容器21内に溜まっていたガスを放出させることが
できる。このとき、そのガスの放出は、封止栓を取り外
して容器内圧を一気に開放させるのと違って、上記切り
込み4が加力操作によって形成するスリット状のカス抜
き路を通して比較的緩慢に行なわれるため、容器21内
の電解液が勢い良く噴出するようなことはない。
After the initial charge, a gas-liquid separation operation such as standing or centrifugation is performed for a predetermined time, and then, as shown in FIG. And open the valve. Thereby, the gas generated at the time of the first charge and accumulated in the outer container 21 can be released. At this time, the gas is released relatively slowly through the slit-shaped scrap removing path formed by the force operation, unlike the case where the sealing stopper is removed and the internal pressure of the container is released at a stretch. In addition, the electrolyte in the container 21 does not spout vigorously.

【0024】初充電後のガス抜きが完了したならば、こ
の後、上記封止栓4の常閉弁41構造を塞いで上記外装
容器21の本封止を行う。この本封止は、たとえば適当
なシール材あるいは接着剤を上記切り込み42の上端
(外側端)に塗ってもよいが、上記封止栓4を熱溶融性
材料で構成した場合には、図2の(C)に示すように、
封止栓4の一部を熱溶融によって上記常閉弁構造を永久
的に塞ぐことができる。この場合、たとえば適度に加熱
したコテをあてて上記封止栓4の表面を熱融着させると
いった非常に簡単な工程操作でもって上記本封止を瞬時
に効率良く行うことができる。同図(C)中の符号46
は、その加熱融着により形成された永久閉塞部を示す。
After the degassing after the initial charge is completed, after that, the structure of the normally closed valve 41 of the sealing plug 4 is closed and the outer container 21 is fully sealed. In this final sealing, for example, a suitable sealing material or an adhesive may be applied to the upper end (outer end) of the cut 42, but when the sealing plug 4 is made of a heat-meltable material, the sealing plug 4 shown in FIG. As shown in (C) of
A part of the sealing plug 4 can permanently close the normally closed valve structure by thermal melting. In this case, the main sealing can be instantaneously and efficiently performed by a very simple process operation such as applying a suitably heated iron to thermally seal the surface of the sealing plug 4. Reference numeral 46 in FIG.
Indicates a permanent block formed by the heat fusion.

【0025】以上のようにして、この発明による二次電
池の製造方法では、いったん装着した封止栓を取り外し
て再度封止し直すという二重の工程手間を省くことがで
きるとともに、ガス抜きの際の電解液の逸失を最小限に
抑えることができ、さらに上記封止栓はそのまま残した
状態で完成電池の気密封止を担うことができる。これに
より、製造工程とくに初充電前後での工程を大幅に簡略
化するとともに、生産設備の汚損や電池容量の低減を回
避し、さらにいったん装着した封止栓を取り外すという
無駄も回避させることができる。
As described above, in the method for manufacturing a secondary battery according to the present invention, the double step of removing the sealing plug once attached and resealing it can be omitted, and the degassing process can be performed. In this case, the loss of the electrolyte can be minimized, and the sealed battery can be hermetically sealed while the sealing plug is left as it is. This greatly simplifies the manufacturing process, especially before and after initial charging, and avoids the contamination of production equipment and the reduction of battery capacity, as well as the waste of removing the sealing plug once installed. .

【0026】[0026]

【実施例】以下、本発明をその代表的な実施例によって
さらに具体的に詳述する。
The present invention will be described below in more detail with reference to typical examples.

【0027】(実施例)図1に示した構造の角形リチウ
ムイオン二次電池を幅34mm,高さ48.0mm,厚
さ8.6mmの寸法サイズで製作した。
EXAMPLE A rectangular lithium ion secondary battery having the structure shown in FIG. 1 was manufactured in dimensions of 34 mm in width, 48.0 mm in height, and 8.6 mm in thickness.

