JP2001333016A - Optical wavelength multiplex transmission system - Google Patents

Optical wavelength multiplex transmission system

Info

Publication number
JP2001333016A
JP2001333016A JP2000150077A JP2000150077A JP2001333016A JP 2001333016 A JP2001333016 A JP 2001333016A JP 2000150077 A JP2000150077 A JP 2000150077A JP 2000150077 A JP2000150077 A JP 2000150077A JP 2001333016 A JP2001333016 A JP 2001333016A
Authority
JP
Japan
Prior art keywords
optical
transmission
signal
intensity
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000150077A
Other languages
Japanese (ja)
Other versions
JP3769172B2 (en
Inventor
Eiji Yoshida
英二 吉田
Masabumi Koga
正文 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000150077A priority Critical patent/JP3769172B2/en
Publication of JP2001333016A publication Critical patent/JP2001333016A/en
Application granted granted Critical
Publication of JP3769172B2 publication Critical patent/JP3769172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a nonlinear optical effect in an optical fiber transmission line and deterioration of a transmission characteristic in optical wavelength multiplex transmission in which two or more types of transmission speeds coexist. SOLUTION: An optical signal of a high transmission speed is subjected to wavelength multiplexing with strong intensity, and an optical signal of a low transmission speed is subjected to wavelength multiplexing with low intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異なる複数の波長
の光を多重し、多重した光信号を光ファイバ伝送路を用
いて送受信する光通信に利用する。特に、多重する光信
号の伝送速度が異なる場合に利用する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for optical communication in which light having a plurality of different wavelengths is multiplexed and a multiplexed optical signal is transmitted and received using an optical fiber transmission line. In particular, it is used when transmission speeds of multiplexed optical signals are different.

【0002】[0002]

【従来の技術】光波長多重伝送システムは、互いに波長
の異なる複数の光信号を波長多重し、光ファイバ伝送路
を伝送させる通信方式で、一本の光ファイバ伝送路中を
複数の信号が同時に通信できるため、通信の大容量化が
図れる。
2. Description of the Related Art An optical wavelength division multiplexing transmission system is a communication system in which a plurality of optical signals having different wavelengths are wavelength multiplexed and transmitted through an optical fiber transmission line. A plurality of signals are simultaneously transmitted through one optical fiber transmission line. Since communication is possible, communication capacity can be increased.

【0003】従来の光波長多重伝送システムを図6に示
す。図6では8波長多重の場合の構成例を示す。互いに
波長の異なる光信号を発する光送信器11〜18からの
出力信号が光合波器2で合波(多重)される。ここで光
送信器11〜18の出力信号は二種類以上の伝送速度
(ビットレート)が混在するハイブリッド伝送になって
おり、波長(チャネル)毎の信号光強度はほぼ一定であ
る。この多重信号は光増幅器31で増幅後、光送信局1
0から送信される。
FIG. 6 shows a conventional optical wavelength division multiplexing transmission system. FIG. 6 shows a configuration example in the case of 8-wavelength multiplexing. Output signals from the optical transmitters 11 to 18 that emit optical signals having different wavelengths are multiplexed (multiplexed) by the optical multiplexer 2. Here, the output signals of the optical transmitters 11 to 18 are hybrid transmissions in which two or more types of transmission rates (bit rates) are mixed, and the signal light intensity for each wavelength (channel) is substantially constant. This multiplexed signal is amplified by an optical amplifier 31 and
Sent from 0.

【0004】光増幅器31の利得は伝送速度に依存しな
いため、光ファイバ伝送路41への入力信号はほぼ一定
になる。光ファイバ伝送路41を伝搬した光信号は、光
増幅器32で増幅された後に、光ファイバ伝送路42に
送出される。この過程を繰り返した後、光受信局50に
到着する。光受信局50では、伝送された波長多重光信
号を光分離器5で波長毎に分波し、波長毎に異なる光受
信器61〜68で受信する。
Since the gain of the optical amplifier 31 does not depend on the transmission speed, the input signal to the optical fiber transmission line 41 is almost constant. The optical signal transmitted through the optical fiber transmission line 41 is sent out to the optical fiber transmission line 42 after being amplified by the optical amplifier 32. After repeating this process, the light arrives at the optical receiving station 50. In the optical receiving station 50, the transmitted wavelength-division multiplexed optical signal is demultiplexed for each wavelength by the optical demultiplexer 5, and received by the optical receivers 61 to 68 different for each wavelength.

【0005】[0005]

【発明が解決しようとする課題】光送信器から送信され
る光信号は、光の強度が強い状態を“1”、光の強度が
弱い状態を“0”とするディジタル伝送では、光受信器
で光の強弱を正確に識別する必要がある。しかしなが
ら、伝送速度が高くなると、“1”の状態を表す1ビッ
ト当りの光子数が減少するため、伝送過程において信号
光と雑音光との比であるSN比が悪くなり、光受信器で
“0”と“1”を正確に識別することが困難になる。
An optical signal transmitted from an optical transmitter is an optical receiver in digital transmission in which the state of high light intensity is "1" and the state of low light intensity is "0". Need to accurately identify the intensity of light. However, when the transmission rate increases, the number of photons per bit representing the state of “1” decreases, so that the SN ratio, which is the ratio between signal light and noise light, deteriorates in the transmission process, and the optical receiver receives “1”. It becomes difficult to accurately distinguish between "0" and "1".

【0006】このため光増幅器により光ファイバ伝送路
に入力する光信号の強度を強くして伝送する必要がある
が、このような光波長多重伝送システムでは、光ファイ
バ伝送路中で生じる非線形光学効果が大きな問題とな
る。非線形光学効果には、自己位相変調効果、相互位相
変調効果、4光波混合などが知られている(参考文献
「非線形ファイバ光学」、アグラワール、吉岡書店)。
For this reason, it is necessary to increase the intensity of an optical signal input to an optical fiber transmission line by an optical amplifier for transmission. In such an optical wavelength division multiplexing transmission system, nonlinear optical effects generated in the optical fiber transmission line are required. Is a big problem. Known non-linear optical effects include a self-phase modulation effect, a cross-phase modulation effect, and four-wave mixing (see "Nonlinear Fiber Optics", Agrawar, Yoshioka Shoten).

【0007】自己位相変調効果とは、光の強度に依存し
て光ファイバ伝送路の屈折率が変化し、光が自分で位相
変化を受ける現象である。相互位相変調効果とは波長が
異なる光が同時に同一方向に光ファイバ伝送路中を伝搬
する際に、片方の光が他方の光の強度に依存した位相変
化を引き起こす現象である。4光波混合とは波長が異な
る光が同時に同一方向にファイバ中を伝搬する際に、そ
れぞれの波長差に応じた光成分が生成される現象であ
る。非線形光学効果が生じると、光ファイバ伝送路の持
つ分散の影響により波形劣化が起こり、伝搬特性が劣化
する。
[0007] The self-phase modulation effect is a phenomenon in which the refractive index of an optical fiber transmission line changes depending on the intensity of light, and light undergoes a phase change by itself. The cross-phase modulation effect is a phenomenon in which when lights having different wavelengths simultaneously propagate in the same direction in an optical fiber transmission line, one light causes a phase change depending on the intensity of the other light. Four-wave mixing is a phenomenon in which light components having different wavelengths are generated when light beams having different wavelengths simultaneously propagate in the same direction in a fiber. When the nonlinear optical effect occurs, waveform deterioration occurs due to the influence of dispersion of the optical fiber transmission line, and the propagation characteristics deteriorate.

