JP2001333501A - Battery monitor for two-battery electric vehicle - Google Patents

Battery monitor for two-battery electric vehicle

Info

Publication number
JP2001333501A
JP2001333501A JP2000148495A JP2000148495A JP2001333501A JP 2001333501 A JP2001333501 A JP 2001333501A JP 2000148495 A JP2000148495 A JP 2000148495A JP 2000148495 A JP2000148495 A JP 2000148495A JP 2001333501 A JP2001333501 A JP 2001333501A
Authority
JP
Japan
Prior art keywords
voltage
battery
secondary coil
low
voltage detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000148495A
Other languages
Japanese (ja)
Other versions
JP4035941B2 (en
Inventor
Tetsuya Kobayashi
徹也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000148495A priority Critical patent/JP4035941B2/en
Publication of JP2001333501A publication Critical patent/JP2001333501A/en
Application granted granted Critical
Publication of JP4035941B2 publication Critical patent/JP4035941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery monitor for two-battery-type electric vehicles which enables enhancement in the accuracy of detecting the voltage of a main battery, without complication of the circuitry thereof. SOLUTION: The battery monitor comprises a main battery 3 of higher voltage, a sub-battery 2 of lower voltage, voltage detection circuits 51 and 52, and a supply voltage supplying circuit 3 that is supplied with power from the sub-battery 3 and supplies the voltage detection circuits 51 and 52 with power. The supply voltage supplying circuit 3 comprises an inverter 42, a multiple output-type transformer 44, and rectifiers 45 to 47. The coefficient of electromagnetic coupling between the primary coil 441 of the multiple output-type transformer 44 and the secondary coil 444 for power supply to low-voltage load is set to a value smaller than the coefficient of electromagnetic coupling between the primary coil 441 and the secondary coils 442 and 443 for power supply to voltage detection circuit. Therefor, the fluctuation in the supply voltage of the voltage detection circuits 51 and 52 due to the fluctuation in the current in the secondary coil 444 for power supply to low-voltage load is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二電池型電気自動
車の電池監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery monitoring device for a two-battery electric vehicle.

【0002】[0002]

【従来の技術】二次電池を搭載する純電気自動車、燃料
電池車及びハイブリッド車などの電気自動車では、抵抗
損失低減や制御用半導体素子の小型化のために車両走行
モータと電力授受する300V近い端子電圧をもつ高圧
電池(主電池)と、制御装置やオーディオ装置や従来の
車両用電気負荷に給電するために12V程度の端子電圧
を有する低圧電池とを搭載することが有利である。
2. Description of the Related Art In an electric vehicle such as a pure electric vehicle, a fuel cell vehicle, and a hybrid vehicle on which a secondary battery is mounted, close to 300 V which exchanges electric power with a vehicle traveling motor in order to reduce resistance loss and downsize a control semiconductor element. It is advantageous to mount a high-voltage battery (main battery) having a terminal voltage and a low-voltage battery having a terminal voltage of about 12 V to supply power to a control device, an audio device, or a conventional vehicle electric load.

【0003】電気自動車の主電池として用いられるニッ
ケル水素電池やリチウム電池などの高エネルギー二次電
池は過充電や過放電に弱い特性をもつが、電気自動車の
二次電池は頻繁に充放電を繰り返すため、その精密な容
量管理が必須となっている。
[0003] High-energy secondary batteries such as nickel-metal hydride batteries and lithium batteries used as main batteries of electric vehicles have characteristics that are susceptible to overcharge and overdischarge, but secondary batteries of electric vehicles frequently repeat charge and discharge. Therefore, precise capacity management is indispensable.

【0004】主電池の精密な容量管理のためには、縦続
接続されて主電池を構成する各電池ブロックの端子電圧
を精密に検出する必要がある。なお、電池ブロックは1
乃至縦続接続された複数の単電池で構成される。
In order to precisely control the capacity of the main battery, it is necessary to precisely detect the terminal voltage of each battery block which is cascaded and constitutes the main battery. The battery block is 1
Or a plurality of cells connected in cascade.

【0005】各電池ブロックの基準端(通常低位端)電
位は互いに異なるために、これら基準端を基準として高
位端の電位を検出する各電池ブロックの端子電圧検出回
路(以下、電圧検出回路ともいう)に電源電圧を給電す
る各電源回路(以下、電圧検出回路用電源回路ともい
う)を互いに電気的に独立させる必要がある。
Since the reference end (normally lower end) potential of each battery block is different from each other, a terminal voltage detection circuit (hereinafter, also referred to as a voltage detection circuit) of each battery block for detecting a higher end potential based on these reference ends. ) Must be electrically independent from each other (hereinafter, also referred to as a voltage detection circuit power supply circuit).

【0006】これら電圧検出回路用電源回路は低電圧を
出力すればよいので、二電池型電気自動車では、低圧の
副電池からの直流電力を交流電力に変換するインバー
タ、複数の二次コイルを有するトランス(以下、マルチ
出力型トランスともいう)、各二次コイル電圧を個別に
整流する整流器で構成される複数出力型のDCーDCコ
ンバータが採用される。
Since the power supply circuit for the voltage detection circuit only needs to output a low voltage, a two-battery electric vehicle has an inverter for converting DC power from a low-voltage sub-battery into AC power, and a plurality of secondary coils. A transformer (hereinafter, also referred to as a multi-output transformer) and a multiple-output DC-DC converter composed of a rectifier for individually rectifying each secondary coil voltage are employed.