【0028】この場合、正極31は次のように作製し
た。正極活物質であるLiCoOと、導電剤であるカ
ーボン粉末とポリテトラフルオロエチレン(以下PTF
Eと称す)の水性ディスパージョンとを、重量比(質量
比)で100:10:10の割合で混合したものを攪拌
し、これを水でペースト状に混練する。この混練合剤を
アルミニウム箔の両面に塗布する。これを乾燥および圧
延して所定の形状および大きさに裁断する。上記アルミ
ニウム箔は正極集電体をなすものであって、その表面の
合剤の一部を掻き取って、ここに正極リード35をスポ
ット溶接した。なお、上記混合比において、PTFE水
性ディスパージョンの割合は固形成分の割合である。
In this case, the positive electrode 31 was manufactured as follows. LiCoO 2 as a positive electrode active material, carbon powder as a conductive agent, and polytetrafluoroethylene (hereinafter, PTF)
E)) and a mixture in a weight ratio (mass ratio) of 100: 10: 10 is stirred, and the mixture is kneaded into a paste with water. This kneading mixture is applied to both sides of the aluminum foil. This is dried and rolled and cut into a predetermined shape and size. The aluminum foil was used as a positive electrode current collector. A part of the mixture on the surface was scraped off, and the positive electrode lead 35 was spot-welded thereto. In the above mixing ratio, the ratio of the aqueous PTFE dispersion is the ratio of the solid components.

【0029】負極33は次のように作製した。炭素粉末
とPTFE水性ディスパージョンとを重量比で100:
3の割合で配合したものを水で混練しする。この混練合
剤を銅箔に塗布する。これを乾燥および圧延して所定の
形状および大きさに裁断する。上記銅箔は負極集電体を
なすものであって、その表面の合剤の一部を掻き取っ
て、ここに負極リード37をスポット溶接した。
The negative electrode 33 was manufactured as follows. The carbon powder and the PTFE aqueous dispersion are in a weight ratio of 100:
The mixture prepared at a ratio of 3 is kneaded with water. This kneading mixture is applied to a copper foil. This is dried and rolled and cut into a predetermined shape and size. The copper foil was used as a negative electrode current collector. A part of the mixture on the surface was scraped off, and the negative electrode lead 37 was spot-welded thereto.

【0030】電解液は非水電解液であって、次のように
調製した。六弗化燐酸リチウム(LiPF)を、エチ
レンカーボネート(EC)とエチルメチルカーボネート
(EMC)とジメチルカーボネート(DMC)との比が
40:40:20の混合溶媒に1M/Lの割合で溶解し
たものを使用した。
The electrolyte was a non-aqueous electrolyte and was prepared as follows. Lithium hexafluorophosphate (LiPF 6 ) was dissolved at a ratio of 1 M / L in a mixed solvent of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a ratio of 40:40:20. One used.

【0031】封止栓4は、図2に示した切り込み42付
のものを熱溶融性の合成系ゴムで構成し、初充電工程後
にその表面を熱融着によって永久閉塞した。
The sealing plug 4 having the cut 42 shown in FIG. 2 was made of a heat-fusible synthetic rubber, and the surface thereof was permanently closed by heat fusion after the initial charging step.

【0032】(比較例)上記実施例にて使用した切り込
み42付の封止栓4に代えて、切り込み42を有しない
通常の完全閉塞型ゴム栓を使用して、比較例のリチウム
イオン二次電池を作製した。封止栓以外は上述した実施
例と同様の構成である。
(Comparative Example) Instead of the sealing plug 4 with the notch 42 used in the above embodiment, an ordinary completely closed rubber plug having no notch 42 was used. A battery was manufactured. Except for the sealing stopper, the configuration is the same as that of the above-described embodiment.