【0008】例えば、伝送速度が2.5Gbit/sの
光信号では、光受信器で“0”と“1”とを正確に識別
できるために必要な光ファイバ伝送路への1波長当りの
入力強度(すなわち光増幅器の出力強度)を0dBm
(=1mW)とする。伝送速度を10Gbit/sにす
ると1ビット当りの光子数を2.5Gbit/sの場合
と同じにするためには、約4倍の強度が必要になる。す
なわち、1波長当り6dBm(=4mW)程度としなけ
ればならない。
For example, in the case of an optical signal having a transmission speed of 2.5 Gbit / s, an input per wavelength to an optical fiber transmission line necessary for an optical receiver to accurately distinguish between "0" and "1". The intensity (ie, the output intensity of the optical amplifier) is 0 dBm
(= 1 mW). If the transmission rate is 10 Gbit / s, about four times the intensity is required to make the number of photons per bit the same as in the case of 2.5 Gbit / s. That is, it must be about 6 dBm (= 4 mW) per wavelength.

【0009】図6で、2.5Gbit/sと10Gbi
t/sの伝送速度を有する光信号が混在している場合
(例えば光送信器12、14、16、18の伝送速度が
2.5Gbit/s、光送信器11、13、15、17
の伝送速度が10Gbit/sである場合)、2.5G
bit/sの光信号に合わせた入力強度では、10Gb
it/sの光信号のSN比が悪くなり伝送特性が劣化す
る。一方、10Gbit/sに合わせた入力強度では、
光強度が増加するためにこの非線形光学効果が顕著にな
り、伝送特性が劣化する。
In FIG. 6, 2.5 Gbit / s and 10 Gbi
When optical signals having a transmission speed of t / s are mixed (for example, the transmission speed of the optical transmitters 12, 14, 16, 18 is 2.5 Gbit / s, and the optical transmitters 11, 13, 15, 17, 17).
When the transmission speed is 10 Gbit / s), 2.5 G
With an input intensity matched to a bit / s optical signal, 10 Gb
The S / N ratio of the it / s optical signal is degraded, and the transmission characteristics are degraded. On the other hand, with the input intensity adjusted to 10 Gbit / s,
Since the light intensity increases, the nonlinear optical effect becomes remarkable, and the transmission characteristics deteriorate.

【0010】非線形光学効果を抑圧する方法として、コ
ア径が大きい光ファイバ伝送路を用いる方法(伝搬光の
単位面積当りの光強度が小さくなり非線形光学効果が減
少する)、ラマン増幅を用いることにより伝送路の損失
を部分的に補償し、光増幅器で増幅する光の強度を小さ
くする方法(光の強度が小さくなる分、非線形光学効果
が減少する)などが提案されている。前者の方法では、
新たな光ファイバ伝送路を設置する必要があり、後者の
方法では、ラマン増幅用の装置を伝送路に設置する必要
がある。しかしながら、複数の伝送速度が混在する伝送
システムでは、相互位相変調効果などの非線形光学効果
を抑圧する簡単でかつ有効な方法は提案されていない。
As a method for suppressing the nonlinear optical effect, a method using an optical fiber transmission line having a large core diameter (light intensity per unit area of a propagation light is reduced to reduce the nonlinear optical effect), and Raman amplification is used. A method of partially compensating for the loss of the transmission line and reducing the intensity of light amplified by the optical amplifier (the nonlinear optical effect decreases as the intensity of light decreases) has been proposed. In the former method,
It is necessary to install a new optical fiber transmission line, and in the latter method, it is necessary to install a device for Raman amplification in the transmission line. However, in a transmission system in which a plurality of transmission rates are mixed, a simple and effective method for suppressing a nonlinear optical effect such as a cross-phase modulation effect has not been proposed.

【0011】本発明は、このような背景に行われたもの
であって、二種類以上の伝送速度が混在する光波長多重
伝送で、光ファイバ伝送路中で生じる非線形光学効果を
抑圧し、伝送特性劣化を抑えた光波長多重伝送システム
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a background, and is intended to suppress nonlinear optical effects occurring in an optical fiber transmission line in optical wavelength multiplex transmission in which two or more types of transmission speeds coexist. It is an object of the present invention to provide an optical wavelength multiplex transmission system in which characteristic deterioration is suppressed.

【0012】[0012]

【課題を解決するための手段】本発明の光波長多重伝送
システムは、伝送速度が高い光信号は強い強度で、伝送
速度が低い光信号は弱い強度で波長多重し、増幅後、光
ファイバ伝送路に入力する。
SUMMARY OF THE INVENTION In an optical wavelength division multiplexing transmission system according to the present invention, an optical signal having a high transmission speed has a high intensity and an optical signal having a low transmission speed has a low intensity. Input to the road.

【0013】増幅手段が利得(出力信号光の強度を入力
信号光の強度で割った値)を一定にするように動作して
いると、弱い強度P1で増幅手段に入射するある波長
(チャネル)の光信号と強い強度P2で増幅手段に入射
する別の波長(チャネル)の光信号は、利得をGとする
とそれぞれGP1、GP2となり、入力信号光の強度比
は出力においても一定に保たれる。
When the amplifying means operates to keep the gain (a value obtained by dividing the intensity of the output signal light by the intensity of the input signal light) constant, a certain wavelength (channel) incident on the amplifying means at a weak intensity P1. And an optical signal of another wavelength (channel) incident on the amplifying means at a high intensity P2 are GP1 and GP2, respectively, assuming that the gain is G, and the intensity ratio of the input signal light is kept constant at the output. .

【0014】すなわち、伝送速度が高い光信号は強い強
度で、伝送速度が低い光信号は弱い強度で光ファイバ伝
送路に入力するため、光信号の強度が弱くなった分、非
線形光学効果が低減される。光ファイバ伝送路を伝搬す
る際に生じる損失を補償するための増幅手段において
も、利得を一定にするように動作していると、光ファイ
バ伝送路全体では、常に伝送速度に依存した強度差を維
持したまま、波長多重信号が伝送され、非線形光学効果
が低減される。
That is, since an optical signal having a high transmission rate has a high intensity and an optical signal having a low transmission rate has a low intensity, it is input to the optical fiber transmission line. Therefore, the nonlinear optical effect is reduced by the decrease in the intensity of the optical signal. Is done. In the amplifying means for compensating for the loss that occurs when propagating through the optical fiber transmission line, if the operation is performed so as to keep the gain constant, the intensity difference depending on the transmission speed always occurs in the entire optical fiber transmission line. The wavelength multiplexed signal is transmitted while being maintained, and the nonlinear optical effect is reduced.

