JP2001334157A - Pulverizing method for powder by low-temperature vibration mill - Google Patents

Pulverizing method for powder by low-temperature vibration mill

Info

Publication number
JP2001334157A
JP2001334157A JP2000161096A JP2000161096A JP2001334157A JP 2001334157 A JP2001334157 A JP 2001334157A JP 2000161096 A JP2000161096 A JP 2000161096A JP 2000161096 A JP2000161096 A JP 2000161096A JP 2001334157 A JP2001334157 A JP 2001334157A
Authority
JP
Japan
Prior art keywords
powder
raw material
material powder
container
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000161096A
Other languages
Japanese (ja)
Inventor
Aritaka Tatsumi
有孝 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000161096A priority Critical patent/JP2001334157A/en
Publication of JP2001334157A publication Critical patent/JP2001334157A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pulverizing method for powder by a low-temperature vibration mill which is capable of pulverizing powder of hardly grindable material like crosslinked polytetrafluoroethyelene(PTFE) powder at a high yield. SOLUTION: The vibration mill generates vibration in a vessel 1 of a hollow cylindrical shape containing raw material powder 17 and many balls 22 by rotating a shaft 8 with unbalance weights mounted through bearings 7 in the central part of the vessel and pulverizes the raw material powder with impact and friction force by the vibration of the balls and agitating motion of this time. The entire part in the vessel is cooled down to <=-140 deg.C under the atmosphere gas therein and thereafter the raw material powder is extracted together with the atmosphere gas under vibration of the vessel, is recooled and is returned to the vessel. These operations are repeated until the raw material powder attains a prescribed grain size. Circulating system piping for the raw material powder and atmosphere gas connected between a lower port 13 and upper port 12 of the vessel is provided with branch piping across a valve 24 and the branch piping is provided with a bag filter 25, by which the powder pulverized to the prescribed grain size may be separated from the gas and may be taken out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉体を微粉砕する
技術の分野に属し、特に、常温でゴム弾性を有し、且つ
延性の大きな、微粉砕の困難な粉体(例えば、架橋PT
FE)を粒径5μm程度以下に微粉砕する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the field of the technology of finely pulverizing powders, and in particular, powders having rubber elasticity at room temperature and having high ductility and difficult to pulverize (for example, crosslinked PT).
FE) is finely pulverized to a particle size of about 5 μm or less.

【0002】[0002]

【従来の技術】粉体を粉砕する技術には従来より種々様
々な手段が用いられており、その代表例とし下記のよう
なものがある。(例えば、日刊工業新聞社発行、粉体工
学通論、P151〜、三輪茂男著。) 1)ジェットミル(流体エネルギーミル);常温高圧の
空気、上記などを音速前後の気流にして粉体粒子を加速
し、相対する粒子相互間の衝突または粒子と静止した衝
突板との衝突による衝撃で粒子を破砕する方法。
2. Description of the Related Art Conventionally, various techniques have been used for pulverizing powder, and the following are typical examples. (For example, published by Nikkan Kogyo Shimbun, Powder Engineering, P151, Shigeo Miwa.) 1) Jet mill (fluid energy mill); A method of accelerating and crushing particles by impact due to collision between opposing particles or collision between particles and a stationary collision plate.

【0003】2)回転ミル;常温において水平に置かれ
た円筒形の粉砕室の中に、原料粉体と粉砕媒体となるボ
ールとを入れ、容器の中心軸の回りに回転させ、ボール
の運動による衝撃と摩擦力で原料粉体を粉砕する方法。
2) Rotary mill; a raw material powder and a ball as a pulverizing medium are put into a cylindrical pulverizing chamber placed horizontally at normal temperature, and the ball is rotated around a central axis of a container to move the ball. Method of crushing raw material powder by impact and frictional force by

【0004】3)振動ミル;常温において水平に置かれ
た中空円筒容器の内部に原料粉体と粉砕媒体となるボー
ルを充填し、容器の中心部で、軸受けを介して容器と結
合されたアンバランスウエイトを有するシャフトを外部
動力により高速で回転させ、その振動によってボールに
振動と撹拌運動を生じさせることにより、原料粉体の粒
子に衝撃力と摩擦力を与えて原料粉体を粉砕する方法。
3) Vibration mill: A hollow cylindrical container placed horizontally at normal temperature is filled with raw material powder and balls serving as a pulverizing medium, and an annulus is connected to the container via a bearing at the center of the container. A method in which a shaft having a balance weight is rotated at a high speed by an external power, and the vibration of the shaft causes vibration and stirring movement of the ball, thereby imparting impact force and frictional force to the particles of the raw material powder to pulverize the raw material powder. .