【0033】上述した実施例の電池と比較例の電池を用
いて次のような試験を行った。 (試験1)この試験1では、本発明による切り込み42
付封止栓4が常閉弁41として機能するかどうかを、次
のような試験2によって確認した。まず、参照例1とし
て、外装容器21のガス抜き小孔26に圧力センサーを
直接取り付け、初充電によって上昇した上記容器21内
の圧力を測定した。この場合、外装容器21のガス抜き
小孔26は封止栓4では塞がれていないが、圧力センサ
ーの取り付けによって完全に気密閉塞されている。次
に、試験例1として、本発明の切り込み42付封止栓4
で外装容器21のガス抜き小孔26を封止した状態で初
充電を行った。この初充電が終了した後、上記封止栓4
に圧力センサーを取り付けて、上記封止栓4を加力操作
により開弁させたときに放出されるガスの圧力から、初
充電によって上昇した上記容器21内の圧力を間接的に
測定した。上述した測定を参照例と試験例とでそれぞれ
3回ずつ行って次のような結果1を得た。なお、圧力の
単位はそれぞれkgf/cmである。
The following tests were performed using the batteries of the above-described examples and the batteries of the comparative examples. (Test 1) In this test 1, the cut 42 according to the present invention was used.
It was confirmed by the following Test 2 whether or not the sealing stopper 4 functions as the normally closed valve 41. First, as Reference Example 1, a pressure sensor was directly attached to the gas vent small hole 26 of the outer container 21, and the pressure inside the container 21 increased by the initial charge was measured. In this case, the vent hole 26 of the outer container 21 is not closed by the sealing plug 4, but is completely airtightly closed by the attachment of the pressure sensor. Next, as Test Example 1, the sealing plug 4 with the notch 42 of the present invention was used.
The first charging was performed in a state where the vent hole 26 of the outer container 21 was sealed. After the initial charging is completed, the sealing plug 4
The pressure inside the container 21 increased by the initial charge was indirectly measured from the pressure of the gas released when the sealing plug 4 was opened by a force operation. The above measurement was performed three times in each of the reference example and the test example, and the following result 1 was obtained. The unit of the pressure is kgf / cm 2 .

【0034】[0034]

【表1】 [Table 1]

【0035】上記の結果から、初充電によって発生する
ガスは、本発明の切り込み42付封止栓4によってほぼ
完全に外装容器21内に閉じ込められていることがわか
る。このことは、本発明の封止栓4が外装容器21を確
実に仮封止できることを意味する。
From the above results, it can be seen that the gas generated by the initial charge is almost completely confined in the outer container 21 by the sealing plug 4 with the notch 42 of the present invention. This means that the sealing plug 4 of the present invention can securely temporarily seal the outer container 21.

【0036】(試験2)初充電後のガス抜き工程にてガ
ス放出とともに噴出して逸失する電解液の量を、次のよ
うな試験2によって評価した。試験例2として、上述し
た実施例の構造の二次電池1を使用し、この電池の総重
量を精密計測した後、初充電を行った。この後、若干の
気液分離時間を置いた後、本発明の切り込み付42封止
栓4を加力操作により開弁させてガス抜きを行った。そ
して、このガス抜きが終了した電池の重量を再び精密計
測して、初充電前の重量からの減量分−ΔWを求めた。
その間、他の減量要因は無いので、その重量減量分ΔW
はほぼ電解液の減量分とみなすことができる。参照例2
として、上述した比較例の構造の二次電池、すなわち上
記実施例の電池1の封止栓4だけを通常の完全閉塞型ゴ
ム栓に代えたものを使って、上記試験例2と同様に、初
充電前とガス抜き後にそれぞれ電池総重量の精密計測を
行い、初充電前の重量からの減量分−ΔWを求めた。こ
の場合、初充電後のガス抜きは上記完全閉塞型ゴム栓を
取り外して行った。また、ガス抜き後の総重量測定は、
取り外したゴム栓も含めた状態で行った。上述した測定
を参照例と試験例とでそれぞれ3回ずつ行って次のよう
な結果2を得た。なお、重量減少分−ΔWの単位はそれ
ぞれgである。
(Test 2) In the degassing step after the initial charge, the amount of the electrolytic solution which was ejected and lost with the release of gas was evaluated by the following Test 2. As Test Example 2, the secondary battery 1 having the structure of the above-described embodiment was used, and after the total weight of the battery was precisely measured, initial charging was performed. Thereafter, after a slight gas-liquid separation time, the notched 42 sealing stopper 4 of the present invention was opened by a force operation to release gas. Then, the weight of the battery after degassing was precisely measured again, and a weight loss -ΔW from the weight before the first charge was obtained.
During that time, there is no other weight loss factor, so the weight loss ΔW
Can be regarded as a reduction in the amount of the electrolyte. Reference example 2
In the same manner as in Test Example 2 above, using a secondary battery having the structure of the above-described comparative example, that is, a battery in which only the sealing plug 4 of the battery 1 of the above-described embodiment was replaced with a normal completely closed rubber plug was used. Precise measurement of the total battery weight was performed before the first charge and after degassing, respectively, and a weight loss -ΔW from the weight before the first charge was obtained. In this case, degassing after the first charge was performed by removing the completely closed rubber stopper. Also, the total weight measurement after degassing is
The test was performed with the rubber stopper removed. The measurement described above was performed three times in each of the reference example and the test example, and the following result 2 was obtained. The unit of the weight loss -ΔW is g.