【0015】実際の伝送では、どのような光ファイバ伝
送路を使用するのかによる伝送路の種類、伝送路距離、
何波の波長をどの程度の波長間隔で伝送するのかによる
伝送形態等の諸条件に依存して信号強度の制御態様は変
化するが、大まかには、伝送速度が半分になれば信号強
度も半分になるように制御を行う。すなわち、二種類の
伝送速度b1、b2(b1=nb2)が混在していれ
ば、b2の信号光強度をb1の信号光強度の1/nにす
る。
In actual transmission, the type of transmission line, transmission line distance,
Although the control mode of the signal strength changes depending on various conditions such as the transmission form depending on how many wavelengths are transmitted at what wavelength interval, roughly, the signal strength is reduced by half when the transmission speed is reduced by half. Is controlled so that That is, if two types of transmission speeds b1 and b2 (b1 = nb2) are mixed, the signal light intensity of b2 is set to 1 / n of the signal light intensity of b1.

【0016】これにより、二種類以上の伝送速度が混在
する光波長多重伝送で、光ファイバ伝送路中で生じる非
線形光学効果を抑圧し、伝送特性劣化を抑えたることが
できる。
Thus, in optical wavelength multiplex transmission in which two or more types of transmission speeds coexist, nonlinear optical effects generated in an optical fiber transmission line can be suppressed, and deterioration of transmission characteristics can be suppressed.

【0017】すなわち、本発明は、互いに波長の異なる
光信号を発生し少なくとも一部の伝送速度が異なる複数
の光送信器と、この複数の光送信器の出力光信号を多重
化する多重化手段と、多重化した光信号を増幅する増幅
手段とを含む光送信手段と、この光送信手段の出力光信
号が入力する光ファイバ伝送路と、この光ファイバ伝送
路の途中に介挿された増幅手段とを含む光伝送手段と、
この光伝送手段を伝送した光信号を波長毎に分波する分
離手段と、この分離手段により分波された波長毎に光信
号を受信する複数の光受信器とを含む光受信手段とを備
えた光波長多重伝送システムである。
That is, the present invention provides a plurality of optical transmitters which generate optical signals having different wavelengths and at least some of which have different transmission speeds, and multiplexing means for multiplexing output optical signals of the plurality of optical transmitters. Optical transmission means including amplification means for amplifying the multiplexed optical signal; an optical fiber transmission line to which an output optical signal of the optical transmission means is inputted; and an amplification interposed in the optical fiber transmission line. Means for transmitting light comprising:
An optical receiving unit including a separating unit that separates the optical signal transmitted by the optical transmitting unit for each wavelength, and a plurality of optical receivers that receive an optical signal for each wavelength that is separated by the separating unit. Optical wavelength division multiplexing transmission system.

【0018】ここで、本発明の特徴とするところは、前
記複数の光送信器から出力される光信号の強度をその伝
送速度に応じた強度にそれぞれ可変に設定する複数の光
強度可変手段を備えたところにある。
Here, a feature of the present invention is that a plurality of light intensity varying means for variably setting the intensity of the optical signal output from the plurality of optical transmitters to an intensity corresponding to the transmission speed. It is in the prepared place.

【0019】前記複数の光送信器の伝送速度が固定的に
定められている場合には、前記光強度可変手段の設定強
度もあらかじめ所定の値に固定的に設定しておけばよい
が、前記複数の光送信器の伝送速度が頻繁に変化する場
合には、前記複数の光送信器の伝送速度情報をそれぞれ
収集する手段と、この収集する手段により収集された前
記伝送速度情報にしたがって前記複数の光強度可変手段
の設定をそれぞれ行う手段とを備えることが望ましい。
これにより、頻繁に変化する前記複数の光送信器の伝送
速度に自動的に対応することができる。
When the transmission speeds of the plurality of optical transmitters are fixedly set, the set intensity of the light intensity variable means may be fixedly set to a predetermined value in advance. When the transmission speeds of the plurality of optical transmitters change frequently, a unit that collects transmission speed information of the plurality of optical transmitters, and the plurality of units according to the transmission speed information collected by the collecting unit. It is preferable to include means for setting the light intensity varying means.
This makes it possible to automatically respond to the frequently changing transmission speeds of the plurality of optical transmitters.

【0020】大まかに述べると、前記光送信器の伝送速
度の高低と、前記光強度可変手段の設定強度の強弱とは
比例関係に設定されることが望ましい。
Generally, it is desirable that the level of the transmission speed of the optical transmitter and the level of the set intensity of the light intensity variable means are set in a proportional relationship.

【0021】前記増幅手段は、利得が一定に制御された
光増幅器であることが望ましい。これにより、システム
全体で、伝送速度と光信号の強度との関係を保持するこ
とができる。
It is preferable that the amplifying means is an optical amplifier whose gain is controlled to be constant. Thereby, the relationship between the transmission speed and the intensity of the optical signal can be maintained in the entire system.

【0022】さらに、前記光送信手段には、送信する光
信号に対する誤り訂正符号化手段を含み、前記光受信手
段には、受信する光信号に対する誤り訂正復号化手段を
含む構成とすることにより、伝送特性劣化を誤り訂正符
号化および復号化の技術を用いて補償することができ
る。
Further, the optical transmission means includes an error correction encoding means for an optical signal to be transmitted, and the optical reception means includes an error correction decoding means for an optical signal to be received. Transmission characteristic degradation can be compensated for using error correction coding and decoding techniques.

【0023】[0023]

【発明の実施の形態】本発明実施例の光波長多重伝送シ
ステムの構成を図1、図4を参照して説明する。図1は
本発明第一実施例の波長多重伝送システムの全体構成図
である。図4は本発明第二実施例の波長多重伝送システ
ムの全体構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of an optical wavelength division multiplexing transmission system according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a wavelength division multiplexing transmission system according to a first embodiment of the present invention. FIG. 4 is an overall configuration diagram of a wavelength division multiplexing transmission system according to a second embodiment of the present invention.

【0024】本発明は、互いに波長の異なる光信号を発
生し少なくとも一部の伝送速度が異なる複数の光送信器
11〜18と、この複数の光送信器11〜18の出力光
信号を多重化する光合波器2と、多重化した光信号を増
幅する光増幅器131とを含む光送信局10と、この光
送信局10の出力光信号が入力する光ファイバ伝送路4
1、42と、この光ファイバ伝送路41、42の途中に
介挿された光増幅器132、133とを含む光伝送路
と、この光伝送路を伝送した光信号を波長毎に分波する
分離器5と、この分離器5により分波された波長毎に光
信号を受信する複数の光受信器61〜68とを含む光受
信局50とを備えた光波長多重伝送システムである。
According to the present invention, a plurality of optical transmitters 11 to 18 which generate optical signals having different wavelengths from each other and at least partially differ in transmission speed, and multiplex output optical signals of the plurality of optical transmitters 11 to 18 are provided. The optical transmission station 10 includes an optical multiplexer 2 that performs optical transmission, an optical amplifier 131 that amplifies a multiplexed optical signal, and an optical fiber transmission line 4 to which an output optical signal of the optical transmission station 10 is input.
1 and 42, and an optical transmission line including optical amplifiers 132 and 133 interposed in the optical fiber transmission lines 41 and 42, and a demultiplexer for demultiplexing an optical signal transmitted through the optical transmission line for each wavelength. An optical wavelength division multiplexing transmission system including an optical receiver and a plurality of optical receivers for receiving optical signals for each wavelength demultiplexed by the demultiplexer.