【0007】[0007]

【発明が解決しようとする課題】上記説明した二電池型
電気自動車では、運転者の利便性を向上するために商用
周波数の100V交流負荷や、副電池電圧とは異なる電
圧の直流負荷などにたとえばコンセントなど通じて給電
することが望まれている。
In the two-battery electric vehicle described above, for example, a 100 V AC load of a commercial frequency or a DC load of a voltage different from the sub-battery voltage is used to improve the driver's convenience. It is desired to supply power through outlets and the like.

【0008】この種の異電圧負荷には、電圧変換用のト
ランスを内蔵するDCーDCコンバータ又はインバータ
を通じて、主電池又は副電池から給電されるが、回路構
成を簡素化し、車両重量を軽減するためには上記したマ
ルチ出力型トランスの一つの二次コイルから給電するこ
とが最も簡単である。
[0008] This kind of different voltage load is supplied with power from a main battery or a sub-battery through a DC-DC converter or an inverter having a built-in transformer for voltage conversion, but the circuit configuration is simplified and the vehicle weight is reduced. For this purpose, it is easiest to supply power from one secondary coil of the multi-output transformer described above.

【0009】この場合、異電圧負荷への給電電流はその
開閉などにより大きく変動し、この電流変動が、一次コ
イルだけでなく電圧検出回路給電用の二次コイルにも影
響するため、この異電圧負荷への印加電圧の変動に応じ
てマルチ出力型トランスの一次電流をフィードバック制
御して、低圧負荷給電用の二次コイルの電流変化を補償
(一次コイルから低圧負荷給電用の二次コイルに電磁給
電)することが必要となる。
In this case, the power supply current to the different voltage load fluctuates greatly due to switching and the like, and this current fluctuation affects not only the primary coil but also the secondary coil for power supply of the voltage detection circuit. Feedback control of the primary current of the multi-output transformer according to the fluctuation of the voltage applied to the load to compensate for the current change of the secondary coil for low voltage load power supply (from the primary coil to the secondary coil for low voltage load power supply, Power supply).

【0010】しかしながら、詳細な回路解析の説明は省
略するが、このようなフィードバック制御を行ったとし
ても、異電圧負荷への給電電流の増減は、結局、マルチ
出力型トランスの一次コイル電圧の増減を招き、これに
応じて他の二次コイル電圧の増減を招き、その結果とし
て、各電圧検出回路の検出特性が変動して電池ブロック
の電圧検出精度が低下してしまう。
[0010] However, although a detailed description of the circuit analysis is omitted, even if such feedback control is performed, the increase or decrease of the supply current to the different voltage load will eventually increase or decrease the primary coil voltage of the multi-output type transformer. Accordingly, the voltage of another secondary coil is increased or decreased in response to this, and as a result, the detection characteristics of each voltage detection circuit fluctuate and the voltage detection accuracy of the battery block is reduced.

【0011】各電圧検出回路それぞれに高精度の定電圧
回路を設けることによりこの問題を改善することは可能
であるが、回路構成の複雑化及び電力損失の増大の点で
実用的ではない。
Although it is possible to solve this problem by providing a high-precision constant voltage circuit for each of the voltage detection circuits, it is not practical in terms of a complicated circuit configuration and an increase in power loss.

【0012】更に、なんらかの異常により、異電圧負荷
が短絡状態となった場合には、各電圧検出回路の電源電
圧が大幅に増大するため、各電圧検出回路それぞれにそ
れに対する防御回路を増設必要も生じた。
Further, when the abnormal voltage load is short-circuited due to some abnormality, the power supply voltage of each voltage detecting circuit is greatly increased. Therefore, it is necessary to add a protection circuit for each voltage detecting circuit. occured.

【0013】本発明は上記問題点に鑑みなされたもので
あり、回路構成の複雑化を抑止しつつ、主電池の電圧検
出精度の向上が可能な二電池型電気自動車の電池監視装
置を提供することをその目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a battery monitoring apparatus for a two-battery electric vehicle capable of improving the accuracy of detecting the voltage of a main battery while suppressing the complexity of the circuit configuration. That is the purpose.

【0014】[0014]

【課題を解決するための手段】請求項1記載の二電池型
電気自動車の電池監視装置は、複数の電池ブロックを直
列接続して構成された高圧の主電池と、低圧の副電池
と、各前記電池ブロックの端子電圧を個別に検出する複
数の電圧検出回路と、前記副電池から給電されて各前記
電圧検出回路及び低圧の電気負荷に個別に電源電圧を印
加する電源電圧供給回路とを備え、前記電源電圧供給回
路は、前記副電池から給電される直流電力を交流電力に
変換するインバータと、前記交流電力が供給される一次
コイル、電圧検出回路給電用の複数の二次コイル及び低
圧負荷給電用の二次コイルを有するマルチ出力型トラン
スと、各前記電圧検出回路給電用の二次コイルから出力
される各交流電力を個別に整流して前記各電圧検出回路
に給電するとともに、前記低圧負荷給電用の二次コイル
から出力される交流電力を整流して直接又は所定周波数
の交流電力に変換して低圧の電気負荷へ給電する多数の
整流器とを備える二電池型電気自動車の電池監視装置に
おいて、前記マルチ出力型トランスの前記一次コイルと
前記低圧負荷給電用の二次コイルとの間の電磁結合係数
は、前記一次コイルと前記電圧検出回路給電用の二次コ
イルとの間の電磁結合係数よりも小さく設定されること
を特徴としている。
According to a first aspect of the present invention, there is provided a battery monitoring apparatus for a two-battery type electric vehicle, comprising: a high-voltage main battery, a low-voltage sub-battery configured by connecting a plurality of battery blocks in series; A plurality of voltage detection circuits that individually detect terminal voltages of the battery block, and a power supply voltage supply circuit that is supplied with power from the auxiliary battery and individually applies a power supply voltage to each of the voltage detection circuits and the low-voltage electric load. A power supply voltage supply circuit, an inverter for converting DC power supplied from the sub-battery into AC power, a primary coil to which the AC power is supplied, a plurality of secondary coils for supplying a voltage detection circuit, and a low voltage load. A multi-output type transformer having a secondary coil for power supply, and each AC power output from the secondary coil for power supply is individually rectified and supplied to each of the voltage detection circuits. A battery for a two-battery electric vehicle comprising: a plurality of rectifiers that rectify the AC power output from the secondary coil for supplying the low-voltage load and directly or convert the AC power to a predetermined frequency to supply power to the low-voltage electric load. In the monitoring device, the electromagnetic coupling coefficient between the primary coil of the multi-output type transformer and the secondary coil for supplying the low-voltage load is a value between the primary coil and the secondary coil for supplying the voltage detection circuit. It is characterized in that it is set smaller than the electromagnetic coupling coefficient.

【0015】本構成によれば、一次コイルと低圧負荷給
電用の二次コイルとの間の電磁結合係数が小さいので
(漏れ磁束が多いので)、低圧負荷の電流変動による一
次コイル電流の変動を低減することができる。また、電
圧検出回路給電用の二次コイルは低圧負荷給電用の二次
コイルよりも良好な電磁結合係数で一次コイルに結合さ
れるので、副電池から各電圧検出回路への給電効率を向
上して損失を低減することができる。
According to this configuration, since the electromagnetic coupling coefficient between the primary coil and the secondary coil for supplying the low-voltage load is small (there is a large amount of leakage magnetic flux), the fluctuation of the primary coil current due to the current fluctuation of the low-voltage load can be reduced. Can be reduced. Also, since the secondary coil for supplying the voltage detection circuit is coupled to the primary coil with a better electromagnetic coupling coefficient than the secondary coil for supplying the low voltage load, the power supply efficiency from the secondary battery to each voltage detection circuit is improved. Thus, the loss can be reduced.

【0016】請求項2記載の構成によれば請求項1記載
の二電池型電気自動車の電池監視装置において更に、前
記一次コイル及び前記各二次コイルは前記マルチ出力型
トランスのコアに径方向に重ねて巻装され、前記一次コ
イル及び前記低圧負荷給電用の二次コイルは、前記各電
圧検出回路用の二次コイルを径方向に挟んで配置される
ことを特徴としている。
According to a second aspect of the present invention, in the battery monitoring device for a two-battery electric vehicle according to the first aspect, the primary coil and each of the secondary coils are radially connected to a core of the multi-output transformer. The primary coil and the secondary coil for supplying a low-voltage load are stacked and wound, and are arranged so as to sandwich the secondary coil for each of the voltage detection circuits in the radial direction.

【0017】本構成によれば、各コイルを径方向に重ね
て巻装し、一次コイル及び低圧負荷給電用の二次コイル
の間に電圧検出回路給電用の二次コイルを介在させると
いう簡単な構造で請求項1記載の電磁結合係数を実現す
ることができる。
According to this configuration, each coil is wound one on another in the radial direction, and the secondary coil for supplying the voltage detection circuit is interposed between the primary coil and the secondary coil for supplying the low voltage load. The electromagnetic coupling coefficient according to claim 1 can be realized by the structure.

【0018】好適な態様において、一次コイルは最外側
に、低圧負荷給電用の二次コイルは最内側に巻装される
が、この逆でもよい。
In a preferred embodiment, the primary coil is wound on the outermost side and the secondary coil for supplying a low-voltage load is wound on the innermost side, but vice versa.

【0019】請求項3記載の構成によれば請求項1記載
の二電池型電気自動車の電池監視装置において更に、前
記マルチ出力型トランスは、前記一次コイル及び前記各
電圧検出回路用の二次コイルと前記低圧負荷給電用の二
次コイルとの間に漏れ磁束を増大させる分岐磁路部材を
有することを特徴としている。
According to a third aspect of the present invention, in the battery monitoring device for a two-battery electric vehicle according to the first aspect, the multi-output type transformer further comprises a secondary coil for the primary coil and each of the voltage detection circuits. And a branch magnetic path member for increasing the leakage magnetic flux between the secondary coil for supplying the low voltage load.