【0037】[0037]

【表2】 [Table 2]

【0038】上記の結果により、本発明の封止栓4を使
用した製造方法では、ガス抜きによる電解液の減量を従
来よりも大幅に少なくすることができ、これにより電池
容量の低下も大幅に小さくすることができる、というこ
とが実証された。
According to the above results, in the manufacturing method using the sealing plug 4 of the present invention, it is possible to greatly reduce the amount of electrolyte solution due to degassing as compared with the conventional method, thereby greatly reducing the battery capacity. It has been demonstrated that it can be made smaller.

【0039】(試験3)ガス抜き後の本封止が完全にな
されているかどうかを、次のような試験3によって確認
した。試験例3として、上述した実施例の構造の二次電
池1を使用し、初充電およびその後のガス抜き工程後
に、本発明の封止栓4の切り込み42による常閉弁構造
を加熱融着により塞いで本封止を行った。この本封止を
行った電池を恒温槽にて80℃で3ヶ月保存し、その保
存による電池の重量減少分−ΔWを測定した。参照例3
として、上述した比較例の構造の二次電池、すなわち上
記実施例の電池1の封止栓4だけを通常の完全閉塞型ゴ
ム栓に代えたものを使って、上記試験例3と同様に、本
封止された電池を恒温槽にて80℃で3ヶ月保存し、そ
の保存による電池の重量減少分−ΔWを測定した。この
場合の電池重量の減少分−ΔWは、封止が不完全な場合
に逸失される電解液の減量を反映する。したがって、そ
の減少分−ΔWが少ないほど封止が完全であるという指
標にすることができる。上述した測定を参照例と試験例
とでそれぞれ3回ずつ行って次のような結果3を得た。
なお、重量減少分−ΔWの単位はそれぞれgである。
(Test 3) It was confirmed by the following test 3 whether or not the main sealing after degassing was completely performed. As Test Example 3, the secondary battery 1 having the structure of the above-described embodiment was used, and after the initial charge and the subsequent degassing process, the normally closed valve structure with the cut 42 of the sealing plug 4 of the present invention was heated and fused. The main sealing was performed by closing. The completely sealed battery was stored in a thermostat at 80 ° C. for 3 months, and the weight loss −ΔW of the battery due to the storage was measured. Reference example 3
In the same manner as in Test Example 3 above, a secondary battery having the structure of the above-described comparative example, that is, a battery in which only the sealing plug 4 of the battery 1 of the above embodiment was replaced with a normal completely closed rubber plug, The sealed battery was stored at 80 ° C. for 3 months in a thermostat, and the weight loss ΔW of the battery due to the storage was measured. In this case, the amount of decrease in battery weight -ΔW reflects the decrease in the amount of electrolyte that is lost when sealing is incomplete. Therefore, it can be used as an index that the smaller the amount of decrease -ΔW, the more complete the sealing. The above measurement was performed three times in each of the reference example and the test example, and the following result 3 was obtained.
The unit of the weight loss -ΔW is g.

【0040】[0040]

【表3】 [Table 3]

【0041】上記の結果によれば、試験例3と参照例3
はほぼ同じような重量減少傾向を示し、両者間にとくに
有意な差はない。このことは、本発明の封止栓4によっ
て得られる封止状態が、通常の完全閉塞型ゴム栓によっ
て得られる封止状態に比べて遜色がないことを意味して
いる。
According to the above results, Test Example 3 and Reference Example 3
Show almost the same tendency to decrease in weight, and there is no significant difference between them. This means that the sealed state obtained by the sealing plug 4 of the present invention is not inferior to the sealing state obtained by a normal completely closed rubber plug.

【0042】[0042]

【発明の効果】以上説明したように、本発明による二次
電池の製造方法によれば、密閉構造の外装容器内に電解
液を含む発電要素を収納した後に初充電工程を行う二次
電池の製造方法において、外部からの加力変形操作で開
弁させられる常閉弁構造を有するゴム弾性質の封止栓に
よって上記外装容器を仮封止し、この仮封止状態で上記
初充電工程を行った後、上記外装容器内の気液分離操作
を行ってから、上記封止栓を操作して上記外装容器内の
ガス放出を行い、さらにこの後、上記封止栓の常閉弁構
造を塞いで上記外装容器の本封止を行うことにより、い
ったん装着した封止栓を取り外して再度封止し直すとい
う二重の工程手間を省くことができるとともに、ガス抜
きの際の電解液の逸失を最小限に抑えることができ、さ
らに上記封止栓はそのまま残した状態で完成電池の気密
封止を担うことができる。
As described above, according to the method of manufacturing a secondary battery according to the present invention, the secondary battery is subjected to the initial charging step after the power generation element containing the electrolyte is housed in the outer container having the closed structure. In the manufacturing method, the outer container is temporarily sealed with a rubber elastic sealing stopper having a normally closed valve structure that can be opened by an externally applied deformation operation, and the first charging step is performed in the temporarily sealed state. After performing, after performing the gas-liquid separation operation in the outer container, gas is released in the outer container by operating the sealing plug, and further thereafter, the normally closed valve structure of the sealing plug By performing the main sealing of the outer container while closing, the double process of removing the sealing plug once mounted and resealing can be omitted, and the loss of the electrolyte during degassing is achieved. Can be minimized. It can be in a state in which the leave of the responsible for the hermetic sealing of the finished battery.

【0043】これにより、製造工程とくに初充電前後で
の工程を大幅に簡略化するとともに、生産設備の汚損や
電池容量の低減を回避し、さらにいったん装着した封止
栓を取り外すという無駄も回避させることができる。
This greatly simplifies the manufacturing process, especially before and after the first charge, and avoids contamination of production equipment and reduction of battery capacity, and also avoids wasteful removal of the once installed sealing plug. be able to.

【0044】また、前記封止栓として、電池の外装容器
に設けられたガス抜き孔を閉塞するゴム弾性質の封止栓
であって、外部からの加力変形操作で開弁させられて上
記外装容器のガス抜き路を形成する常閉弁構造を有する
電池用封止栓を使用すれば、たとえば合成系ゴムの一体
成形により得ることができる、低コスト化および量産化
に適した構成でもって、電池の外装容器に装着された状
態でのガス抜き作業を外部からの簡単な操作で円滑に行
わせることができる。
The sealing plug is a rubber-elastic sealing plug for closing a gas vent hole provided in an outer container of the battery, and is opened by an externally applied deformation operation. If a battery sealing plug having a normally closed valve structure for forming a gas vent path of the outer container is used, for example, it can be obtained by integral molding of synthetic rubber, and has a configuration suitable for cost reduction and mass production. In addition, the degassing operation in a state of being mounted on the battery outer container can be smoothly performed by a simple operation from the outside.

【0045】さらに、前記封止栓を、前記ガス抜き孔を
塞ぐ埋込部と前記外装容器の外壁面より突出する突起部
とが一体形成されているとともに、前記常閉弁構造とし
て、上記突起部の側部を特定方向から挟圧操作したとき
の弾性変形によって開口させられて前記ガス抜き路を形
成する切り込みが設けられた構成とすれば、常閉弁構造
を切り込みという非常に単純な構造によって簡単かつ確
実に構成することができるとともに、上記挟圧操作の加
減によって上記外装容器内のガスを電解液と区別して選
択的に抜く作業をさらに円滑に行わせることができる。
Further, the sealing plug is formed integrally with an embedding portion for closing the gas vent hole and a projection projecting from an outer wall surface of the outer container. A very simple structure in which a normally closed valve structure is cut into a notch that is opened by elastic deformation when a side portion of the portion is pressed from a specific direction to form the gas vent path. Thus, the configuration can be made simpler and more reliable, and the operation of selectively removing the gas in the outer container from the electrolyte by selectively controlling the pressure operation can be performed more smoothly.

【0046】さらにまた、前記封止栓は、熱溶融性材料
で構成されるとともに、熱溶融によって塞がれる常閉弁
構造が形成された構成とすることにより、たとえば適度
に加熱したコテをあてて上記封止栓の表面を熱融着させ
るといった非常に簡単な工程でもって、上記外装容器の
本封止を瞬時に効率良く行うことができる。
Further, the sealing plug is made of a heat-fusible material and has a normally-closed valve structure which is closed by the heat melting, so that, for example, an appropriately heated iron can be applied. In a very simple step of heat-sealing the surface of the sealing plug, the final sealing of the outer container can be performed instantaneously and efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の製造方法が適用される二次電池の要
部断面図である。
FIG. 1 is a sectional view of a main part of a secondary battery to which a manufacturing method of the present invention is applied.

【図2】本発明による封止栓を実施形態を示す側面図お
よび上面図である。
FIG. 2 is a side view and a top view showing an embodiment of the sealing plug according to the present invention.

【符号の説明】[Explanation of symbols]

1 電池 21 外装容器(負極端子を兼ねる) 22 蓋部 23 ガスケット 24 正極端子 26 ガス抜き小孔 27 押さえ部材 31 正極 32 セパレータ 33 負極 35 正極リード 37 負極リード 4 封止栓 41 常閉弁 42 常閉弁を形成する切り込み 43 突起部 44 フランジ部 45 埋込部 46 永久閉塞部 DESCRIPTION OF SYMBOLS 1 Battery 21 Outer container (also serving as negative electrode terminal) 22 Lid 23 Gasket 24 Positive electrode terminal 26 Degassing small hole 27 Pressing member 31 Positive electrode 32 Separator 33 Negative electrode 35 Positive electrode lead 37 Negative electrode lead 4 Sealing plug 41 Normally closed valve 42 Normally closed Notch forming a valve 43 Projection 44 Flange 45 Embedding 46 Permanent closure

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H012 AA01 BB02 BB04 CC01 DD02 EE01 GG05 JJ02 JJ06 5H028 AA01 BB01 BB10 CC00 EE06 FF04 5H029 AJ14 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 CJ16 DJ03 EJ12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H012 AA01 BB02 BB04 CC01 DD02 EE01 GG05 JJ02 JJ06 5H028 AA01 BB01 BB10 CC00 EE06 FF04 5H029 AJ14 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 CJ16 DJ03 EJ12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 密閉構造の外装容器内に電解液を含む発
電要素を収納した後に初充電工程を行う二次電池の製造
方法において、外部からの加力変形操作で開弁させられ
る常閉弁構造を有するゴム弾性質の封止栓によって上記
外装容器を仮封止し、この仮封止状態で上記初充電工程
を行った後、上記外装容器内の気液分離操作を行ってか
ら、上記封止栓を操作して上記外装容器内のガス放出を
行い、さらにこの後、上記封止栓の常閉弁構造を塞いで
上記外装容器の本封止を行うこと特徴とする二次電池の
製造方法。
1. A method of manufacturing a secondary battery in which a power generation element containing an electrolyte is stored in an outer container having a closed structure and a first charging step is performed, wherein a normally-closed valve is opened by an externally applied deformation operation. The outer container is temporarily sealed with a rubber-elastic sealing stopper having a structure, and after performing the first charging step in this temporarily sealed state, performing a gas-liquid separation operation in the outer container, Operate a sealing stopper to release gas in the outer container, and thereafter, further close the normally closed valve structure of the sealing stopper to perform the main sealing of the outer container. Production method.
【請求項2】 電池の外装容器に設けられたガス抜き孔
を閉塞するゴム弾性質の封止栓であって、外部からの加
力変形操作で開弁させられて上記外装容器のガス抜き路
を形成する常閉弁構造を有することを特徴とする電池用
封止栓。
2. A rubber-elastic sealing plug for closing a gas vent hole provided in an outer container of a battery, wherein the valve is opened by an externally applied deforming operation and the gas vent path of the outer container. A sealing plug for a battery having a normally closed valve structure for forming a sealing plug.
【請求項3】 前記ガス抜き孔を塞ぐ埋込部と前記外装
容器の外壁面より突出する突起部とが一体形成されてい
るとともに、前記常閉弁構造として、上記突起部の側部
を特定方向から挟圧操作したときの弾性変形によって開
口させられて前記ガス抜き路を形成する切り込みが設け
られていることを特徴とする請求項2に記載の電池用封
止栓。
3. An embedding portion for closing the gas vent hole and a projection projecting from an outer wall surface of the outer container are integrally formed, and a side portion of the projection is specified as the normally closed valve structure. The sealing plug for a battery according to claim 2, wherein a notch is formed to be opened by elastic deformation when the pinching operation is performed from the direction to form the gas vent path.
【請求項4】 熱溶融性材料で構成されるとともに、熱
溶融によって塞がれる常閉弁構造が形成されていること
を特徴とする請求項2または3に記載の電池用封止栓。
4. The sealing plug for a battery according to claim 2, wherein the sealing plug for a battery is formed of a heat-fusible material and has a normally-closed valve structure which is closed by the heat melting.
JP2000156930A 2000-05-26 2000-05-26 Method of manufacturing secondary battery and seal stopper for battery Pending JP2001338674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000156930A JP2001338674A (en) 2000-05-26 2000-05-26 Method of manufacturing secondary battery and seal stopper for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000156930A JP2001338674A (en) 2000-05-26 2000-05-26 Method of manufacturing secondary battery and seal stopper for battery

Publications (1)

Publication Number Publication Date
JP2001338674A true JP2001338674A (en) 2001-12-07

Family

ID=18661637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000156930A Pending JP2001338674A (en) 2000-05-26 2000-05-26 Method of manufacturing secondary battery and seal stopper for battery

Country Status (1)

Country Link
JP (1) JP2001338674A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347035A (en) * 2004-06-01 2005-12-15 Yuasa Corp Control valve type lead acid storage battery
KR100779002B1 (en) 2005-12-23 2007-11-22 삼성에스디아이 주식회사 Lithium rechargeable battery and method of making the same
KR100846986B1 (en) * 2005-12-20 2008-07-17 삼성에스디아이 주식회사 Lithium rechargeable battery and Method of making the same and Gas emitting device for the same
KR100879465B1 (en) * 2002-09-06 2009-01-20 삼성에스디아이 주식회사 Secondary battery
WO2009096135A1 (en) 2008-01-31 2009-08-06 Toyota Jidosha Kabushiki Kaisha Sealed type cell manufacturing method
JP2009295595A (en) * 2009-09-17 2009-12-17 Toyota Motor Corp Closed battery manufacturing method
WO2013146596A1 (en) * 2012-03-30 2013-10-03 エリーパワー株式会社 Test battery case and test battery
CN113394524A (en) * 2021-06-30 2021-09-14 苏州清陶新能源科技有限公司 Sealing assembly and battery negative pressure formation and secondary liquid supplementing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879465B1 (en) * 2002-09-06 2009-01-20 삼성에스디아이 주식회사 Secondary battery
JP2005347035A (en) * 2004-06-01 2005-12-15 Yuasa Corp Control valve type lead acid storage battery
KR100846986B1 (en) * 2005-12-20 2008-07-17 삼성에스디아이 주식회사 Lithium rechargeable battery and Method of making the same and Gas emitting device for the same
KR100779002B1 (en) 2005-12-23 2007-11-22 삼성에스디아이 주식회사 Lithium rechargeable battery and method of making the same
WO2009096135A1 (en) 2008-01-31 2009-08-06 Toyota Jidosha Kabushiki Kaisha Sealed type cell manufacturing method
US9099754B2 (en) 2008-01-31 2015-08-04 Toyota Jidosha Kabushiki Kaisha Sealed type cell manufacturing method
JP2009295595A (en) * 2009-09-17 2009-12-17 Toyota Motor Corp Closed battery manufacturing method
WO2013146596A1 (en) * 2012-03-30 2013-10-03 エリーパワー株式会社 Test battery case and test battery
JPWO2013146596A1 (en) * 2012-03-30 2015-12-14 エリーパワー株式会社 Test battery case and test battery
US9935344B2 (en) 2012-03-30 2018-04-03 Eliiy Power Co., Ltd. Test battery case and test battery
CN113394524A (en) * 2021-06-30 2021-09-14 苏州清陶新能源科技有限公司 Sealing assembly and battery negative pressure formation and secondary liquid supplementing method
CN113394524B (en) * 2021-06-30 2023-11-10 苏州清陶新能源科技有限公司 Sealing assembly and battery negative pressure formation and secondary fluid infusion method

Similar Documents

Publication Publication Date Title
JP5504250B2 (en) Enclosure for sealed electrochemical cell
US6468692B1 (en) Lithium secondary battery with sealed casing members
US20070009785A1 (en) Sealed rechargeable battery
KR100467698B1 (en) Cylindrical type lithium secondary battery and the fabrication method of the same
JP4236308B2 (en) Lithium ion battery
KR20080011477A (en) Pouch-type secondary battery having an non-sealing residue portion
JP2003249259A (en) Battery pack
KR20100118394A (en) Pouch-type secondary battery comprising a portion of non-sealing residue
JP2002313290A (en) Electrochemical cell
JP2006252848A (en) Sealed battery and its manufacturing method
KR100804522B1 (en) Method for manufacturing secondary battery
US4822377A (en) Method for sealing an electrochemical cell employing an improved reinforced cover assembly
JP4284719B2 (en) Battery with spiral electrode and method for manufacturing the same
JP2001338674A (en) Method of manufacturing secondary battery and seal stopper for battery
JP2017045715A (en) Nonaqueous electrolyte secondary battery
JPH09199106A (en) Explosion-proof sealing plate for secondary cell
JP2005222757A (en) Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery
KR100528900B1 (en) Secondary battery and method for making the same
KR20080018471A (en) Rechageable battery
KR100998847B1 (en) Wrapping Member of Beading Portion and Cylindrical Battery Employed with the Same
KR101075879B1 (en) Process for Preparing Cylindrical Battery to Prevent Deformation of Beading Portion
JP2003086171A (en) Secondary battery
KR102149297B1 (en) Secondary battery
JP2000251949A (en) Sealed storage battery
KR100664575B1 (en) Battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917