【0025】ここで、本発明の特徴とするところは、複
数の光送信器11〜18から出力される光信号の強度を
その伝送速度に応じた強度にそれぞれ可変に設定する複
数の光強度可変手段としての光減衰器71〜78を備え
たところにある。
Here, a feature of the present invention is that a plurality of light intensity variable units each variably set the intensity of an optical signal output from a plurality of optical transmitters 11 to 18 to an intensity corresponding to the transmission speed. It is provided with optical attenuators 71 to 78 as means.

【0026】図4に示す第二実施例では、複数の光送信
器11〜18の伝送速度情報をそれぞれ収集するネット
ワーク・マネージャー6が設けられ、このネットワーク
・マネージャー6は、収集した前記伝送速度情報にした
がって複数の光強度可変器81〜88の設定をそれぞれ
行う。
In the second embodiment shown in FIG. 4, there is provided a network manager 6 for collecting transmission speed information of a plurality of optical transmitters 11 to 18, respectively. , The settings of the plurality of light intensity changers 81 to 88 are respectively performed.

【0027】光送信器11〜18の伝送速度の高低と、
光減衰器71〜78または光強度可変器81〜88の設
定強度の強弱とは概略比例関係に設定される。また、光
増幅器131、132、133は、利得が一定に制御さ
れている。
Whether the transmission speed of the optical transmitters 11 to 18 is high or low,
The magnitude of the set intensity of the light attenuators 71 to 78 or the light intensity changers 81 to 88 is set in a substantially proportional relationship. The gains of the optical amplifiers 131, 132, and 133 are controlled to be constant.

【0028】図5に示す第三実施例では、光送信局10
には、送信する光信号に対する誤り訂正符号化を行う光
送信器91〜98を含み、光受信局50には、受信する
光信号に対する誤り訂正復号化を行う光受信器101〜
108を含む。以下では、本発明実施例をさらに詳細に
説明する。
In the third embodiment shown in FIG.
Include optical transmitters 91 to 98 for performing error correction coding on an optical signal to be transmitted, and the optical receiving station 50 includes optical receivers 101 to 98 for performing error correction decoding on an optical signal to be received.
108. Hereinafter, embodiments of the present invention will be described in more detail.

【0029】(第一実施例)本発明第一実施例の光波長
多重伝送システムは、8波長多重の場合の構成例を示
す。本発明は互いに波長の異なる光信号を発する光送信
器11〜18(波長はそれぞれλ1〜λ8である)、光
送信器11〜18からの光信号の強度を光送信器11〜
18の伝送速度に応じて可変にするための光減衰器71
〜78、光信号を多重化する光合波器2、多重化した光
信号を増幅する光増幅器131、光ファイバ伝送路4
1、42、光ファイバ伝送路を伝搬する際に生じる損失
を補償するための光増幅器132、133、伝送された
波長多重光信号を分波する光分離器5、波長毎に異なる
光受信器61〜68から構成される。
(First Embodiment) An optical wavelength division multiplexing transmission system according to a first embodiment of the present invention shows a configuration example in the case of 8-wavelength multiplexing. The present invention relates to optical transmitters 11 to 18 that emit optical signals having different wavelengths (the wavelengths are λ1 to λ8, respectively), and the intensity of the optical signals from the optical transmitters 11 to 18 to the optical transmitters 11 to 18.
Optical attenuator 71 for making variable according to the transmission speed of 18.
To 78, an optical multiplexer 2 for multiplexing an optical signal, an optical amplifier 131 for amplifying the multiplexed optical signal, and an optical fiber transmission line 4.
1, 42; optical amplifiers 132 and 133 for compensating for a loss occurring when propagating through an optical fiber transmission line; an optical separator 5 for demultiplexing a transmitted wavelength-division multiplexed optical signal; an optical receiver 61 different for each wavelength ~ 68.

【0030】光送信局10は、光送信器11〜18、光
減衰器71〜78、光合波器2、光増幅器131から構
成される。光受信局50は光分離器5、光受信器61〜
68から構成される。なお、光増幅器131、132、
133は、それぞれ利得が一定に制御されており、伝送
速度に応じた信号強度の制御に適する。
The optical transmitting station 10 comprises optical transmitters 11 to 18, optical attenuators 71 to 78, an optical multiplexer 2, and an optical amplifier 131. The optical receiving station 50 includes the optical separator 5, the optical receivers 61 to 61.
68. The optical amplifiers 131, 132,
133 are each controlled to have a constant gain, and are suitable for controlling the signal strength according to the transmission speed.

【0031】図1において、光送信器11、13、1
5、17の光信号の伝送速度をf1、光送信器12、1
4、16、18の光信号の伝送速度をf2(f1>f
2)とする。f2は伝送速度がf1より低いため、光減
衰器72、74、76、78の減衰量を光減衰器71、
73、75、77より大きく設定し、伝送速度f2の光
信号の強度を伝送速度f1の光信号の強度より小さくす
る。強度差を設けた8波の光信号は光合波器2で多重さ
れ、光増幅器31に入力される。光増幅器131を利得
一定で動作させ、その出力光を光ファイバ伝送路41に
入力する。
In FIG. 1, the optical transmitters 11, 13, 1
The transmission speed of the optical signals 5 and 17 is f1, and the optical transmitters 12 and 1
The transmission speed of the optical signals of 4, 16, and 18 is set to f2 (f1> f
2). Since f2 has a lower transmission speed than f1, the attenuation of the optical attenuators 72, 74, 76, 78 is reduced by the optical attenuators 71,
It is set to be larger than 73, 75 and 77, and the intensity of the optical signal at the transmission speed f2 is made smaller than the intensity of the optical signal at the transmission speed f1. The eight optical signals having the difference in intensity are multiplexed by the optical multiplexer 2 and input to the optical amplifier 31. The optical amplifier 131 is operated with a constant gain, and the output light is input to the optical fiber transmission line 41.

【0032】光ファイバ伝送路41に入力した波長多重
信号は、伝送速度による強度差を一定に保ったまま、光
ファイバ伝送路を伝搬する。光ファイバ伝送路の伝搬損
失により減衰した波長多重光信号は利得一定制御した光
増幅器132で増幅され、光ファイバ伝送路42を伝搬
し、この過程が繰り返された後、光受信局50に到着す
る。光増幅器と光増幅器との間の間隔を中継間隔と呼
び、光ファイバ伝送路の総和が伝送距離になる。光受信
局50では光分離器5で波長多重信号をそれぞれの波長
に分波し、光受信器61〜68で受信する。
The wavelength-division multiplexed signal input to the optical fiber transmission line 41 propagates through the optical fiber transmission line while keeping the intensity difference depending on the transmission speed constant. The wavelength-division multiplexed optical signal attenuated by the propagation loss of the optical fiber transmission line is amplified by the optical amplifier 132 whose gain is controlled to be constant, propagates through the optical fiber transmission line 42, and arrives at the optical receiving station 50 after this process is repeated. . The interval between the optical amplifiers is called a relay interval, and the sum of the optical fiber transmission lines is the transmission distance. In the optical receiving station 50, the wavelength division multiplexed signal is demultiplexed into respective wavelengths by the optical demultiplexer 5 and received by the optical receivers 61 to 68.