【0020】本構成によれば、一次コイル及び各電圧検
出回路用の二次コイルと低圧負荷給電用の二次コイルと
の間の漏れ磁束を容易に増大することができ、トランス
体格の増大を抑止しつ請求項1記載の効果を増大するこ
とができる。
According to this configuration, it is possible to easily increase the leakage magnetic flux between the primary coil and the secondary coil for each voltage detection circuit and the secondary coil for supplying the low-voltage load, and to increase the size of the transformer. The effect described in claim 1 can be increased.

【0021】好適な態様において、一次コイル及び各電
圧検出回路用の二次コイルと低圧負荷給電用の二次コイ
ルとの間に、渦電流損失が小さいフェライトテープを巻
く。このようにすれば一次コイル及び各電圧検出回路用
と二次コイルと低圧負荷給電用の二次コイルとの間の電
磁結合係数を簡素で体格を増大することなく低減するこ
とができる。
In a preferred embodiment, a ferrite tape with small eddy current loss is wound between the primary coil and the secondary coil for each voltage detection circuit and the secondary coil for supplying a low-voltage load. In this way, the electromagnetic coupling coefficient between the primary coil and each voltage detection circuit, and between the secondary coil and the low voltage load power supply secondary coil can be reduced simply without increasing the physical size.

【0022】[0022]

【発明の実施の形態】以下、本発明の好適な態様を以下
の実施例により詳細に説明する。ただし、本発明は下記
の実施例の構成に限定されるものではなく、置換可能な
公知回路を用いて構成できることは当然である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the following examples. However, the present invention is not limited to the configuration of the following embodiment, and it is obvious that the present invention can be configured using a replaceable known circuit.

【0023】[0023]

【実施例1】本発明の組み電池の電圧検出装置の一実施
例を図1を参照して説明する。
[Embodiment 1] An embodiment of a voltage detecting device for an assembled battery according to the present invention will be described with reference to FIG.

【0024】(回路構成)1はイグニッションスイッ
チ、2は低圧の副電池、3は主電池、4は電池監視EC
Uであり、主電池3は図示しないインバータ装置を通じ
て図示しない走行モータと電力授受している。
(Circuit configuration) 1 is an ignition switch, 2 is a low-voltage sub-battery, 3 is a main battery, 4 is a battery monitoring EC.
U, and the main battery 3 exchanges power with a traveling motor (not shown) through an inverter device (not shown).

【0025】電池監視ECU4は、平滑回路41、イン
バータ回路42、CR回路43、マルチ出力型トランス
44、整流器45〜47、平滑コンデンサ48〜50、
電圧検出回路51、52を有している。
The battery monitoring ECU 4 comprises a smoothing circuit 41, an inverter circuit 42, a CR circuit 43, a multi-output type transformer 44, rectifiers 45 to 47, smoothing capacitors 48 to 50,
It has voltage detection circuits 51 and 52.

【0026】インバータ回路42は、ソース接地のMO
ST422とそれを所定周波数でデューティ比可変に断
続制御するゲート制御回路42とを有している。
The inverter circuit 42 has a source grounded MO.
ST 422 and a gate control circuit 42 that performs intermittent duty ratio variable control at a predetermined frequency.

【0027】マルチ出力型トランス44は、閉磁路を構
成するフェライトコア440に径方向多重に巻装された
一次コイル441、二次コイル442〜444を有して
いる。
The multi-output type transformer 44 has a primary coil 441 and secondary coils 442 to 444 wound around a ferrite core 440 constituting a closed magnetic circuit in a radially multiple manner.

【0028】マルチ出力型トランス44の一次コイル4
41はスイッチング用のMOST422と直列に接続さ
れ、MOST422の両端には、互いに直列接続された
コンデンサCと抵抗rとからなるCR回路43が並列に
接続されている。
Primary coil 4 of multi-output type transformer 44
Reference numeral 41 is connected in series with the switching MOST 422. Both ends of the MOST 422 are connected in parallel to a CR circuit 43 including a capacitor C and a resistor r connected in series with each other.

【0029】副電池2の電圧が、イグニッションスイッ
チ1、平滑回路41を通じてこれら一次コイル441と
MOST422との両端に印加されている。
The voltage of the sub-battery 2 is applied to both ends of the primary coil 441 and the MOST 422 through the ignition switch 1 and the smoothing circuit 41.

【0030】マルチ出力型トランス44の二次コイル4
42〜444の交流出力は整流器45〜47で個別に整
流され、これにより各整流器45〜47互いに電気的に
絶縁され、異なる基準電位をもつことができる。電圧検
出回路給電用の二次コイル442、443から給電され
る整流器45、46から出力された各直流電圧は、平滑
コンデンサ48、49で個別にリップル除去された後、
電圧検出回路51、52に電源電圧として個別に印加さ
れる。
Secondary coil 4 of multi-output type transformer 44
The AC outputs of 42-444 are individually rectified by rectifiers 45-47 so that each rectifier 45-47 is electrically isolated from one another and can have different reference potentials. Each DC voltage output from the rectifiers 45 and 46 supplied from the secondary coils 442 and 443 for supplying the voltage detection circuit is subjected to ripple removal individually by the smoothing capacitors 48 and 49.
The voltage is individually applied to the voltage detection circuits 51 and 52 as a power supply voltage.

【0031】低圧負荷(この実施例では、副電池よりも
高電圧である)給電用の二次コイル444から給電され
る整流器47から出力された直流電圧は、平滑コンデン
サ50でリップル除去された後、図示しない外部の低圧
負荷に印加される。
The DC voltage output from the rectifier 47 supplied from the secondary coil 444 for supplying a low-voltage load (in this embodiment, the voltage is higher than that of the sub-battery), after the ripple is removed by the smoothing capacitor 50, Are applied to an external low-pressure load (not shown).

【0032】なお、平滑コンデンサ48〜50はそれぞ
れ大容量の電解コンデンサと小容量のフィルムコンデン
サを並列接続して構成されている。この実施例では、外
部の低圧負荷に直流電力を給電したが、インバータ回路
を介在させることにより交流負荷を駆動できることはも
ちろんである。
Each of the smoothing capacitors 48 to 50 is constituted by connecting a large-capacity electrolytic capacitor and a small-capacity film capacitor in parallel. In this embodiment, DC power is supplied to an external low-voltage load. However, it is a matter of course that an AC load can be driven by interposing an inverter circuit.

【0033】(動作)上記説明した回路の動作を説明す
る。
(Operation) The operation of the above-described circuit will be described.

【0034】イグニッションスイッチ1をオンし、MO
ST422を所定のキャリヤ周波数、所定の初期デュー
ティ比で断続すると、一次コイル441に交流電流成分
を含んだ直流電流が流れ、この交流電流成分の変化によ
り二次コイル442〜444に交流電圧が誘導される。
When the ignition switch 1 is turned on, the MO
When ST422 is intermittently performed at a predetermined carrier frequency and a predetermined initial duty ratio, a DC current including an AC current component flows through primary coil 441, and an AC voltage is induced in secondary coils 442 to 444 by a change in the AC current component. You.

【0035】二次コイル442〜444から出力される
各交流電圧は整流器45〜47で整流され、平滑コンデ
ンサ48〜50で平滑されて、電源電圧として電圧検出
回路51、52及び図示しない外部負荷に印加される。
Each AC voltage output from the secondary coils 442 to 444 is rectified by rectifiers 45 to 47, smoothed by smoothing capacitors 48 to 50, and supplied to the voltage detection circuits 51 and 52 and an external load (not shown) as a power supply voltage. Applied.

【0036】主電池4は、多数の電池ブロックを直列接
続して構成されており、更に各電池ブロックはそれぞれ
多数の単電池を直列接続して構成されている。
The main battery 4 is configured by connecting a number of battery blocks in series, and each battery block is configured by connecting a number of cells in series.

【0037】各電池ブロックの端子電圧はそれぞれ異な
る電圧検出回路で検出される。ただし、図1では、最高
位及び最低位の電池ブロックの電圧を検出する電圧検出
回路51、52だけが図示されている。電圧検出回路5
1、52の電圧検出動作及びインバータ回路42による
直ー交変換動作自体は本発明の要旨ではなく、かつ、多
くのバリエーションがあるため、説明を省略する。
The terminal voltage of each battery block is detected by a different voltage detection circuit. However, FIG. 1 shows only the voltage detection circuits 51 and 52 that detect the voltages of the highest and lowest battery blocks. Voltage detection circuit 5
The voltage detection operations 1 and 52 and the cross-conversion operation itself by the inverter circuit 42 are not the gist of the present invention, and there are many variations, so the description is omitted.

【0038】一次コイル444が外部の低圧負荷へ給電
する電流が変化すると、外部負荷へ出力する電圧が変動
するので、この電圧変動をインバータ回路42のゲート
制御回路421にフィードバックして、MOST422
のデューティ比を変化させ、一次コイル441に流れる
交流電流成分を変化させて、上記電圧変動を低減する。
一次コイル441を流れる電流が増大すると二次コイル
442〜443の出力電圧が増大する。
When the current supplied from the primary coil 444 to the external low-voltage load changes, the voltage output to the external load fluctuates. This voltage fluctuation is fed back to the gate control circuit 421 of the inverter circuit 42 and the MOST 422
, And the AC current component flowing through the primary coil 441 is changed to reduce the voltage fluctuation.
When the current flowing through the primary coil 441 increases, the output voltage of the secondary coils 442 to 443 increases.

【0039】(マルチ出力型トランス44の構造)そこ
で、この実施例では、図2に示す独特の構造のマルチ出
力型トランス44を採用する。
(Structure of Multi-Output Type Transformer 44) In this embodiment, a multi-output type transformer 44 having a unique structure shown in FIG. 2 is employed.