【0005】4)低温ミル;原料粉体を投入した機械的
粉砕ミルの内部全体を、液体窒素などで冷却しながら原
料粉体を粉砕する方法。
[0005] 4) Low-temperature mill: A method of pulverizing raw material powder while cooling the whole inside of a mechanical pulverizing mill into which raw material powder is charged with liquid nitrogen or the like.

【0006】[0006]

【発明が解決しようとする課題】常温以上の温度で延性
が大きく、且つゴム弾性を有する粉体、例えば架橋PT
FEの粉体は、前述の方法で微粉砕しようとすると、次
のような問題が生じる。
SUMMARY OF THE INVENTION Powders having high ductility and rubber elasticity at a temperature higher than ordinary temperature, such as crosslinked PT
When the FE powder is pulverized by the above-described method, the following problem occurs.

【0007】1)ジェットミル;粉体のゴム弾性の効果
で衝突の衝撃が和らげられ、且つ延性で粒子が引き伸ば
されるため、粉体の微粉化は難しく、微粉の収率が極め
て小さくなる欠点がある。
[0007] 1) Jet mill; the impact of collision is reduced by the effect of rubber elasticity of the powder, and the particles are elongated by ductility. Therefore, it is difficult to pulverize the powder and the yield of the fine powder becomes extremely small. is there.

【0008】2)回転ミル及び3)振動ミル;材料の延
性の影響で薄片状乃至繊維状になり、微粉砕の目的達成
は困難となる。
2) Rotary mill and 3) Vibration mill; flake or fibrous due to the ductility of the material, making it difficult to achieve the purpose of fine grinding.

【0009】4)低温ミル;装置の構造上から前述した
原料粉体を微粉砕することの可能なものが実用化された
例をみたことがない。
4) Low-temperature mill: There has never been seen a practical example of a low-temperature mill capable of pulverizing the above-mentioned raw material powder from the structure of the apparatus.

【0010】そこで本発明の目的は、架橋PTFE粉体
のような難粉砕材の微粉を高い収率で行い得る、低温振
動ミルによる粉体の微粉砕方法を提供することにある。
Accordingly, an object of the present invention is to provide a method of finely pulverizing a powder using a low-temperature vibrating mill, which can produce a fine powder of a hard-to-pulverize material such as a crosslinked PTFE powder in a high yield.

【0011】[0011]

【課題を解決するための手段】本発明により提供する低
温振動ミルによる粉体の微粉砕方法は、原料粉体とこれ
の粉砕媒体となる多数のボールを入れる中空円筒形の容
器を母体とし、この容器の中心部で軸受けを介して取り
付けられたアンバランスウエイト付きシャフトを回転さ
せることで容器に振動を生じさせ、このときのボールの
振動と撹拌運動によって原料粉体を衝撃と摩擦力で微粉
砕する振動ミルの、当該容器の内部全体の雰囲気ガスの
下で−140℃以下まで冷却した後、容器を振動させな
がら原料粉体を雰囲気ガスとともに抽出し、再冷却して
容器に戻し、原料粉体が所定の粒径になるまでこの操作
を繰り返す方法からなる。
The method for finely pulverizing a powder by a low-temperature vibrating mill provided by the present invention is based on a hollow cylindrical container containing a raw material powder and a number of balls serving as a grinding medium for the raw material powder. By rotating a shaft with an unbalanced weight attached via a bearing at the center of this container, vibration is generated in the container, and the vibration and stirring motion of the ball at this time finely separate the raw material powder by impact and frictional force. After cooling to −140 ° C. or lower under the atmosphere gas of the entire interior of the container of the vibrating mill to be pulverized, the raw material powder is extracted together with the atmospheric gas while vibrating the container, recooled and returned to the container. This method consists of repeating this operation until the powder reaches a predetermined particle size.