【0033】伝送速度f2の光信号は伝送速度f1の光
信号より強度は弱いが、1ビット当りの光子数が多いた
め、伝送過程でSN比の劣化は起らず、受信特性に何ら
問題は生じない。その一方で、光ファイバ伝送路を伝送
する光強度が弱いため、自己位相変調効果および伝送速
度f1の光に及ぼす相互位相変調効果などの非線形光学
効果は低減され、従来問題になっていた非線形光学効果
による波形劣化は回避できる。
Although the optical signal of the transmission speed f2 is weaker than the optical signal of the transmission speed f1, the number of photons per bit is large, so that the SN ratio does not deteriorate in the transmission process and there is no problem in the reception characteristics. Does not occur. On the other hand, since the light intensity transmitted through the optical fiber transmission line is weak, the non-linear optical effects such as the self-phase modulation effect and the cross-phase modulation effect on the light of the transmission speed f1 are reduced, and the non-linear optical effect which has been a problem in the past has Waveform deterioration due to the effect can be avoided.

【0034】例えば、λ1=1550.12nm、λ2
=1550.52nm、λ3=1550.92nm、λ
4=1551.32nm、λ5=1551.72nm、
λ6=1552.12nm、λ7=1552.52n
m、λ8=1552.93nm(波長間隔は50GH
z)、f1=10Gbit/s、f2=2.5Gbit
/s、光増幅器間の中継間隔を80km、伝送距離を3
20kmとし、従来例と比較すると、光受信器における
符号誤り率(送信したビット数に対する誤りビット数の
割合、すなわち“0”を送信したのに“1”と識別した
り、あるいは、“1”を送信したのに“0”と識別した
割合)を計算機シミュレーションにより求めた。光ファ
イバ伝送路はシングルモードファイバを分散補償して用
いた。
For example, λ1 = 1550.12 nm, λ2
= 155.52 nm, λ3 = 155.92 nm, λ
4 = 1551.32 nm, λ5 = 1551.72 nm,
λ6 = 1552.12 nm, λ7 = 1552.52n
m, λ8 = 1552.93 nm (wavelength interval is 50 GH
z), f1 = 10 Gbit / s, f2 = 2.5 Gbit
/ S, the relay interval between optical amplifiers is 80 km, and the transmission distance is 3
When compared with the conventional example, the bit error rate in the optical receiver (the ratio of the number of error bits to the number of transmitted bits, that is, “0” is transmitted, but it is identified as “1” or “1” Was transmitted, the ratio of which was identified as “0”) was determined by computer simulation. The optical fiber transmission line used a single mode fiber with dispersion compensation.

【0035】従来例では、利得一定制御で動作している
光増幅器31に各波長(チャネル)の光信号がほぼ同じ
強度で入力し、増幅後、ほぼ同じ強度で光ファイバ伝送
路に入力する。この状態で、光ファイバ伝送路への入力
強度を1波長(チャネル)当り、−3、−2、−1、
0、+1、+2、+3dBm/chに変化させ(伝送速
度による光信号の強度差を設けずに)、符号誤り率を計
算した。
In the conventional example, optical signals of respective wavelengths (channels) are input to the optical amplifier 31 operating with constant gain control at substantially the same intensity, and after amplification, are input to the optical fiber transmission line at substantially the same intensity. In this state, the input intensity to the optical fiber transmission line is set to -3, -2, -1, per wavelength (channel).
The code error rate was calculated by changing to 0, +1, +2, and +3 dBm / ch (without providing an optical signal intensity difference depending on the transmission speed).

【0036】図2は全チャネルの光信号が同じ強度で光
伝送路に入力した場合の符号誤り率を示す図であり、横
軸に入力強度(dBm)をとり、縦軸に符号誤り率をと
る。8波長(チャネル)のうちで、受信強度−23dB
mにおける符号誤り率が一番悪いチャネルを、入力強度
に対してプロットしたものである。符号誤り率が悪いチ
ャネルはすべて10Gbit/sのチャネルである。入
力強度が弱いと1ビット当りの光子数が減少するため、
伝送信号が雑音と区別しにくくなり(すなわちSN比が
悪くなり)、符号誤り率が大きくなる。入力強度が強く
なると、SN比は改善されるが、光ファイバ伝送路中で
生じる非線形光学効果が顕著になり、波形が劣化して符
号誤り率が大きくなる。図2では入力強度が0dBm/
chで伝送特性が一番よくなるが、10−10より大き
い値となっている。
FIG. 2 is a diagram showing the bit error rate when the optical signals of all the channels are input to the optical transmission line with the same intensity. The input intensity (dBm) is plotted on the horizontal axis, and the bit error rate is plotted on the vertical axis. Take. Out of 8 wavelengths (channels), reception intensity -23dB
The channel with the worst bit error rate at m is plotted against the input strength. All the channels having a bad bit error rate are 10 Gbit / s channels. If the input intensity is weak, the number of photons per bit decreases,
The transmission signal becomes difficult to distinguish from noise (that is, the SN ratio becomes worse), and the code error rate increases. As the input intensity increases, the S / N ratio improves, but the nonlinear optical effect that occurs in the optical fiber transmission line becomes significant, the waveform deteriorates, and the code error rate increases. In FIG. 2, the input intensity is 0 dBm /
The channel has the best transmission characteristics, but has a value larger than 10 −10 .

【0037】本実施例では、光減衰器71〜78を用い
て10Gbit/sの伝送速度を持つ波長λ1、λ3、
λ5、λ7の4チャネルの信号光強度を+1dBm/c
h、2.5Gbit/sの伝送速度を持つ波長λ2、λ
4、λ6、λ8の4チャネルの信号光強度を−3dBm
/chとする。これは、10Gbit/sの伝送速度を
持つ4チャネルの信号光強度を2.5Gbit/sの伝
送速度を持つ4チャネルの信号光強度の2.5倍に設定
した例である。また、10Gbit/sの伝送速度を持
つ4チャネルの信号光強度を+2dBm/chとし、
2.5Gbit/sの伝送速度を持つ4チャネルの信号
光強度を−4dBm/chとし、10Gbit/sの伝
送速度を持つ4チャネルの信号光強度を2.5Gbit
/sの伝送速度を持つ4チャネルの信号光強度の4倍に
設定することもできる。
In this embodiment, wavelengths λ1, λ3, and λ3, λ3 having a transmission speed of 10 Gbit / s using the optical attenuators 71 to 78.
The signal light intensity of the four channels λ5 and λ7 is +1 dBm / c
h, wavelengths λ2, λ having a transmission rate of 2.5 Gbit / s
The signal light intensity of the four channels of 4, λ6 and λ8 is -3 dBm
/ Ch. This is an example in which the signal light intensity of four channels having a transmission speed of 10 Gbit / s is set to 2.5 times the signal light intensity of four channels having a transmission speed of 2.5 Gbit / s. Further, the signal light intensity of four channels having a transmission speed of 10 Gbit / s is set to +2 dBm / ch,
The signal light intensity of four channels having a transmission speed of 2.5 Gbit / s is set to -4 dBm / ch, and the signal light intensity of four channels having a transmission speed of 10 Gbit / s is set to 2.5 Gbit.
/ S can be set to four times the signal light intensity of four channels having a transmission rate of / s.