【0040】このマルチ出力型トランス44のフェライ
トコア440は、棒状の芯部4401と、ロ字状の枠部
4402とからなり、全体として閉磁気回路を構成して
いる。芯部4401には樹脂ボビン445が嵌められ、
樹脂ボビン445には一次コイル441と二次コイル4
42〜444とが径方向に重なって巻装されている。
The ferrite core 440 of the multi-output type transformer 44 is composed of a rod-shaped core 4401 and a rectangular frame 4402, and constitutes a closed magnetic circuit as a whole. A resin bobbin 445 is fitted into the core 4401,
The resin bobbin 445 includes a primary coil 441 and a secondary coil 4.
42 to 444 are wound so as to overlap in the radial direction.

【0041】この実施例では、最内側に低圧負荷給電用
の二次コイル444が、最外側に一次コイル441が巻
装され、中間に二次コイル442〜443が巻装されて
いる。なお、実際には、二次コイル442〜444は必
要数巻装される。一次コイル441と二次コイル444
とを逆の構成としてもよい。
In this embodiment, a secondary coil 444 for supplying a low-voltage load is wound on the innermost side, a primary coil 441 is wound on the outermost side, and secondary coils 442 to 443 are wound in the middle. Actually, the required number of secondary coils 442 to 444 are wound. Primary coil 441 and secondary coil 444
May be reversed.

【0042】このようにすれば、一次コイル441と低
圧負荷給電用の二次コイル444とは径方向に離れて配
置されるために、それらの間に漏れ磁束経路が生じ、コ
イル441〜443と444との間の電磁結合係数が減
少する。このため、たとえば、低圧負荷給電用の二次コ
イル444に接続される外部の低圧負荷の電流変動の影
響により一次コイル441の電流が変動し、これらの影
響により、電圧検出回路51、52の電源電圧が変動す
るのを良好に抑止することができる。
With this arrangement, since the primary coil 441 and the secondary coil 444 for supplying a low-voltage load are arranged apart from each other in the radial direction, a leakage magnetic flux path is generated therebetween, and the coils 441 to 443 are connected to each other. 444 decreases. Therefore, for example, the current of the primary coil 441 fluctuates due to the influence of the current fluctuation of the external low voltage load connected to the secondary coil 444 for supplying the low voltage load, and the power supply of the voltage detection circuits 51 and 52 is influenced by these influences. Variations in voltage can be suppressed well.

【0043】(変形態様)図3に示すように、低圧負荷
給電用の二次コイル444と他のコイル441〜443
との間に、非磁性樹脂製の半割り円筒を合わせた円筒部
材446を介設してもよい。このようにすれば、コイル
441〜443と444との間の電磁結合係数を低下さ
せることができる。また、この円筒部材446はコイル
間の電気絶縁耐圧の向上にも有効である。この円筒部材
446は絶縁テープを分厚く巻いて形成してもよい。
(Modification) As shown in FIG. 3, a secondary coil 444 for supplying a low-voltage load and other coils 441 to 443 are provided.
And a cylindrical member 446 formed by combining half-cylinders made of non-magnetic resin. By doing so, the electromagnetic coupling coefficient between the coils 441 to 443 and 444 can be reduced. The cylindrical member 446 is also effective for improving the electric withstand voltage between the coils. This cylindrical member 446 may be formed by winding an insulating tape thickly.

【0044】更に、この円筒部材446はフェライトな
どの渦電流損失が小さい半割り円筒やテープで作製して
もよい。このようにすれば、円筒部材446の厚さが薄
くても、両コイル441〜443と444との間の電磁
結合係数を大幅に低減することができる。
Further, the cylindrical member 446 may be made of a half-split cylinder or tape such as ferrite having a small eddy current loss. In this way, even if the thickness of the cylindrical member 446 is small, the electromagnetic coupling coefficient between the coils 441 to 443 and 444 can be significantly reduced.

【0045】なお、上記実施例では、説明を省略した
が、インバータ回路42の電源電圧を形成するコイルを
両コイル441、444間に更に追加巻装してもよい。
Although the description has been omitted in the above embodiment, a coil forming the power supply voltage of the inverter circuit 42 may be additionally wound between the coils 441 and 444.

【0046】[0046]

【実施例2】他の実施例を図4に示す。Embodiment 2 Another embodiment is shown in FIG.

【0047】この実施例は、ボビン形状に形成された第
一のフェライトコア100の円筒状の軸部に一次コイル
441と電圧検出回路給電用の二次コイル442、44
3を巻装し、この第一のフェライトコア100と組み合
わされて閉磁気回路を構成する第二のフェライトコア1
01の円筒状の軸部に低圧負荷給電用の二次コイル44
4を巻装したものである。
In this embodiment, the primary coil 441 and the secondary coils 442, 44 for feeding the voltage detection circuit are mounted on the cylindrical shaft of the first ferrite core 100 formed in a bobbin shape.
3 and the second ferrite core 1 combined with the first ferrite core 100 to form a closed magnetic circuit.
01, a secondary coil 44 for supplying a low-voltage load to the cylindrical shaft portion.
4 is wound.

【0048】このようにすれば、一次コイル441、二
次コイル442〜443と二次コイル444との電磁結
合係数を簡素な構造で低減することができる。
In this way, the electromagnetic coupling coefficient between the primary coil 441, the secondary coils 442 to 443 and the secondary coil 444 can be reduced with a simple structure.

【0049】また、この実施例では、フェライトコア1
00をボビン形状に形成しているので、ボビンを省略す
ることができ、その分だけ部品点数を減らし、小型軽量
化を図ることができる。図5は図4の変形例である。
In this embodiment, the ferrite core 1
Since 00 is formed in a bobbin shape, the bobbin can be omitted, the number of parts can be reduced by that much, and the size and weight can be reduced. FIG. 5 is a modification of FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の二電池型電気自動車の電池監視装置
の回路図である。
FIG. 1 is a circuit diagram of a battery monitoring device for a two-battery electric vehicle according to a first embodiment.

【図2】図1のマルチ出力型トランスの断面図である。FIG. 2 is a cross-sectional view of the multi-output type transformer of FIG.

【図3】図2のマルチ出力型トランスの変形態様を示す
断面図である。
FIG. 3 is a sectional view showing a modification of the multi-output type transformer of FIG.

【図4】図2のマルチ出力型トランスの変形態様を示す
断面図である。
FIG. 4 is a cross-sectional view showing a modification of the multi-output type transformer of FIG.

【図5】図2のマルチ出力型トランスの変形態様を示す
断面図である。
FIG. 5 is a sectional view showing a modification of the multi-output type transformer of FIG.

【符号の説明】[Explanation of symbols]

2 副電池 3 主電池 4 電池監視ECU(電源電圧供給回路) 44 マルチ出力型トランス 441 一次コイル 442 電圧検出回路給電用の二次コイル 443 電圧検出回路給電用の二次コイル 444 低圧負荷給電用の二次コイル 445 円筒部材(分岐磁路部材) 51 電圧検出回路 52 電圧検出回路 42 インバータ回路(インバータ) 45 整流器 46 整流器 47 整流器 2 Secondary battery 3 Main battery 4 Battery monitoring ECU (power supply voltage supply circuit) 44 Multi-output type transformer 441 Primary coil 442 Secondary coil for power supply of voltage detection circuit 443 Secondary coil for power supply of voltage detection circuit 444 For power supply of low voltage load Secondary coil 445 Cylindrical member (branch magnetic path member) 51 Voltage detection circuit 52 Voltage detection circuit 42 Inverter circuit (inverter) 45 Rectifier 46 Rectifier 47 Rectifier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の電池ブロックを直列接続して構成さ
れた高圧の主電池と、 低圧の副電池と、 各前記電池ブロックの端子電圧を個別に検出する複数の
電圧検出回路と、 前記副電池から給電されて各前記電圧検出回路及び低圧
の電気負荷に個別に電源電圧を印加する電源電圧供給回
路と、 を備え、 前記電源電圧供給回路は、 前記副電池から給電される直流電力を交流電力に変換す
るインバータと、 前記交流電力が供給される一次コイル、電圧検出回路給
電用の複数の二次コイル及び低圧負荷給電用の二次コイ
ルを有するマルチ出力型トランスと、 各前記電圧検出回路給電用の二次コイルから出力される
各交流電力を個別に整流して前記各電圧検出回路に給電
するとともに、前記低圧負荷給電用の二次コイルから出
力される交流電力を整流して直接又は所定周波数の交流
電力に変換して低圧の電気負荷へ給電する多数の整流器
と、 を備える二電池型電気自動車の電池監視装置において、 前記マルチ出力型トランスの前記一次コイルと前記低圧
負荷給電用の二次コイルとの間の電磁結合係数は、前記
一次コイルと前記電圧検出回路給電用の二次コイルとの
間の電磁結合係数よりも小さく設定されることを特徴と
する二電池型電気自動車の電池監視装置。
1. A high-voltage main battery configured by connecting a plurality of battery blocks in series, a low-voltage sub-battery, a plurality of voltage detection circuits for individually detecting terminal voltages of the respective battery blocks, A power supply voltage supply circuit that is supplied from a battery and individually applies a power supply voltage to each of the voltage detection circuits and the low-voltage electric load.The power supply voltage supply circuit converts DC power supplied from the sub-battery into AC. An inverter for converting power, a primary coil to which the AC power is supplied, a multi-output type transformer having a plurality of secondary coils for supplying a voltage detection circuit and a secondary coil for supplying a low-voltage load, and each of the voltage detection circuits Each AC power output from the power supply secondary coil is individually rectified and supplied to each of the voltage detection circuits, and the AC power output from the low voltage load power supply secondary coil is regulated. And a plurality of rectifiers for directly or directly converting to a predetermined frequency of AC power and supplying power to a low-voltage electric load, a battery monitoring device for a two-battery electric vehicle, comprising: the primary coil of the multi-output transformer and the low voltage. A secondary battery, wherein an electromagnetic coupling coefficient between the secondary coil for power supply to the load and an electromagnetic coupling coefficient between the primary coil and the secondary coil for power supply to the voltage detection circuit is set to be smaller. Monitoring device for portable electric vehicles.
【請求項2】請求項1記載の二電池型電気自動車の電池
監視装置において、 前記一次コイル及び前記各二次コイルは前記マルチ出力
型トランスのコアに径方向に重ねて巻装され、 前記一次コイル及び前記低圧負荷給電用の二次コイル
は、前記各電圧検出回路用の二次コイルを径方向に挟ん
で配置されることを特徴とする二電池型電気自動車の電
池監視装置。
2. The battery monitoring device for a two-battery electric vehicle according to claim 1, wherein the primary coil and each of the secondary coils are wound around a core of the multi-output type transformer in a radial direction. A battery monitoring device for a two-battery electric vehicle, wherein the coil and the secondary coil for supplying a low-voltage load are arranged so as to radially sandwich the secondary coil for each of the voltage detection circuits.
【請求項3】請求項1記載の二電池型電気自動車の電池
監視装置において、 前記マルチ出力型トランスは、前記一次コイル及び前記
各電圧検出回路用の二次コイルと前記低圧負荷給電用の
二次コイルとの間に漏れ磁束を増大させる分岐磁路部材
を有することを特徴とする二電池型電気自動車の電池監
視装置。
3. The battery monitoring device for a two-battery electric vehicle according to claim 1, wherein the multi-output transformer includes a secondary coil for the primary coil and each of the voltage detection circuits and a secondary coil for supplying the low-voltage load. A battery monitoring device for a two-battery electric vehicle, comprising a branch magnetic path member for increasing leakage magnetic flux between the secondary coil and the secondary coil.
JP2000148495A 2000-05-19 2000-05-19 Battery monitoring device for dual battery type electric vehicle Expired - Lifetime JP4035941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000148495A JP4035941B2 (en) 2000-05-19 2000-05-19 Battery monitoring device for dual battery type electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148495A JP4035941B2 (en) 2000-05-19 2000-05-19 Battery monitoring device for dual battery type electric vehicle

Publications (2)

Publication Number Publication Date
JP2001333501A true JP2001333501A (en) 2001-11-30
JP4035941B2 JP4035941B2 (en) 2008-01-23

Family

ID=18654510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148495A Expired - Lifetime JP4035941B2 (en) 2000-05-19 2000-05-19 Battery monitoring device for dual battery type electric vehicle

Country Status (1)

Country Link
JP (1) JP4035941B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632781A1 (en) * 2004-09-02 2006-03-08 Delphi Technologies, Inc. Method and apparatus for battery capacity detection
WO2009060131A1 (en) * 2007-11-08 2009-05-14 Inrets - Institut National De Recherche Sur Les Transports Et Leur Securite Test bench

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632781A1 (en) * 2004-09-02 2006-03-08 Delphi Technologies, Inc. Method and apparatus for battery capacity detection
WO2009060131A1 (en) * 2007-11-08 2009-05-14 Inrets - Institut National De Recherche Sur Les Transports Et Leur Securite Test bench

Also Published As

Publication number Publication date
JP4035941B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
Phung et al. Optimized structure for next-to-next balancing of series-connected lithium-ion cells
US20180222333A1 (en) Integrated dual-output grid-to-vehicle (g2v) and vehicle-to-grid (v2g) onboard charger for plug-in electric vehicles
JP3795499B2 (en) Voltage equalization device for storage element
JP4539718B2 (en) Secondary power receiving circuit for contactless power supply equipment
US20020109482A1 (en) Voltage equalizing apparatus for battery devices
US8269455B2 (en) Charge balancing system
US20130214733A1 (en) Battery equalization circuits for series charging/discharging and controlling methods thereof
US20040027092A1 (en) Cell equalizing circuit
US9887553B2 (en) Electric power transmission device, and electric power reception device and vehicle including the same
EP1296435A2 (en) Accumulator power supply unit and method for controlling a charge of the accumulator block
Moghaddam et al. Multi-winding equalization technique for lithium ion batteries for electrical vehicles
JP4875320B2 (en) Voltage equalization device for storage element
WO2013157576A1 (en) Battery balancing system and method
KR101210951B1 (en) Cell balancing circuit for energy storage module
WO2013114757A1 (en) Battery equalization device and method
JP5285322B2 (en) Voltage equalizing device, charging device, battery assembly, and charging system
JP2001178010A (en) Charging control system for battery of electric storage cells, particularly for battery of lithium cells
JPH10257682A (en) Method of operating combined batteries and charging-discharging circuit for combined batteries
US20150140374A1 (en) Battery state control circuit, battery state control apparatus, and battery pack
KR20230004736A (en) Automotive Battery Chargers, Related Vehicles, and Implementation Methods
EP3588762B1 (en) Multi-winding inductive device for bi-directional dc-dc converter, converter, and power supply
JP4035941B2 (en) Battery monitoring device for dual battery type electric vehicle
JP2004236486A (en) Battery voltage detecting device
JPH08214454A (en) Method and apparatus for charging capacitor battery
US10958204B1 (en) Automotive electric drive systems with interleaved variable voltage converters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4035941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term