【0012】上記のように、原料粉体を−140℃以下
に冷却すると、脆化が起こり、この脆化の状態で粉砕が
容易になる。因みに、PTFEは、−130℃付近でガ
ラス転移に近い結晶構造変化を示して若干脆化するこ
と、架橋PTFE(100%架橋ではない)では常温で
有するゴム弾性が当該温度において失われる。これらの
相乗効果で粉体の粉砕が容易になる。
As described above, when the raw material powder is cooled to −140 ° C. or less, embrittlement occurs, and pulverization becomes easy in this embrittlement state. Incidentally, PTFE exhibits a crystal structure change close to a glass transition at around -130 ° C. and is slightly embrittled, and crosslinked PTFE (not 100% crosslinked) loses the rubber elasticity it has at room temperature at that temperature. These synergistic effects facilitate the pulverization of the powder.

【0013】粉砕装置として粉砕能力の大きい振動ミル
が用いられる。雰囲気ガスとしては、乾燥空気若しくは
不活性ガスを用い、原料粉体とともに容器から抽出し、
液体窒素、液化天然ガスなどの低温液化ガスや冷凍機を
冷熱源として、熱交換器を介して再冷却しながら循環さ
せ、所定の粒径になるまで粉砕を繰り返す。
A vibrating mill having a high grinding ability is used as a grinding device. As the atmospheric gas, dry air or an inert gas is used, extracted from the container together with the raw material powder,
Using a low-temperature liquefied gas such as liquid nitrogen or liquefied natural gas or a refrigerator as a cold heat source, circulation is performed while cooling again through a heat exchanger, and grinding is repeated until a predetermined particle size is reached.

【0014】循環に供する雰囲気ガスの冷却に必要な熱
量は、初期に系全体を冷却するのに要する分を除けば、
投入する原料粉体を所定温度まで冷却するのに必要な熱
量と、系に外部から侵入する熱量及び系の内部発熱量の
和であり、系の断熱設計を適切に行なえば小さな値に抑
えることができる。
The amount of heat required to cool the atmospheric gas to be circulated is as follows, except for the amount required to initially cool the entire system.
The sum of the amount of heat required to cool the input raw material powder to the specified temperature, the amount of heat that enters the system from the outside, and the amount of internal heat generated by the system. Can be.

【0015】前記の容器の下部ポートと上部ポートとの
間に連絡される原料粉体と雰囲気ガスの循環系配管に、
バルブを介して分岐配管を設け、この分岐配管にバグフ
ィルターを設けることにより、所定の粒径に微粉砕され
た粉体をガスと分離して取り出すことができる。
In the circulating system piping for the raw material powder and the atmosphere gas, which is connected between the lower port and the upper port of the container,
By providing a branch pipe via a valve and providing a bag filter in the branch pipe, powder finely pulverized to a predetermined particle size can be separated and taken out from gas.

【0016】[0016]

【発明の実施の形態】図1(イ)は、本発明に係る低温
振動ミルによる粉体の微粉砕方法の実施例を系統的に示
しており、同図1(ロ)は図1(イ)のA−A線に沿う
断面を示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 (a) systematically shows an embodiment of a method for finely pulverizing a powder by a low-temperature vibrating mill according to the present invention, and FIG. 2) shows a cross section along the line AA.

【0017】この実施例の振動ミルは、両端を閉じた中
空円筒形の容器2の周囲に断熱材3を覆った粉砕容器1
を母体とし、これはステー4にてスプリング5を介して
台座6に支持されている。
The vibrating mill of this embodiment has a crushing vessel 1 covered with a heat insulating material 3 around a hollow cylindrical vessel 2 having both ends closed.
Is supported by a pedestal 6 via a spring 5 at a stay 4.

【0018】容器2の中心部にある中空部においてアン
バランスウエイト7を具備したシャフト8が挿入され、
同シャフト8は軸受け;ベアリング9で容器2に相対回
転可能に取り付けられている。シャフト8は、一方の端
部においてフレキシブル継手10を介してモータ11と
連係され、容器2内で回転されるようにしている。
A shaft 8 having an unbalanced weight 7 is inserted into a hollow portion at the center of the container 2,
The shaft 8 is attached to the container 2 by a bearing 9 so as to be relatively rotatable. The shaft 8 is linked at one end to a motor 11 via a flexible joint 10 so as to be rotated in the container 2.