【0038】全チャネルの受信強度−23dBmにおけ
る符号誤り率を図3に示す。横軸にチャネルをとり、縦
軸に符号誤り率をとる。2.5Gbit/sの伝送速度
をもつ4チャネルは、光強度は弱いが伝送速度が低いた
め、SN比の劣化が起らずに受信される。
FIG. 3 shows the bit error rate at the reception intensity of -23 dBm for all channels. The horizontal axis represents the channel, and the vertical axis represents the bit error rate. Four channels having a transmission rate of 2.5 Gbit / s have a low light intensity but a low transmission rate, and are received without deterioration of the SN ratio.

【0039】一方、10Gbit/sの伝送速度をもつ
4チャネルは、光強度は強いが隣接チャネルの強度を弱
く設定してあるため相互位相変調効果が低減され、非線
形光学効果による波形劣化を大きく受けず受信される。
このため、両方の伝送速度を持つ全てのチャネルは良好
な伝送特性が得られ、一番悪いチャネルにおいても10
−11より小さくなり、図2に示す従来の場合と比較し
て30倍以上の伝送特性の改善が図れる。
On the other hand, the four channels having a transmission rate of 10 Gbit / s have a high light intensity but a low intensity of the adjacent channel, so that the cross-phase modulation effect is reduced and the waveform is greatly deteriorated by the nonlinear optical effect. Received.
For this reason, all the channels having both transmission rates have good transmission characteristics, and even the worst channel has 10
−11, and the transmission characteristic can be improved by a factor of 30 or more compared to the conventional case shown in FIG.

【0040】(第二実施例)本発明第二実施例の光波長
多重伝送システムを図4を参照して説明する。図4は、
本発明第二実施例の光波長多重伝送システムの全体構成
図である。図1に示す第一実施例との相違は、図1に示
す光減衰器71〜78の代わりに光強度可変器81〜8
8を設け、ネットワーク・マネージャー6が光送信器1
1〜18からの伝送速度情報を収集し、それに応じて光
強度可変器81〜88の光強度を設定するところであ
る。これにより、光送信器11〜18の伝送速度が変化
しても、自動的にその変化に追随できる。
(Second Embodiment) An optical wavelength division multiplexing transmission system according to a second embodiment of the present invention will be described with reference to FIG. FIG.
FIG. 5 is an overall configuration diagram of an optical wavelength multiplex transmission system according to a second embodiment of the present invention. The difference from the first embodiment shown in FIG. 1 is that the light intensity variable devices 81 to 8 are used instead of the optical attenuators 71 to 78 shown in FIG.
8 and the network manager 6 operates the optical transmitter 1
The transmission speed information from 1 to 18 is collected, and the light intensity of the light intensity variable devices 81 to 88 is set accordingly. As a result, even if the transmission speed of the optical transmitters 11 to 18 changes, the change can be automatically followed.

【0041】すなわち、光送信器11〜18からの伝送
速度情報が電気信号によりネットワーク・マネージャー
6に伝達され、ネットワーク・マネージャー6がそれを
認識し、光強度可変器81〜88は、ネットワーク・マ
ネージャー6から送られて来た命令により、自動的に光
強度を調整する。例えば、10Gbit/sの信号であ
れば光強度可変器81〜88における減衰量を3dB、
2.5Gbit/sの信号であれば光強度可変器81〜
88における減衰量を7dBにするようにプログラムさ
れていれば、4dBの強度差が自動的に設けられる。
That is, the transmission speed information from the optical transmitters 11 to 18 is transmitted to the network manager 6 by an electric signal, and the network manager 6 recognizes the transmission speed information. The light intensity is automatically adjusted according to the command sent from 6. For example, in the case of a signal of 10 Gbit / s, the attenuation in the light intensity variable devices 81 to 88 is 3 dB,
If the signal is 2.5 Gbit / s, the light intensity changers 81 to 81
If the attenuation at 88 is programmed to be 7 dB, a 4 dB intensity difference is automatically provided.

【0042】例えば、第一実施例で説明したf1=10
Gbit/s、f2=2.5Gbit/sがf1=2.
5Gbit/s、f2=10Gbit/sに変化した場
合も、自動的にその変化に対応できる。また、光送信器
11、13、15、17の光信号の伝送速度がf1、光
送信器12、14、16、18の光信号の伝送速度がf
2であったものが、光送信器12、15、18の光信号
の伝送速度がf1、光送信器11、13、14、16、
17の光信号の伝送速度がf2に変化した場合等につい
ても自動的にその変化に対応することができる。
For example, f1 = 10 described in the first embodiment
Gbit / s, f2 = 2.5 Gbit / s and f1 = 2.
Even when it changes to 5 Gbit / s and f2 = 10 Gbit / s, it can automatically cope with the change. Further, the transmission speed of the optical signals of the optical transmitters 11, 13, 15, 17 is f1, and the transmission speed of the optical signals of the optical transmitters 12, 14, 16, 18 is f.
2, the transmission speed of the optical signal of the optical transmitters 12, 15, 18 is f1, and the optical transmitters 11, 13, 14, 16,
Even when the transmission speed of the optical signal 17 changes to f2, the change can be automatically handled.

【0043】(第三実施例)本発明第三実施例を図5を
参照して説明する。図5は本発明第三実施例の光波長多
重伝送システムの全体構成図である。第三実施例では、
本発明に誤り訂正符号技術を適用した例である。誤り訂
正符号技術とは光送信器91〜98において信号光に冗
長符号を付加し、光伝送路で生じた符号誤りを光受信器
101〜108で訂正する技術であり、衛星通信や移動
体通信などのディジタル通信システムで頻繁に用いられ
ている。誤り訂正符号技術は伝送過程で生じるSN比の
劣化による伝送特性の劣化をある程度改善できるため、
本発明にこの技術を用いればさらに効果的な光波長多重
伝送システムが構築できる。
(Third Embodiment) A third embodiment of the present invention will be described with reference to FIG. FIG. 5 is an overall configuration diagram of an optical wavelength division multiplexing transmission system according to a third embodiment of the present invention. In the third embodiment,
This is an example in which an error correction coding technique is applied to the present invention. The error correction coding technology is a technology in which a redundant code is added to signal light in optical transmitters 91 to 98, and a code error generated in an optical transmission line is corrected in optical receivers 101 to 108. Etc. are frequently used in digital communication systems. Error correction code technology can improve the transmission characteristics to some extent due to the degradation of the SN ratio that occurs during the transmission process.
If this technology is used in the present invention, a more effective optical wavelength division multiplexing transmission system can be constructed.

【0044】すなわち、上記の例を用いると、10Gb
it/sの伝送速度を持つ波長λ1、λ3、λ5、λ7
の4チャネルの信号光強度を+1dBm/chから、−
1dBm/chに下げると同時に符号化利得(誤り訂正
符号技術において誤り符号を正しく訂正できる能力)を
3dB程度持たせると(2.5Gbit/sの伝送速度
を持つ波長λ2、λ4、λ6、λ8の4チャネルの信号
光強度は−3dBm/chと変化なしで、符号化利得を
与えない)、非線形光学効果による波形劣化を低減で
き、効果的に伝送特性が改善される。
That is, using the above example, 10 Gb
wavelengths λ1, λ3, λ5, λ7 having a transmission rate of it / s
From the signal light intensity of +1 dBm / ch to-
When the gain is reduced to 1 dBm / ch and at the same time the coding gain (the ability to correctly correct an error code in the error correction coding technique) is about 3 dB (the wavelengths λ2, λ4, λ6, and λ8 having a transmission rate of 2.5 Gbit / s). The signal light intensities of the four channels are unchanged at -3 dBm / ch, and no coding gain is provided.) Waveform deterioration due to the nonlinear optical effect can be reduced, and transmission characteristics can be effectively improved.

【0045】以上の実施例では、10Gbit/sの伝
送速度を持つ波長λ1、λ3、λ5、λ7の4チャネル
の信号光強度と、2.5Gbit/sの伝送速度を持つ
波長λ2、λ4、λ6、λ8の4チャネルの信号光強度
とが混在する場合について説明したが、本発明は、三種
類以上の異なる伝送速度を持つ信号が混在する場合にも
適用することができる。例えば、三種類の伝送速度(b
1、b2、b3、b1=nb2=nmb3)が混在して
いれば、b2の信号光強度をb1の信号光強度の1/n
にし、b3の信号光強度をb1の信号光強度の1/nm
とする(b3の信号光強度をb2の信号光強度の1/m
にする)。また、波長数(チャネル数)が増加した場合
についても本発明により伝送特性が改善される。
In the above embodiment, signal light intensities of four channels λ1, λ3, λ5 and λ7 having a transmission rate of 10 Gbit / s and wavelengths λ2, λ4 and λ6 having a transmission rate of 2.5 Gbit / s are provided. , Λ8 and the signal light intensities of four channels have been described, but the present invention can also be applied to a case where three or more types of signals having different transmission rates are mixed. For example, three transmission speeds (b
1, b2, b3, and b1 = nb2 = nmb3), the signal light intensity of b2 is 1 / n of the signal light intensity of b1.
And the signal light intensity of b3 is 1 / nm of the signal light intensity of b1.
(The signal light intensity of b3 is 1 / m of the signal light intensity of b2.
To). The present invention also improves transmission characteristics when the number of wavelengths (the number of channels) increases.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
二種類以上の伝送速度が混在する光波長多重伝送システ
ムにおいて光ファイバ伝送路の入力強度を伝送速度に応
じて変化させることにより、非線形光学効果を抑圧し、
伝送特性を改善できる。
As described above, according to the present invention,
In an optical wavelength division multiplexing transmission system in which two or more transmission speeds coexist, by changing the input intensity of the optical fiber transmission line according to the transmission speed, the nonlinear optical effect is suppressed,
Transmission characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明第一実施例の光波長多重伝送システムの
全体構成図。
FIG. 1 is an overall configuration diagram of an optical wavelength multiplex transmission system according to a first embodiment of the present invention.

【図2】全チャネルの光信号が同じ強度で光伝送路に入
力した場合の符号誤り率を示す図。
FIG. 2 is a diagram illustrating a bit error rate when optical signals of all channels are input to an optical transmission line at the same intensity.

【図3】全チャネルの受信強度−23dBmにおける符
号誤り率を示す図。
FIG. 3 is a diagram showing a bit error rate at a reception intensity of -23 dBm for all channels.

【図4】本発明第二実施例の光波長多重伝送システムの
全体構成図。
FIG. 4 is an overall configuration diagram of an optical wavelength multiplex transmission system according to a second embodiment of the present invention.

【図5】本発明第三実施例の光波長多重伝送システムの
全体構成図。
FIG. 5 is an overall configuration diagram of an optical wavelength division multiplexing transmission system according to a third embodiment of the present invention.

【図6】従来の光波長多重伝送システムの全体構成図。FIG. 6 is an overall configuration diagram of a conventional optical wavelength multiplex transmission system.

【符号の説明】[Explanation of symbols]

2 光合波器 5 光分離器 6 ネットワーク・マネージャー 10 光送信局 11〜18、91〜98 光送信器 31〜33、131〜133 光増幅器 41、42 光ファイバ伝送路 50 光受信局 61〜68、101〜108 光受信器 71〜78 光減衰器 81〜88 光強度可変器 2 optical multiplexer 5 optical separator 6 network manager 10 optical transmitting station 11-18, 91-98 optical transmitter 31-33, 131-133 optical amplifier 41, 42 optical fiber transmission line 50 optical receiving station 61-68, 101-108 Optical receiver 71-78 Optical attenuator 81-88 Light intensity variable device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04L 29/08 Fターム(参考) 5K002 AA01 AA03 BA05 CA01 CA09 CA13 DA02 FA01 5K014 AA01 BA05 FA11 HA05 HA10 5K034 AA05 DD01 EE01 EE05 FF13 HH09 MM01 MM08 MM31 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04L 29/08 F-term (Reference) 5K002 AA01 AA03 BA05 CA01 CA09 CA13 DA02 FA01 5K014 AA01 BA05 FA11 HA05 HA10 5K034 AA05 DD01 EE01 EE05 FF13 HH09 MM01 MM08 MM31

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 互いに波長の異なる光信号を発生し少な
くとも一部の伝送速度が異なる複数の光送信器と、この
複数の光送信器の出力光信号を多重化する多重化手段
と、多重化した光信号を増幅する増幅手段とを含む光送
信手段と、 この光送信手段の出力光信号が入力する光ファイバ伝送
路と、この光ファイバ伝送路の途中に介挿された増幅手
段とを含む光伝送手段と、 この光伝送手段を伝送した光信号を波長毎に分波する分
離手段と、この分離手段により分波された波長毎に光信
号を受信する複数の光受信器とを含む光受信手段とを備
えた光波長多重伝送システムにおいて、 前記複数の光送信器から出力される光信号の強度をその
伝送速度に応じた強度にそれぞれ可変に設定する複数の
光強度可変手段を備えたことを特徴とする光波長多重伝
送システム。
1. A plurality of optical transmitters that generate optical signals having different wavelengths and at least some of which have different transmission speeds, multiplexing means for multiplexing output optical signals of the plurality of optical transmitters, and multiplexing. Optical transmitting means including an amplifying means for amplifying the obtained optical signal; an optical fiber transmission line to which an output optical signal of the optical transmitting means is input; and an amplifying means interposed in the optical fiber transmission line. An optical transmission device comprising: an optical transmission unit; a separation unit that splits an optical signal transmitted by the optical transmission unit for each wavelength; and a plurality of optical receivers that receive an optical signal for each wavelength split by the separation unit. An optical wavelength division multiplexing transmission system comprising: a plurality of light intensity variable means for variably setting the intensities of the optical signals output from the plurality of optical transmitters to intensities corresponding to their transmission speeds. Wavelength division multiplexing characterized by: Transmission system.
【請求項2】 前記複数の光送信器の伝送速度情報をそ
れぞれ収集する手段と、この収集する手段により収集さ
れた前記伝送速度情報にしたがって前記複数の光強度可
変手段の設定をそれぞれ行う手段とを備えた請求項1記
載の光波長多重伝送システム。
Means for collecting transmission rate information of the plurality of optical transmitters, and means for setting the plurality of light intensity variable means in accordance with the transmission rate information collected by the collecting means, respectively. The optical wavelength division multiplexing transmission system according to claim 1, further comprising:
【請求項3】 前記光送信器の伝送速度の高低と、前記
光強度可変手段の設定強度の強弱とは比例関係に設定さ
れた請求項1または2記載の光波長多重伝送システム。
3. The optical wavelength division multiplexing transmission system according to claim 1, wherein the level of the transmission speed of the optical transmitter and the level of the set intensity of the optical intensity variable means are set in a proportional relationship.
【請求項4】 前記増幅手段は、利得が一定に制御され
た光増幅器である請求項1ないし3のいずれかに記載の
光波長多重伝送システム。
4. The optical wavelength multiplex transmission system according to claim 1, wherein said amplifying means is an optical amplifier whose gain is controlled to be constant.
【請求項5】 前記光送信手段には、送信する光信号に
対する誤り訂正符号化手段を含み、前記光受信手段に
は、受信する光信号に対する誤り訂正復号化手段を含む
請求項1ないし4のいずれかに記載の光波長多重伝送シ
ステム。
5. The optical transmission means according to claim 1, wherein said optical transmission means includes an error correction encoding means for an optical signal to be transmitted, and said optical reception means includes an error correction decoding means for an optical signal to be received. The optical wavelength multiplex transmission system according to any one of the above.
JP2000150077A 2000-05-22 2000-05-22 Optical wavelength division multiplexing system Expired - Fee Related JP3769172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000150077A JP3769172B2 (en) 2000-05-22 2000-05-22 Optical wavelength division multiplexing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000150077A JP3769172B2 (en) 2000-05-22 2000-05-22 Optical wavelength division multiplexing system

Publications (2)

Publication Number Publication Date
JP2001333016A true JP2001333016A (en) 2001-11-30
JP3769172B2 JP3769172B2 (en) 2006-04-19

Family

ID=18655846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000150077A Expired - Fee Related JP3769172B2 (en) 2000-05-22 2000-05-22 Optical wavelength division multiplexing system

Country Status (1)

Country Link
JP (1) JP3769172B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096242A (en) * 2002-08-29 2004-03-25 Fujitsu Ltd Preemphasis control method considering nonlinearity deterioation
JP2007235412A (en) * 2006-02-28 2007-09-13 Fujitsu Ltd Repeater and repeating method
JP2008277893A (en) * 2007-04-25 2008-11-13 Sumitomo Electric Ind Ltd Multi-rate pon system, and station-side device, terminal device, and transmission rate setting method thereof
JP2010041610A (en) * 2008-08-07 2010-02-18 Hitachi Communication Technologies Ltd Passive optical network system, optical multiplex terminator, and optical network terminator
JP2012529208A (en) * 2009-06-02 2012-11-15 アルカテル−ルーセント Method and apparatus for adjusting power amplification
WO2015133106A1 (en) * 2014-03-07 2015-09-11 日本電気株式会社 Optical transmission apparatus, optical communication apparatus, optical communication system, and optical communication method
JP2016225923A (en) * 2015-06-02 2016-12-28 日本電信電話株式会社 Optical transmission and reception system
US9673929B2 (en) 2014-09-30 2017-06-06 Fujitsu Limited Optical transmission apparatus and optical transmission system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096242A (en) * 2002-08-29 2004-03-25 Fujitsu Ltd Preemphasis control method considering nonlinearity deterioation
JP2007235412A (en) * 2006-02-28 2007-09-13 Fujitsu Ltd Repeater and repeating method
US8351797B2 (en) 2006-02-28 2013-01-08 Fujitsu Limited Repeater and repeating method
JP2008277893A (en) * 2007-04-25 2008-11-13 Sumitomo Electric Ind Ltd Multi-rate pon system, and station-side device, terminal device, and transmission rate setting method thereof
JP2010041610A (en) * 2008-08-07 2010-02-18 Hitachi Communication Technologies Ltd Passive optical network system, optical multiplex terminator, and optical network terminator
JP2012529208A (en) * 2009-06-02 2012-11-15 アルカテル−ルーセント Method and apparatus for adjusting power amplification
WO2015133106A1 (en) * 2014-03-07 2015-09-11 日本電気株式会社 Optical transmission apparatus, optical communication apparatus, optical communication system, and optical communication method
JPWO2015133106A1 (en) * 2014-03-07 2017-04-06 日本電気株式会社 Optical transmission device, optical communication device, optical communication system, and optical transmission method
US10142048B2 (en) 2014-03-07 2018-11-27 Nec Corporation Optical transmission device, optical communication device, optical communication system, and optical transmission method
US9673929B2 (en) 2014-09-30 2017-06-06 Fujitsu Limited Optical transmission apparatus and optical transmission system
JP2016225923A (en) * 2015-06-02 2016-12-28 日本電信電話株式会社 Optical transmission and reception system

Also Published As

Publication number Publication date
JP3769172B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
US8554081B2 (en) Optical add/drop multiplexer including reconfigurable filters and system including the same
US5926590A (en) Power equalizer in a multiple wavelength bidirectional lightwave amplifier
US7831118B2 (en) Coarse wavelength division multiplexing optical transmission system, and coarse wavelength division multiplexing optical transmission method
JPH05347601A (en) Optical signal equalizer for wavelength division multiplex transmission optical fiber device
US6292290B1 (en) Methods and apparatus for adjusting power in an optical signal, for providing a seamless optical ring and for providing a bidirectional equalized amplifier
US20070247703A1 (en) Optical transmission systems including optical amplifiers and methods of use therein
JP2001268056A (en) Optical transmission system and wavelength multiplex/ demultiplex optical transmitter
US5689594A (en) Multiple wavelength bidirectional lightwave amplifier
US20090022499A1 (en) Optical signal to noise ratio system
WO1997024824A9 (en) Multiple wavelength bidirectional lightwave amplifier
JP2827619B2 (en) Optical repeater transmission system and method
JP3769172B2 (en) Optical wavelength division multiplexing system
JP2001228336A (en) Method for repairing transmissive section and optical communication system
US6708002B1 (en) Modular multiplexing/demultiplexing units in optical transmission systems
US6327075B1 (en) Optical gain equalization unit, optical gain equalization method, and optical fiber transmission line
JP4361506B2 (en) Wavelength multiplexing optical repeater system
JP3609968B2 (en) Optical amplifier
US7031613B1 (en) Chromatic dispersion compensation by sub-band
JP2003060574A (en) Optical transmitter system, wavelength division multiplexer and method for dispersion compensation of wavelength division multiplexing transmission system
US7142745B1 (en) WDM ring interconnection
JP3529983B2 (en) Optical amplification repeater transmission system
CA2414458C (en) Optical transmission systems including optical amplifiers and methods of use therein
JP2000068931A (en) Optical wavelength branching/inserting device
JP2002353893A (en) Bidirectional transmission gain equalizer
WO2003030428A1 (en) System for improving osnr of dwdm transmission system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees