JP2001335938A - Method for reducing particle - Google Patents

Method for reducing particle

Info

Publication number
JP2001335938A
JP2001335938A JP2000157798A JP2000157798A JP2001335938A JP 2001335938 A JP2001335938 A JP 2001335938A JP 2000157798 A JP2000157798 A JP 2000157798A JP 2000157798 A JP2000157798 A JP 2000157798A JP 2001335938 A JP2001335938 A JP 2001335938A
Authority
JP
Japan
Prior art keywords
substrate
plasma
gas
particles
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000157798A
Other languages
Japanese (ja)
Other versions
JP3790410B2 (en
Inventor
Hitoshi Sakamoto
仁志 坂本
Kenjiro Uemitsu
憲二郎 上満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000157798A priority Critical patent/JP3790410B2/en
Publication of JP2001335938A publication Critical patent/JP2001335938A/en
Application granted granted Critical
Publication of JP3790410B2 publication Critical patent/JP3790410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of particles in a treatment chamber except the time of operation. SOLUTION: In this method: after film deposition on the surface of a substrate, the introduction of source gas is stopped, in a state where plasma is produced, to oxidize particles and reduce them; the substrate is carried out in the state where plasma is produced; after the carrying-out of the substrate, gaseous NF3 in an amount enough to vaporize the particles in the gaseous phase is introduced into the deposition chamber; after the vaporization of the particles in the gaseous phase, the feed of the gaseous NF3 is stopped; and then the substrate is carried in. By this method, the number of the particles during the time except for treatment can be reduced, and the falling of the particles on the treated substrate and a supporting stand can be reduced, and further, the re-adhesion of the particles to the substrate which is carried in can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマを生成し
て基板の表面に処理を施す処理装置において、非処理時
における処理室内のパーティクルを低減するパーティク
ル低減方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle reduction method for reducing particles in a processing chamber when processing is not performed in a processing apparatus that generates plasma and performs processing on the surface of a substrate.

【0002】[0002]

【従来の技術】現在、半導体の製造では、プラズマCV
D(Chemical Vapor Deposition) 装置を用いた成膜が知
られている。プラズマCVD装置は、膜の材料となる材
料ガスを容器内の成膜室の中に導入してプラズマ状態に
し、プラズマ中の活性な励起原子によって基板表面の化
学的な反応を促進して成膜を行う装置である。プラズマ
CVD装置においては、基板への成膜が完了すると、材
料ガスの供給を停止すると共にプラズマをオフ状態にし
て成膜室から搬送室に基板を移送し、新たな基板を成膜
室に搬入して、再び材料ガスを供給すると共に成膜室内
をプラズマ状態にして成膜を行ってている。
2. Description of the Related Art At present, in semiconductor manufacturing, plasma CV is used.
Film formation using a D (Chemical Vapor Deposition) apparatus is known. In a plasma CVD apparatus, a material gas serving as a material of a film is introduced into a film forming chamber in a container to be in a plasma state, and a chemical reaction on a substrate surface is promoted by active excited atoms in the plasma to form a film. It is a device for performing. In the plasma CVD apparatus, when the film formation on the substrate is completed, the supply of the material gas is stopped, the plasma is turned off, the substrate is transferred from the film formation chamber to the transfer chamber, and a new substrate is loaded into the film formation chamber. Then, the material gas is supplied again, and the film is formed in a plasma state in the film formation chamber.

【0003】[0003]

【発明が解決しようとする課題】プラズマ中には微粒子
がパーティクルとなって飛散しているため、基板の成膜
が完了してプラズマをオフ状態にした瞬間に、成膜後の
基板にパーティクルが落下して堆積する虞が生じてしま
う。また、基板を搬出した後であっても、支持台上にパ
ーティクルが落下して搬入された基板の裏面にパーティ
クルが付着する虞が生じてしまう。プラズマCVD装置
では、成膜が完了した後の基板上や基板搬送後の支持台
上にパーティクルが堆積する虞があるが、特別な処置を
施していないのが現状であった。
Since fine particles are scattered as particles in the plasma, the particles are deposited on the substrate after film formation at the moment when the film formation of the substrate is completed and the plasma is turned off. There is a risk of falling and accumulating. Further, even after the substrate is unloaded, there is a possibility that the particles may fall on the support table and adhere to the back surface of the loaded substrate. In the plasma CVD apparatus, particles may be deposited on the substrate after the film formation is completed or on the support table after the substrate is transferred, but at present, no special treatment is performed.

【0004】本発明は上記状況に鑑みてなされたもの
で、プラズマ処理装置において非処理時におけるパーテ
ィクルを低減することができるパーティクル低減方法を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a particle reduction method capable of reducing particles during non-processing in a plasma processing apparatus.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明のパーティクル低減方法は、処理室に原料ガス
及び酸素及び不活性ガスを導入し、プラズマを発生させ
てそこで励起・活性化された原子・分子により基板の表
面に処理が施されるプラズマ処理装置において、基板の
表面に処理が施された後、プラズマを発生させた状態で
原料ガスの導入を停止して微粒子を基板上に落下させな
いようにすることを特徴とする。
According to the present invention, there is provided a method for reducing particles, which comprises introducing a raw material gas, oxygen, and an inert gas into a processing chamber, generating plasma, and exciting and activating the plasma. In a plasma processing apparatus in which the surface of the substrate is processed by atoms and molecules that have been processed, after the surface of the substrate is processed, the introduction of the source gas is stopped in a state where plasma is generated, and fine particles are deposited on the substrate. It is characterized in that it does not fall.

【0006】また、上記目的を達成するための本発明の
パーティクル低減方法は、処理室に原料ガス及び酸素及
び不活性ガスを導入し、プラズマを発生させてそこで励
起・活性化された原子・分子により基板の表面に処理が
施されるプラズマ処理装置において、基板の表面に処理
が施された後、プラズマを発生させた状態で原料ガスの
導入を停止して微粒子を基板上に落下させないように
し、この状態で基板を搬出することで微粒子を基板支持
台の上に落下させないようにすることを特徴とする。
According to the particle reduction method of the present invention for achieving the above object, a raw material gas, oxygen and an inert gas are introduced into a processing chamber, and plasma is generated, where the excited atoms and molecules are excited and activated. In the plasma processing apparatus in which the surface of the substrate is processed by the method, after the surface of the substrate is processed, the introduction of the raw material gas is stopped in a state where the plasma is generated so that the fine particles do not fall on the substrate. In this state, the substrate is carried out to prevent the fine particles from falling onto the substrate support.

【0007】そして、原料ガスはシランであり、不活性
ガスはヘリウムであることを特徴とする。
[0007] The source gas is silane, and the inert gas is helium.

【0008】また、上記目的を達成するための本発明の
パーティクル低減方法は、処理室に原料ガス及び酸素及
び不活性ガスを導入し、プラズマを発生させてそこで励
起・活性化された原子・分子により基板の表面に処理が
施されるプラズマ処理装置において、基板の表面に処理
が施された後、プラズマを発生させた状態で原料ガスの
導入を停止して微粒子を基板上に落下させないように
し、プラズマを発生させた状態で基板を搬出することで
微粒子を基板支持台の上に落下させないようにし、基板
を搬出した後、気相中の微粒子を気化させる量のフッ素
ガスを処理室内に導入し、気相中の微粒子を気化させた
後にフッ化ガスを停止して基板を搬入することを特徴と
する。
According to the present invention, there is provided a method for reducing particles according to the present invention, in which a raw material gas, oxygen and an inert gas are introduced into a processing chamber, plasma is generated, and atoms and molecules excited and activated there are generated. In the plasma processing apparatus in which the surface of the substrate is processed by the method, after the surface of the substrate is processed, the introduction of the raw material gas is stopped in a state where the plasma is generated so that the fine particles do not fall on the substrate. By removing the substrate while the plasma is being generated, the particles are prevented from falling onto the substrate support, and after removing the substrate, an amount of fluorine gas that vaporizes the particles in the gas phase is introduced into the processing chamber. Then, after the fine particles in the gas phase are vaporized, the fluorinated gas is stopped and the substrate is carried in.

【0009】そして、原料ガスはシランであり、不活性
ガスはヘリウムであり、フッ化ガスはNF3 ガスである
ことを特徴とする。
The source gas is silane, the inert gas is helium, and the fluoride gas is NF 3 gas.

【0010】[0010]

【発明の実施の形態】図1には本発明の一実施形態例に
係るパーティクル低減方法を実施するプラズマCVD装
置の概略側面を示してある。
FIG. 1 is a schematic side view of a plasma CVD apparatus for performing a particle reduction method according to an embodiment of the present invention.