【0019】容器2には、上部ポート12と下部ポート
13が設けられており、これらはフレキシブルジョイン
ト14を介して配管15で連絡されている。また、上部
ポート12には、バルブ16を介して原料粉体供給用ホ
ッパー18が連絡されている。
The container 2 is provided with an upper port 12 and a lower port 13, which are connected by a pipe 15 via a flexible joint 14. A hopper 18 for supplying raw material powder is connected to the upper port 12 via a valve 16.

【0020】循環系配管15には、下部ポート13側か
ら、送風機19、バルブ20、液化ガスや冷凍機などの
冷熱源23と結合された熱交換器21が順次配備され、
これらの配管系は十分に断熱しておく。
A blower 19, a valve 20, and a heat exchanger 21 connected to a cooling source 23 such as a liquefied gas or a refrigerator are sequentially provided from the lower port 13 side in the circulation system piping 15.
These piping systems should be well insulated.

【0021】また、上記の配管系には、送風機19の出
側において、バルブ20を挟んだ位置で、バルブ24,
26を介して分岐配管が接続され、この配管に粉体補集
用のバグフィルター25を接続しておく。
In the above-mentioned piping system, at the outlet side of the blower 19, the valve 24,
A branch pipe is connected via 26, and a bag filter 25 for powder collection is connected to this pipe.

【0022】以上のような系統に対して、容器2内に小
径の粉砕用ボール(ステンレス鋼球)22を容器の全内
容積の80%程度充填する。そして、アンバランスウエ
イト付きシャフト8を回転駆動して容器を振動の遠心効
果2=6〜10程度に振動させるとき、を図1(ロ)に
示したように、ボール23が容器内にで振動しながら図
中矢印方向にゆるく回転し、もって、ボール全体の撹拌
運動を促進する。
In the above system, the container 2 is filled with a small-diameter crushing ball (stainless steel ball) 22 of about 80% of the total internal volume of the container. When the shaft 8 with the unbalanced weight is driven to rotate to vibrate the container to the centrifugal effect of vibration 2 = about 6 to 10, the ball 23 vibrates in the container as shown in FIG. While rotating slowly in the direction of the arrow in the figure, the stirring motion of the entire ball is promoted.

【0023】以上のような振動ミルを本体とする設備に
おいての粉体の微粉砕方法は、容器2の内部を乾燥空気
若しくは不活性ガスなどの雰囲気ガスの存在下で−14
0℃以下に冷却し、前述のように容器2の振動を継続さ
せながら、バルブ16を開けて原料粉体17を所定量だ
け容器2内に投入してバルブ16を閉じる。投入された
原料粉体は、ボール22の振動・撹拌による衝撃力と摩
擦力によって、冷却にて脆化した状態の下で粉砕され
る。粉砕された粉体の一部は、容器2の底部に達して下
部ポート13より雰囲気ガスとともに密閉された送風機
19により吸い出され;抽出され、熱交換器21により
再冷却された後、上部ポート12を経由して容器2内に
戻され、再び粉砕に供される。この循環を繰り返すこと
により、粉体が次第に所定のサイズまで微粉砕される。
In the above-described method of pulverizing powder in a facility having a vibration mill as a main body, the inside of the container 2 is subjected to -14 in the presence of an atmospheric gas such as dry air or an inert gas.
While cooling to 0 ° C. or lower, the valve 16 is opened and a predetermined amount of the raw material powder 17 is charged into the container 2 while the vibration of the container 2 is continued as described above, and the valve 16 is closed. The charged raw material powder is pulverized in a state where it is embrittled by cooling by an impact force and a frictional force due to the vibration and stirring of the ball 22. A part of the pulverized powder reaches the bottom of the container 2 and is sucked out from the lower port 13 by a blower 19 hermetically sealed with the atmospheric gas; after being extracted and recooled by the heat exchanger 21, the upper port It is returned into the container 2 via 12, and is again subjected to pulverization. By repeating this circulation, the powder is gradually pulverized to a predetermined size.

【0024】上記のようにして、所定の粒径まで微粉砕
が行われたなら、循環系配管15のバルブ20を閉じ、
分岐配管のバルブ24,26を開け、そして、微粉砕さ
れた原料粉体を雰囲気ガスとともにバグフィルター25
に通す。このとき、微粉砕された粉体のみが補集され、
雰囲気ガスは循環系配管15に戻されて熱交換器21に
より再冷却されて戻される。このようにして、微粉砕さ
れた粉体の補集が所定量分だけ行なわれた時点で、バル
ブ24,26を閉じ、バグを取り出すことにより、微粉
された粉体の取り出しが行なえる。このとき、バルブ2
0を開ければ、粉体の取り出し中も装置の運転;粉体の
循環を可能にする。
As described above, when fine pulverization is performed to a predetermined particle size, the valve 20 of the circulation system piping 15 is closed,
The valves 24 and 26 of the branch pipe are opened, and the finely pulverized raw material powder is mixed with the atmosphere gas in the bag filter 25.
Through. At this time, only finely pulverized powder is collected,
The atmosphere gas is returned to the circulation system piping 15 and is re-cooled by the heat exchanger 21 and returned. In this manner, when the collection of the finely pulverized powder has been performed by a predetermined amount, the valves 24 and 26 are closed and the bug is taken out, whereby the finely powdered powder can be taken out. At this time, valve 2
Opening 0 enables the operation of the apparatus even during the removal of the powder; the circulation of the powder is enabled.

【0025】熱交換器21で系に供給すべき冷熱量は、
1)初期に系内全体を所定温度まで冷却するのに要する
熱量Q1、2)定常状態になってから系に供給される原
料粉体冷却用熱量q1、環境と系内の温度差で侵入する
熱をキャンセルする熱量q2景内で発熱する熱量q3の
和Q2=q1+q2+q3であり、その凡その大きさ
は、一回あたり2kgの原料粉体を処理する装置を想定し
た場合、下記のようになる。
The amount of cold heat to be supplied to the system by the heat exchanger 21 is as follows:
1) The amount of heat Q1 required to initially cool the entire system to a predetermined temperature, 2) The amount of heat q1 for cooling the raw material powder supplied to the system after the system has reached a steady state, and enters due to the temperature difference between the environment and the system. The quantity of heat q2 to cancel the heat q2 = q1 + q2 + q3, the sum of the quantity of heat q3 generated in the scenery, and the approximate size is as follows, assuming an apparatus that processes 2 kg of raw material powder at one time. .

【0026】Q1:ボール(SUS304、密度795
0kg/m3 、比熱0.50kJ/kgK at220
K)の充填量を50kg,容器(SUS304)の重量を
24kgとすると、系全体を20℃から−150℃まで冷
却するのに必要な熱量は約6300kJである。付随す
る配管系の冷却に必要な熱量を加えると、下記数1のよ
うになり、1時間で冷却することを想定しても、2kW程
度の小型冷凍機で対応できる。
Q1: Ball (SUS304, density 795)
0 kg / m 3 , specific heat 0.50 kJ / kgK at220
Assuming that the filling amount of K) is 50 kg and the weight of the container (SUS304) is 24 kg, the amount of heat required to cool the entire system from 20 ° C. to −150 ° C. is about 6300 kJ. When the amount of heat necessary for cooling the associated piping system is added, the following equation 1 is obtained. Even if cooling in one hour is assumed, a small refrigerator of about 2 kW can be used.

【0027】[0027]

【数1】 (Equation 1)

【0028】Q2:1)熱伝導率0.04W/mKの断
熱材を厚さ5cmで取り付けたとするとき、断熱材を通し
て内部に侵入する熱量は系全体で、下記数2のようにな
る。
Q2: 1) Assuming that a heat insulating material having a thermal conductivity of 0.04 W / mK is attached at a thickness of 5 cm, the amount of heat entering the interior through the heat insulating material is as shown in the following equation (2).

【0029】[0029]

【数2】 (Equation 2)

【0030】2)原料粉体(PTFE、密度2000kg
/m3 、比熱0.8kJ/kgK)を2kg/回投入し、
10分で冷却するとすれば、所要熱量は下記数3のよう
になる。
2) Raw material powder (PTFE, density 2000 kg)
/ M 3 , specific heat 0.8 kJ / kgK) 2 kg / time,
If cooling is performed in 10 minutes, the required amount of heat will be as shown in the following Equation 3.

【0031】[0031]

【数3】 (Equation 3)

【0032】3)内部発熱量は、ボールの摩擦熱及びベ
アリングの発熱であり、下記数4のようにすれば十分で
ある。
3) The amount of internal heat generated is the frictional heat of the ball and the heat generated by the bearing.

【0033】[0033]

【数4】 (Equation 4)

【0034】このようなことから、Q2は下記数5のよ
うになり、初期冷却用に2kW程度の冷凍機を用意すれ
ば、運転中も系の内部温度を所定温度(−140℃程
度)以下に保つことが可能である。
From the above, Q2 is given by the following equation (5). If a refrigerator of about 2 kW is prepared for initial cooling, the internal temperature of the system can be kept below the predetermined temperature (about -140 ° C.) even during operation. It is possible to keep.

【0035】[0035]

【数5】 (Equation 5)

【0036】循環に供する雰囲気ガスの冷却媒体として
液化天然ガスを用い、熱交換器を介して液化天然ガスを
用いて、熱交換器を介して冷却させる場合、液化天然ガ
スには不純物が混入せず、そのまま次工程で燃料や化学
工業用原材料として使用可能であり、微粉砕装置を液化
天然ガスプラントに併設することにより、冷却原単位を
大幅に低減させることができる。冷却媒体として冷凍機
を用いる場合、装置が大幅に簡略化できる。
When liquefied natural gas is used as a cooling medium of the atmospheric gas to be circulated and cooled through a heat exchanger using liquefied natural gas through a heat exchanger, impurities are mixed into the liquefied natural gas. Instead, it can be used as it is as a fuel or raw material for the chemical industry in the next step, and by adding a pulverizing device to a liquefied natural gas plant, it is possible to greatly reduce the cooling unit consumption. When a refrigerator is used as a cooling medium, the apparatus can be greatly simplified.

【0037】この実施例のように、振動ミルの本体をな
す粉砕容器1が固定されているので、ガス及び原料の投
入及び抽出ポートに振動吸収用フレキシブルジョイント
を使用することで、密閉系の構成が容易に実現できる。
また、前述したように原料の投入から抽出まで半連続化
が実現でき、自動連続無人運転化を達成することも可能
である。
As in this embodiment, since the crushing vessel 1 forming the main body of the vibrating mill is fixed, a flexible joint for absorbing vibration is used in the gas and raw material input and extraction ports to form a closed system. Can be easily realized.
Further, as described above, semi-continuous operation can be realized from the input of raw materials to extraction, and automatic continuous unmanned operation can be achieved.

【0038】[他の実施例、変形例]振動ミルの粉砕容
器の外面を十分に断熱し、その内部にボール及び原料粉
体とともに液体窒素を直接投入し、蒸発させて冷却し、
不足分を絶えず補給する方法を用いることが可能であ
る。この場合、熱交換器21及び冷熱源23が不要とな
るが、冷却用液体窒素の定量供給装置が必要であり、液
体窒素を、例えば、上記の条件装置の場合、定常状態に
おいて、1.6kW相当約29kg/h消耗品として供給す
る必要がある。
[Other Embodiments and Modifications] The outer surface of a crushing vessel of a vibrating mill is sufficiently insulated, and liquid nitrogen is directly charged into the inside thereof together with balls and raw material powder, and is evaporated and cooled.
It is possible to use a method of constantly replenishing the shortage. In this case, the heat exchanger 21 and the cold heat source 23 are not required, but a cooling liquid nitrogen supply device is required. For example, in the case of the above-described condition device, 1.6 kW in a steady state in the case of the above-described condition device. It needs to be supplied as a consumable of about 29 kg / h.

【0039】また、鉄分による汚染を嫌う原料の粉砕に
使用する場合、粉砕容器を含む系の内面をセラミックコ
ーティングを施し、粉砕用ボールとしてセラミックボー
ルを用いれば良い。
In the case of using the raw material which is not liable to be contaminated by iron, the inner surface of the system including the pulverizing container may be coated with ceramic, and the ceramic ball may be used as the pulverizing ball.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、架
橋PTFE粉体のような難粉砕材の微粉を高い収率で行
い得る低温振動ミルによる粉体の微粉砕方法を提供する
という所期の課題;目的を達成することができ、これを
実施した場合の効果は甚大であるといえる。
As described above, according to the present invention, there is provided a method of finely pulverizing a powder with a low-temperature vibrating mill, which can perform a fine powder of a hardly crushable material such as a crosslinked PTFE powder in a high yield. The objective of the period: the objective can be achieved, and the effect of implementing this can be considered to be enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る低温振動ミルによる粉体の微粉砕
方法の実施例を示し、(イ)は装置系統により示す説明
図、(ロ)は同上(イ)のA−A断面図。
FIG. 1 shows an embodiment of a method for finely pulverizing a powder by a low-temperature vibration mill according to the present invention, wherein (a) is an explanatory view showing an apparatus system, and (b) is an AA sectional view of the same as (a).

【符号の説明】[Explanation of symbols]

1 粉砕容器 2 中空円筒容器 3 断熱材 4 ステー 5 スプリング 6 台座 7 アンバランスウエイト 8 シャフト 9 ベアリング 10 フレキシブル継手 11 モータ 12 上部ポート 13 下部ポート 14 フレキシブルジョイント 15 配管 16 バルブ 17 原料粉体 18 ホッパー 19 送風機 20 バルブ 21 熱交換器 22 ボール 23 冷熱源 24 バルブ 25 バグフィルター 26 バルブ DESCRIPTION OF SYMBOLS 1 Crushing container 2 Hollow cylindrical container 3 Heat insulation material 4 Stay 5 Spring 6 Pedestal 7 Unbalance weight 8 Shaft 9 Bearing 10 Flexible joint 11 Motor 12 Upper port 13 Lower port 14 Flexible joint 15 Piping 16 Valve 17 Raw material powder 18 Hopper 19 Blower Reference Signs List 20 Valve 21 Heat exchanger 22 Ball 23 Cold heat source 24 Valve 25 Bag filter 26 Valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原料粉体とこれの粉砕媒体となる多数のボ
ールを入れる中空円筒形の容器を母体とし、この容器の
中心部で軸受けを介して取り付けられたアンバランスウ
エイト付きシャフトを回転させることで容器に振動を生
じさせ、このときのボールの振動と撹拌運動によって原
料粉体を衝撃と摩擦力で微粉砕する振動ミルを用い、当
該容器の内部全体の雰囲気ガスの下で−140℃以下ま
で冷却した後、容器を振動させながら原料粉体を雰囲気
ガスとともに抽出し、再冷却して容器に戻し、原料粉体
が所定の粒径になるまでこの操作を繰り返すことを特徴
とする低温振動ミルによる粉体の微粉砕方法。
1. A hollow cylindrical container for holding raw material powder and a large number of balls serving as a crushing medium for the base material, and a shaft with an unbalanced weight mounted via a bearing at the center of the container is rotated. By using a vibrating mill that causes the container to vibrate and finely pulverize the raw material powder by the impact and frictional force by the vibration and stirring motion of the ball at this time, -140 ° C. under the atmosphere gas of the entire interior of the container After cooling to below, the raw material powder is extracted together with the atmospheric gas while vibrating the container, recooled and returned to the container, and this operation is repeated until the raw material powder has a predetermined particle size. Fine grinding method of powder by vibration mill.
【請求項2】前記の容器の下部ポートと上部ポートとの
間に連絡される原料粉体と雰囲気ガスの循環系配管に、
バルブを介して分岐配管を設け、この分岐配管にバグフ
ィルターを設けて、所定の粒径に微粉砕された粉体をガ
スと分離して取り出す、請求項1記載の低温振動ミルに
よる粉体の微粉砕方法。
2. A piping system for circulating raw material powder and atmospheric gas, which is connected between a lower port and an upper port of the container,
A branch pipe is provided through a valve, a bag filter is provided in the branch pipe, and powder finely pulverized to a predetermined particle size is separated from a gas and taken out. Fine grinding method.
JP2000161096A 2000-05-26 2000-05-26 Pulverizing method for powder by low-temperature vibration mill Withdrawn JP2001334157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161096A JP2001334157A (en) 2000-05-26 2000-05-26 Pulverizing method for powder by low-temperature vibration mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000161096A JP2001334157A (en) 2000-05-26 2000-05-26 Pulverizing method for powder by low-temperature vibration mill

Publications (1)

Publication Number Publication Date
JP2001334157A true JP2001334157A (en) 2001-12-04

Family

ID=18665169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161096A Withdrawn JP2001334157A (en) 2000-05-26 2000-05-26 Pulverizing method for powder by low-temperature vibration mill

Country Status (1)

Country Link
JP (1) JP2001334157A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255563A (en) * 2005-03-16 2006-09-28 Toho Gas Co Ltd Grinder
KR100767290B1 (en) 2006-07-05 2007-10-17 일신피티에프이공업(주) Mixing machine teflon stuff
CN109261295A (en) * 2018-09-07 2019-01-25 泰山医学院 A kind of solid phase synthesis ball grinder
KR20210022218A (en) * 2019-08-19 2021-03-03 주식회사 포스코 Apparatus for milling powder
CN114130485A (en) * 2021-11-25 2022-03-04 东莞市华汇精密机械有限公司 Double-convex-pin-type nano sand mill

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255563A (en) * 2005-03-16 2006-09-28 Toho Gas Co Ltd Grinder
KR100767290B1 (en) 2006-07-05 2007-10-17 일신피티에프이공업(주) Mixing machine teflon stuff
CN109261295A (en) * 2018-09-07 2019-01-25 泰山医学院 A kind of solid phase synthesis ball grinder
KR20210022218A (en) * 2019-08-19 2021-03-03 주식회사 포스코 Apparatus for milling powder
KR102246861B1 (en) * 2019-08-19 2021-05-03 주식회사 포스코 Apparatus for milling powder
CN114130485A (en) * 2021-11-25 2022-03-04 东莞市华汇精密机械有限公司 Double-convex-pin-type nano sand mill
CN114130485B (en) * 2021-11-25 2022-06-14 东莞市华汇精密机械有限公司 Double-convex-pin-type nano sand mill

Similar Documents

Publication Publication Date Title
El-Eskandarany Mechanical alloying: nanotechnology, materials science and powder metallurgy
US6520837B2 (en) Method and apparatus for ultrafine grinding and/or mixing of solid particles
JP6281077B2 (en) Method and apparatus for producing fine powder
US3682399A (en) Apparatus for comminuting and dispersing solid particles
JP2006231125A (en) Manufacturing system of shell powder
JPH0910621A (en) Ultra-high energy-extremely low temperature shock system
JP2001334157A (en) Pulverizing method for powder by low-temperature vibration mill
JP4596134B2 (en) Method for improving dispersibility of carbon nanotubes
DK151940B (en) MILLING UNIT.
JPS6253748A (en) Horizontal revolving type grinder
JPH0816795B2 (en) Toner manufacturing method and apparatus
KR101746057B1 (en) Ball milling device for high energy and alloyed powder using the same
JP3486682B1 (en) High speed powder reactor
JP2001334165A (en) Pulverizing method for powder
JP3571950B2 (en) Cell crushing device and cell crushing method
JP2004130305A (en) High-speed powder reactor
JP2005262094A (en) Rotation and revolution type agitator
JP2016129866A (en) Dry type medium agitation pulverizer, and operational method therefor
CN105855010A (en) Pneumatic pulverization device and low temperature pulverization method using the same
Bailey The formation of comets in wind-driven shells around protostars
JP2018153755A (en) Crushing system
JPS62227456A (en) Horizontal turning type crusher
JP2004306016A (en) Apparatus and method for manufacturing hydrogen storage body, and hydrogen storage body
JP3113070B2 (en) Vertical mill vibration prediction method and vertical mill vibration suppression method
JPH0691189A (en) Batch operation of centrifugal fluidized pulverizer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807