【0011】図に示すように、基部1には円筒状のアル
ミニウム製の容器2が設けられ、容器2内に処理室とし
ての成膜室3が形成されている。容器2の上部には円形
の天井板4が設けられ、容器2の中心における成膜室3
にはウエハ支持台5が備えられている。ウエハ支持台5
は半導体の基板6を静電的に吸着保持する円盤状の載置
部7を有し、載置部7は支持軸8に支持されている。載
置部7は、タングステン等の金属板25の表面にアルミ
ナ等のセラミックス26が設けられて構成されている。
載置部7の金属板25にはバイアス電源21及び静電電
源22が接続され、載置部7に低周波を発生させると共
に静電気力を発生させる。ウエハ支持台5は全体が昇降
自在もしくは支持軸8が伸縮自在とすることで、上下方
向の高さが最適な高さに調整できるようになっている。
As shown in FIG. 1, a cylindrical aluminum container 2 is provided on a base 1, and a film forming chamber 3 as a processing chamber is formed in the container 2. A circular ceiling plate 4 is provided on the upper part of the container 2, and the film forming chamber 3 at the center of the container 2 is provided.
Is provided with a wafer support table 5. Wafer support 5
Has a disk-shaped mounting portion 7 for electrostatically holding a semiconductor substrate 6, and the mounting portion 7 is supported by a support shaft 8. The mounting portion 7 is configured by providing ceramics 26 such as alumina on the surface of a metal plate 25 such as tungsten.
A bias power supply 21 and an electrostatic power supply 22 are connected to the metal plate 25 of the mounting section 7 to generate a low frequency and an electrostatic force on the mounting section 7. The entire height of the wafer support table 5 can be raised and lowered or the support shaft 8 can be expanded and contracted, so that the height in the vertical direction can be adjusted to an optimum height.

【0012】容器2の外周には電磁石9が配置され、容
器2は環状の電磁石9により包囲されている。電磁石9
は円環状の鉄心10と鉄心10に巻かれるコイル11と
により構成され、コイル11には三相インバータ電源1
2が接続されて電磁石9に電圧が印加される。電磁石9
に電圧が印加されることにより、載置部7に載置される
基板6の表面に略平行に、かつ、容器2の中心軸回りに
回転する磁場を生成するようになっている。
An electromagnet 9 is arranged on the outer periphery of the container 2, and the container 2 is surrounded by an annular electromagnet 9. Electromagnet 9
Is composed of an annular iron core 10 and a coil 11 wound around the iron core 10, and the coil 11 has a three-phase inverter power supply 1
2 is connected, and a voltage is applied to the electromagnet 9. Electromagnet 9
Is applied, a magnetic field is generated that rotates substantially parallel to the surface of the substrate 6 placed on the placement unit 7 and rotates around the central axis of the container 2.

【0013】電磁波透過窓としての天井板4の上には、
例えば、円形リング状の高周波アンテナ13が配置さ
れ、高周波アンテナ13には整合器14を介して高周波
電源15が接続されている。高周波アンテナ13に電力
を供給することにより電磁波が容器2の成膜室3に入射
する。容器2内に入射された電磁波は、成膜室3内のガ
スをイオン化してプラズマを発生すると共に、成膜室3
内の磁束に作用して電子磁気音波を発生し、これがラン
ダウ減衰によりプラズマにエネルギを移行させ、成膜室
3内に強いプラズマを発生させる。
On the ceiling plate 4 as an electromagnetic wave transmission window,
For example, a high frequency antenna 13 having a circular ring shape is arranged, and a high frequency power supply 15 is connected to the high frequency antenna 13 via a matching unit 14. By supplying power to the high-frequency antenna 13, an electromagnetic wave enters the film forming chamber 3 of the container 2. The electromagnetic waves incident into the container 2 ionize the gas in the film forming chamber 3 to generate plasma, and generate the plasma.
Electromagnetic waves are generated by acting on magnetic flux in the inside, and this energy is transferred to the plasma by Landau damping, and a strong plasma is generated in the film forming chamber 3.

【0014】容器2にはシラン(例えば SiH4)等の材料
ガスを供給するガス供給ノズル16が設けられ、ガス供
給ノズル16から成膜室3内に成膜材料(例えばSi)と
なる材料ガスが供給される。また、容器2にはアルゴン
やヘリウム等の不活性ガス(希ガス)や酸素、水素、ク
リーニング用のNF3 等の補助ガスを供給する補助ガス
供給ノズル17が設けられ、基部1には容器2の内部を
排気するための真空排気系(図示省略)に接続される排
気口18が設けられている。また、容器2には基板6の
搬入・搬出口31が設けられ、搬入・搬出口31を通し
て搬送室との間で基板6が搬入・搬出される。
The container 2 is provided with a gas supply nozzle 16 for supplying a material gas such as silane (for example, SiH 4 ). The material gas which becomes a film forming material (for example, Si) from the gas supply nozzle 16 into the film forming chamber 3 is provided. Is supplied. The container 2 is provided with an auxiliary gas supply nozzle 17 for supplying an inert gas (rare gas) such as argon or helium, oxygen, hydrogen, or an auxiliary gas such as NF 3 for cleaning. There is provided an exhaust port 18 connected to a vacuum exhaust system (not shown) for exhausting the inside of the device. The container 2 is provided with a loading / unloading port 31 for the substrate 6, and the loading / unloading port 31 allows the loading / unloading of the substrate 6 to / from the transfer chamber.

【0015】上述したプラズマCVD装置では、ウエハ
支持台5の載置部7に基板6が載せられ、静電的に吸着
される。ガス供給ノズル16から所定流量の材料ガスを
成膜室3内に供給すると共に補助ガス供給ノズル17か
ら処置流量の補助ガス(例えば酸素及びヘリウム)を成
膜室3内に供給し、成膜室3内を成膜条件に応じた所定
圧力に設定する。その後、高周波電源15から高周波ア
ンテナ13に電力を供給して高周波を発生させると共に
バイアス電源21から載置部7に電力を供給して低周波
を発生させる。同時に、三相インバータ電源12から電
磁石9に電圧が印加され、成膜室3内に回転磁場が生成
される。
In the above-described plasma CVD apparatus, the substrate 6 is mounted on the mounting portion 7 of the wafer support 5 and is electrostatically attracted. A material gas at a predetermined flow rate is supplied from the gas supply nozzle 16 into the film formation chamber 3, and an auxiliary gas (for example, oxygen and helium) at a treatment flow rate is supplied from the auxiliary gas supply nozzle 17 into the film formation chamber 3. 3 is set to a predetermined pressure according to the film forming conditions. Thereafter, power is supplied from the high-frequency power supply 15 to the high-frequency antenna 13 to generate a high frequency, and power is supplied from the bias power supply 21 to the mounting section 7 to generate a low frequency. At the same time, a voltage is applied from the three-phase inverter power supply 12 to the electromagnet 9, and a rotating magnetic field is generated in the film forming chamber 3.

【0016】これにより、成膜室3内の材料ガスが放電
して一部がプラズマ状態となる。プラズマ中の電子、あ
るいはイオンといった荷電粒子は回転磁場の磁力線に巻
き付くように回転し、更に電界にも影響されながら運動
する。従って、高密度、かつ均一な密度のプラズマが成
膜域に留まることになる。このプラズマは、材料ガス中
の他の中性分子に衝突して更に中性分子を電離、あるい
は励起する。こうして生じた活性な粒子は、基板6の表
面に吸着して効率良く化学反応を起こし、堆積してCV
D膜となる。尚、処理手段として、平行な磁場を形成し
てプラズマにより成膜を行う装置を例に挙げているが、
磁場の形成は適宜変更できると共に、成膜以外でもエッ
チング等他の処理を行う装置を適用することも可能であ
る。
As a result, the material gas in the film forming chamber 3 is discharged, and a part of the material gas enters a plasma state. Charged particles such as electrons or ions in the plasma rotate so as to wrap around the lines of magnetic force of the rotating magnetic field, and move while being influenced by the electric field. Therefore, high-density and uniform-density plasma remains in the film formation region. This plasma collides with other neutral molecules in the material gas to further ionize or excite the neutral molecules. The active particles thus generated are adsorbed on the surface of the substrate 6 and cause a chemical reaction efficiently, and are deposited to form a CV.
It becomes a D film. In addition, as an example of the processing unit, an apparatus that forms a parallel magnetic field and performs film formation by plasma is described.
The formation of the magnetic field can be changed as appropriate, and it is also possible to apply an apparatus for performing other processing such as etching other than film formation.

【0017】基板6に対する成膜が行われた後、成膜が
完了した基板6を搬送室に搬送して新たな基板6を搬入
する。基板6に対する成膜が完了した後、本発明のパー
ティクル低減方法が実施される。図2に基づいてパーテ
ィクル低減方法を説明する。図2には本発明の一実施形
態例に係るパーティクル低減方法の工程説明を示してあ
る。
After the film formation on the substrate 6 is performed, the substrate 6 on which the film formation is completed is transferred to the transfer chamber, and a new substrate 6 is loaded. After the film formation on the substrate 6 is completed, the particle reduction method of the present invention is performed. A method for reducing particles will be described with reference to FIG. FIG. 2 shows a process description of a particle reduction method according to an embodiment of the present invention.

【0018】図に示すように、成膜工程で、成膜室3内
に材料ガスのSiH4、補助ガスの酸素(O2 )及びヘリウ
ム(He)を供給すると共に、成膜室3内をプラズマ状
態にして(プラズマオン)基板6の表面に処理が施され
る。基板6の成膜が完了した後、材料ガスのSiH4の供給
を停止(材料ガスオフ)し、補助ガスのO2 及びHeを
供給したまま成膜室3内をプラズマ状態にする。材料ガ
スの供給のないプラズマ状態が保たれることにより、成
膜室3内の微粒子は空間的に捕捉され、成膜が完了した
基板6の上に落下することがない。
As shown in the drawing, in the film forming process, a material gas SiH 4 , an auxiliary gas oxygen (O 2 ) and helium (He) are supplied into the film forming chamber 3 and the inside of the film forming chamber 3 is supplied. The surface of the substrate 6 is processed in a plasma state (plasma on). After the film formation on the substrate 6 is completed, the supply of the material gas SiH 4 is stopped (the material gas is turned off), and the inside of the film formation chamber 3 is brought into a plasma state while the auxiliary gases O 2 and He are being supplied. By maintaining a plasma state in which no material gas is supplied, the fine particles in the film forming chamber 3 are spatially captured and do not drop onto the substrate 6 on which film formation has been completed.

【0019】この状態、即ち、補助ガスのO2 及びHe
を供給したまま成膜室3内をプラズマ状態にした状態
で、成膜が完了した基板6を図示しない搬送室に搬送す
る。補助ガスとして、O2 及びHeを供給するのは、補
助ガスがO2 だけであると、成膜室3の壁面を激しくス
パッタしてパーティクルを増加させてしまう虞があるた
め、Heを供給してパーティクルの増加を緩和してい
る。
In this state, that is, the auxiliary gases O 2 and He
The substrate 6 on which film formation has been completed is transferred to a transfer chamber (not shown) in a state where the inside of the film formation chamber 3 is kept in a plasma state while the substrate is supplied. O 2 and He are supplied as auxiliary gases. If only O 2 is used as auxiliary gas, there is a possibility that the wall surface of the film forming chamber 3 may be violently sputtered to increase the number of particles. To mitigate the increase in particles.

【0020】成膜が完了した基板3を搬送した後、補助
ガスのO2 及びHeを供給して成膜室3内をプラズマ状
態にしたまま、成膜室3内に微量のフッ化ガス(例え
ば、NF3 ガス)を成膜室3内に導入し、気相中に残留
するパーティクルと反応させて気化させる。この時のN
3 ガスの量は、壁面をクリーニングしない程度の量と
する。つまり、NF3 によって壁面がエッチングされな
い量としている。これにより、基板3を搬送した後、ウ
エハ支持台5の上にパーティクルが落下・堆積すること
がなくなる。
After the substrate 3 on which the film formation is completed is transported, O 2 and He as auxiliary gases are supplied to keep the inside of the film formation chamber 3 in a plasma state. For example, NF 3 gas is introduced into the film forming chamber 3 and is reacted with particles remaining in the gas phase to be vaporized. N at this time
The amount of F 3 gas is set to an amount that does not clean the wall surface. That is, the amount is such that the wall surface is not etched by NF 3 . This prevents particles from falling and accumulating on the wafer support table 5 after the substrate 3 is transferred.

【0021】NF3 ガスを導入して気相中に残留するパ
ーティクルを気化させた後、NF3ガスの供給を停止
(NF3 オフ)して新たな基板3をウエハ支持台5の上
に搬入する。この時、ウエハ支持台5の上にはパーティ
クルが堆積していないので、新たな基板3の裏面等にパ
ーティクルが付着することがない。基板3を搬入した
後、成膜室3内に材料ガスのSiH4を導入して再び成膜を
実施する。
After introducing the NF 3 gas to vaporize the particles remaining in the gas phase, the supply of the NF 3 gas is stopped (NF 3 off) and a new substrate 3 is loaded onto the wafer support 5. I do. At this time, since no particles are deposited on the wafer support table 5, the particles do not adhere to the back surface of the new substrate 3 or the like. After the substrate 3 is carried in, the material gas SiH 4 is introduced into the film formation chamber 3 to perform the film formation again.

【0022】上述したパーティクル低減方法を実施して
いる間、成膜室3内はプラズマ状態であるが、電磁石9
による磁場の形成は、実施しても実施しなくてもどちら
でもよい。
While the above-described particle reduction method is being performed, the inside of the film forming chamber 3 is in a plasma state.
The formation of the magnetic field by the method may or may not be performed.

【0023】上述したパーティクル低減方法では、成膜
が完了した後に、材料ガスを停止して補助ガスのO2
びHeを供給したまま成膜室3内を原料ガスのないプラ
ズマ状態にしているので、パーティクルが捕捉され、成
膜が完了した基板6の上に落下することがない。また、
成膜が完了した基板6を搬送した後も補助ガスのO2
びHeを供給したまま成膜室3内をプラズマ状態に保っ
ているので、ウエハ支持台5の上にパーティクルが落下
・堆積することがない。更に、成膜室3内に微量のNF
3 ガスを導入し、気相中に残留するパーティクルと反応
させて気化させているので、新たな基板6にパーティク
ルが付着することがない。
In the above-described particle reduction method, after the film formation is completed, the material gas is stopped and the inside of the film formation chamber 3 is kept in a plasma state without the source gas while the auxiliary gases O 2 and He are being supplied. Therefore, the particles are not trapped and fall onto the substrate 6 on which the film formation is completed. Also,
Even after the substrate 6 on which the film formation is completed is transported, the inside of the film formation chamber 3 is kept in a plasma state while supplying the auxiliary gases O 2 and He, so that particles fall and accumulate on the wafer support table 5. Nothing. Further, a small amount of NF is
Since three gases are introduced and reacted with the particles remaining in the gas phase to vaporize, no particles adhere to the new substrate 6.

【0024】[0024]

【発明の効果】本発明のパーティクル低減方法は、処理
室に原料ガス及び酸素及び不活性ガスを導入し、プラズ
マを発生させてそこで励起・活性化された原子・分子に
より基板の表面に処理が施されるプラズマ処理装置にお
いて、基板の表面に処理が施された後、プラズマを発生
させた状態で原料ガスの導入を停止しているので、微粒
子が捕捉され、非処理時におけるパーティクルを低減す
ることができ、微粒子が基板上に落下することがなくな
る。
According to the particle reduction method of the present invention, a raw material gas, oxygen and an inert gas are introduced into a processing chamber, plasma is generated, and the surface of the substrate is treated with atoms and molecules excited and activated there. In the plasma processing apparatus to be performed, after the surface of the substrate is processed, the introduction of the raw material gas is stopped in a state where plasma is generated, so that fine particles are captured and particles during non-processing are reduced. Particles can be prevented from falling on the substrate.

【0025】また、本発明のパーティクル低減方法は、
処理室に原料ガス及び酸素及び不活性ガスを導入し、プ
ラズマを発生させてそこで励起・活性化された原子・分
子により基板の表面に処理が施されるプラズマ処理装置
において、基板の表面に処理が施された後、プラズマを
発生させた状態で原料ガスの導入を停止して微粒子を捕
捉して微粒子を基板上に落下させないようにし、この状
態で基板を搬出するようにしているので、非処理時にお
けるパーティクルを低減することができ、基板支持台の
上に微粒子が落下することがない。
Also, the particle reduction method of the present invention
In a plasma processing system, a raw material gas, oxygen and an inert gas are introduced into a processing chamber, plasma is generated, and the surface of the substrate is processed by atoms and molecules excited and activated there. Is performed, the introduction of the source gas is stopped in a state where the plasma is generated, the fine particles are captured so that the fine particles do not fall on the substrate, and the substrate is unloaded in this state. Particles during processing can be reduced, and fine particles do not drop onto the substrate support.

【0026】また、本発明のパーティクル低減方法は、
処理室に原料ガス及び酸素及び不活性ガスを導入し、プ
ラズマを発生させてそこで励起・活性化された原子・分
子により基板の表面に処理が施されるプラズマ処理装置
において、基板の表面に処理が施された後、プラズマを
発生させた状態で原料ガスの導入を停止して微粒子を捕
捉しプラズマを発生させた状態で基板を搬出し、基板を
搬出した後、気相中の微粒子を気化させる量のフッ化ガ
スを処理室内に導入し、気相中の微粒子を気化させた後
にフッ化ガスを停止して基板を搬入するようにしたの
で、非処理時におけるパーティクルを低減することがで
き、微粒子が処理が施された基板上に落下することがな
くなるとともに、微粒子が基板支持台の上に落下するこ
とがなくなり、更に、搬入された基板に微粒子が付着す
ることがなくなる。
Further, the particle reduction method of the present invention
In a plasma processing system, a raw material gas, oxygen and an inert gas are introduced into a processing chamber, plasma is generated, and the surface of the substrate is processed by atoms and molecules excited and activated there. After the plasma is generated, the introduction of the source gas is stopped in a state where the plasma is generated, the fine particles are captured, the substrate is carried out in a state where the plasma is generated, the substrate is carried out, and the fine particles in the gas phase are vaporized. The amount of fluorinated gas to be introduced is introduced into the processing chamber, and after the fine particles in the gas phase are vaporized, the fluorinated gas is stopped and the substrate is carried in, so that particles during non-processing can be reduced. In addition, the fine particles do not fall on the treated substrate, the fine particles do not drop on the substrate support, and the fine particles do not adhere to the loaded substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例に係るパーティクル低減
方法を実施するプラズマCVD装置の概略側面図。
FIG. 1 is a schematic side view of a plasma CVD apparatus that performs a particle reduction method according to an embodiment of the present invention.

【図2】本発明の一実施形態例のパーティクル低減方法
の工程説明図。
FIG. 2 is a process explanatory view of a particle reduction method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基部 2 容器 3 成膜室 4 天井板 5 ウエハ支持台 6 基板 7 載置部 8 支持軸 9 電磁石 10 鉄心 11 コイル 12 三相インバータ電源 13 高周波アンテナ 14 整合器 15 高周波電源 16 ガス供給ノズル 17 補助ガス供給ノズル 18 排気系 21 バイアス電源 22 静電電源 25 金属板 26 セラミックス 31 搬入・搬出口 DESCRIPTION OF SYMBOLS 1 Base 2 Container 3 Film-forming chamber 4 Ceiling plate 5 Wafer support 6 Substrate 7 Placement part 8 Support shaft 9 Electromagnet 10 Iron core 11 Coil 12 Three-phase inverter power supply 13 High frequency antenna 14 Matching device 15 High frequency power supply 16 Gas supply nozzle 17 Auxiliary Gas supply nozzle 18 Exhaust system 21 Bias power supply 22 Electrostatic power supply 25 Metal plate 26 Ceramics 31 Loading / unloading port

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 AA06 AA14 AA16 BA29 DA06 EA01 FA01 FA04 GA12 HA06 JA05 KA30 KA34 5F004 AA14 AA15 BA20 BB07 BB11 BB18 BB22 CA01 DA17 DA22 DA26 DB00 5F045 AA08 AB03 AB32 AC01 AC11 AC17 AF01 BB15 DP03 DQ10 EB06 EE17 EH11 EM10 EN04 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K030 AA06 AA14 AA16 BA29 DA06 EA01 FA01 FA04 GA12 HA06 JA05 KA30 KA34 5F004 AA14 AA15 BA20 BB07 BB11 BB18 BB22 CA01 DA17 DA22 DA26 DB00 5F045 AA08 AB03 AB32 AF01 AC11 DP17 EB06 EE17 EH11 EM10 EN04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 処理室に原料ガス及び酸素及び不活性ガ
スを導入し、プラズマを発生させてそこで励起・活性化
された原子・分子により基板の表面に処理が施されるプ
ラズマ処理装置において、基板の表面に処理が施された
後、プラズマを発生させた状態で原料ガスの導入を停止
して微粒子を基板上に落下させないようにすることを特
徴とするパーティクル低減方法。
In a plasma processing apparatus, a raw material gas, oxygen, and an inert gas are introduced into a processing chamber, plasma is generated, and a surface of a substrate is processed by atoms and molecules excited and activated therein. A method for reducing particles, characterized in that after a surface of a substrate is treated, introduction of a raw material gas is stopped in a state where plasma is generated to prevent fine particles from falling onto the substrate.
【請求項2】 処理室に原料ガス及び酸素及び不活性ガ
スを導入し、プラズマを発生させてそこで励起・活性化
された原子・分子により基板の表面に処理が施されるプ
ラズマ処理装置において、基板の表面に処理が施された
後、プラズマを発生させた状態で原料ガスの導入を停止
して微粒子を基板上に落下させないようにし、この状態
で基板を搬出することで微粒子を基板支持台の上に落下
させないようにすることを特徴とするパーティクル低減
方法。
2. A plasma processing apparatus in which a raw material gas, oxygen and an inert gas are introduced into a processing chamber, a plasma is generated, and a surface of the substrate is processed by atoms and molecules excited and activated therein. After the surface of the substrate is processed, the introduction of the raw material gas is stopped in a state where the plasma is generated so that the fine particles do not fall on the substrate, and the substrate is carried out in this state so that the fine particles are transferred to the substrate support table. A method for reducing particles, wherein the particles are prevented from dropping on a surface.
【請求項3】 請求項1もしくは請求項2において、原
料ガスはシランであり、不活性ガスはヘリウムであるこ
とを特徴とするパーティクル低減方法。
3. The method according to claim 1, wherein the raw material gas is silane, and the inert gas is helium.
【請求項4】 処理室に原料ガス及び酸素及び不活性ガ
スを導入し、プラズマを発生させてそこで励起・活性化
された原子・分子により基板の表面に処理が施されるプ
ラズマ処理装置において、基板の表面に処理が施された
後、プラズマを発生させた状態で原料ガスの導入を停止
して微粒子を基板上に落下させないようにし、プラズマ
を発生させた状態で基板を搬出することで微粒子を基板
支持台の上に落下させないようにし、基板を搬出した
後、気相中の微粒子を気化させる量のフッ化ガスを処理
室内に導入し、気相中の微粒子を気化させた後にフッ化
ガスを停止して基板を搬入することを特徴とするパーテ
ィクル低減方法。
4. A plasma processing apparatus in which a raw material gas, oxygen, and an inert gas are introduced into a processing chamber, a plasma is generated, and a surface of the substrate is processed by atoms and molecules excited and activated therein. After the surface of the substrate is processed, the introduction of the raw material gas is stopped in a state where the plasma is generated to prevent the fine particles from falling onto the substrate, and the substrate is carried out in a state where the plasma is generated. After the substrate is carried out, an amount of fluorinated gas that vaporizes the fine particles in the gas phase is introduced into the processing chamber, and the fluorinated gas is vaporized after the fine particles in the gas phase are vaporized. A method for reducing particles, wherein a gas is stopped and a substrate is carried in.
【請求項5】 請求項4において、原料ガスはシランで
あり、不活性ガスはヘリウムであり、フッ素ガスはNF
3 ガスであることを特徴とするパーティクル低減方法。
5. The method according to claim 4, wherein the source gas is silane, the inert gas is helium, and the fluorine gas is NF.
A particle reduction method characterized by using three gases.
JP2000157798A 2000-05-29 2000-05-29 Particle reduction method Expired - Fee Related JP3790410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157798A JP3790410B2 (en) 2000-05-29 2000-05-29 Particle reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157798A JP3790410B2 (en) 2000-05-29 2000-05-29 Particle reduction method

Publications (2)

Publication Number Publication Date
JP2001335938A true JP2001335938A (en) 2001-12-07
JP3790410B2 JP3790410B2 (en) 2006-06-28

Family

ID=18662371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157798A Expired - Fee Related JP3790410B2 (en) 2000-05-29 2000-05-29 Particle reduction method

Country Status (1)

Country Link
JP (1) JP3790410B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226891A (en) * 2007-03-08 2008-09-25 Hitachi High-Technologies Corp Plasma processing method
JP2009094311A (en) * 2007-10-10 2009-04-30 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device
US8480912B2 (en) 2006-02-17 2013-07-09 Mitsubishi Heavy Industries, Ltd. Plasma processing apparatus and plasma processing method
JP2015070233A (en) * 2013-09-30 2015-04-13 株式会社東芝 Manufacturing method of semiconductor device
KR20190001518A (en) 2017-06-26 2019-01-04 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus
US10576871B2 (en) 2017-06-16 2020-03-03 Koito Manufacturing Co., Ltd. Vehicle lamp

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8480912B2 (en) 2006-02-17 2013-07-09 Mitsubishi Heavy Industries, Ltd. Plasma processing apparatus and plasma processing method
US9011634B2 (en) 2006-02-17 2015-04-21 Mitsubishi Heavy Industries, Ltd. Plasma processing apparatus and plasma processing method
JP2008226891A (en) * 2007-03-08 2008-09-25 Hitachi High-Technologies Corp Plasma processing method
US8277563B2 (en) 2007-03-08 2012-10-02 Hitachi High-Technologies Corporation Plasma processing method
JP2009094311A (en) * 2007-10-10 2009-04-30 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device
JP2015070233A (en) * 2013-09-30 2015-04-13 株式会社東芝 Manufacturing method of semiconductor device
US10576871B2 (en) 2017-06-16 2020-03-03 Koito Manufacturing Co., Ltd. Vehicle lamp
KR20190001518A (en) 2017-06-26 2019-01-04 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus

Also Published As

Publication number Publication date
JP3790410B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US5507874A (en) Method of cleaning of an electrostatic chuck in plasma reactors
US5861086A (en) Method and apparatus for sputter etch conditioning a ceramic body
US8662010B2 (en) Plasma processing apparatus, plasma processing method, plasma film deposition apparatus, and plasma film deposition method
WO2017192249A1 (en) Plasma treatment process for in-situ chamber cleaning efficiency enhancement in plasma processing chamber
JPH08330281A (en) Vacuum treatment device and removal method of vacuum container inner surface deposit film in the vacuum treatment device
KR20170126450A (en) Method of etching the magnetic layer
JP2001335937A (en) Method for reducing metal contamination, and method for regenerating plasma system
CN102931056A (en) Surface processing method, a member made of silicon carbide, and a plasma processing apparatus
JP3790410B2 (en) Particle reduction method
JP3516523B2 (en) Plasma processing equipment
JP6763750B2 (en) How to process the object to be processed
JPH08330243A (en) Plasma cleaning method, and area protector for arrangement
JPH07273092A (en) Plasma treatment apparatus and its cleaning method
JP3595885B2 (en) Plasma processing method and plasma apparatus
JP3935731B2 (en) Plasma CVD apparatus, cleaning method, and film forming method
JP4437347B2 (en) Pretreatment etching apparatus and thin film forming apparatus
JP2001342567A (en) Plasma treatment apparatus
JP2005159049A (en) Plasma deposition method
JP2004063925A (en) Plasma processing apparatus and method
JP2003309073A (en) Resistant material and plasma treating apparatus
JP2003003263A (en) Plasma cvd system
JP2002203790A (en) Plasma treater
JPH08330294A (en) Plasma treatment device
JP2005217106A (en) Plasma cvd device, cleaning method, and film-forming method
JP2001338921A (en) Film forming method and film forming device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees