JP2001332420A - Keep solenoid driving circuit - Google Patents

Keep solenoid driving circuit

Info

Publication number
JP2001332420A
JP2001332420A JP2000191875A JP2000191875A JP2001332420A JP 2001332420 A JP2001332420 A JP 2001332420A JP 2000191875 A JP2000191875 A JP 2000191875A JP 2000191875 A JP2000191875 A JP 2000191875A JP 2001332420 A JP2001332420 A JP 2001332420A
Authority
JP
Japan
Prior art keywords
capacitor
solenoid
keep solenoid
contact
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000191875A
Other languages
Japanese (ja)
Inventor
Naganobu Matsumura
長延 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiko Co Ltd
Original Assignee
Meiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiko Co Ltd filed Critical Meiko Co Ltd
Priority to JP2000191875A priority Critical patent/JP2001332420A/en
Publication of JP2001332420A publication Critical patent/JP2001332420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Relay Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a small-sized, simple, and energy-saving keep solenoid driving circuit at a low cost by performing the restoration and attraction of a keep solenoid by means of one control circuit by utilizing the charging currents of capacitors although the conventional keep solenoid driving method uses instantaneous currents for driving the keep solenoid and, accordingly, requires control circuits for sending the instantaneous currents for the restoration and attraction, respectively. SOLUTION: In this keep solenoid driving circuit, capacitors C1 and C2 are respectively connected in series with the restoration and attraction coils of the keep solenoid through relay contacts a1-a4. When the contacts al-a4 are turned on, therefore, the charging current of the capacitor C1 flows through the restoration coil and the keep solenoid is restored (a plunger is protruded). When the relay contacts a1-a4 are turned off and contacts b1-b4 are turned on, the charges charged in the capacitor C1 are discharged and charge the other capacitor C2. Consequently, the charging current of the capacitor C2 flows through the attraction coil and the solenoid attracts. Namely, the keep solenoid is restored and caused to attract with the instantaneous currents (charging currents) by turning on/off relays by means of one ON/OFF control signal.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、キープソレノイド
の駆動方法に関する。 【0002】 【従来の技術】キープソレノイドは、従来のDC汎用形
ソレノイドと永久磁石とを組合わせたもので、パルス入
力(瞬時通電)のみで吸引できる仕組になっている。吸
引後は、永久磁石の吸引力でプランジャを吸着保持し、
その間通電は不要である。また、逆パルス入力で、プラ
ンジャを外部取付バネにより開放,復帰させることが出
来、従来のDC汎用形ソレノイドと比較して省エネであ
る。 【0003】図3に3線式キープソレノイド駆動回路の
従来例を示す。3線式の場合、復帰と吸引に、それぞれ
専用のコイルが当てられており、図では、ソレノイドの
上半分のコイルが復帰用,下半分のコイルが吸引用であ
る。図3(a)はスイッチ(リレースイッチ)駆動の場
合であり、ニュートラル付切替スイッチを必要とし、S
1を瞬時ONにしてニュートラルに戻し、次に所要時に
S2を瞬時ONにしてニュートラルに戻す(上記S1と
S2の順が逆でも良い)と云うやり方で、S1のON/
OFF,S2のON/OFF動作にそれぞれ信号(制
御)線を必要とする。シーケンサで制御する場合は2個
(スイッチング)の出力端子を要する。図3(b)はト
ランジスタ駆動の場合でトランジスタ2ヶ使用し、上記
同様それぞれを瞬時ONさせることにより、復帰,吸引
を行う。(以上、例えばCKD株 【0004】 【発明が解決しようとする課題】従来のキープソレノイ
ド駆動方法では、瞬時電流で作動させるため、復帰/吸
引のそれぞれに、1個の制御信号と1個のリレー(又は
スイッチ)を使って計2組必要であり、スイッチング・
トランジスタ(又はスイッチング・ダイオード)を使う
場合も、それぞれにスイッチングパルス送出回路とスイ
ッチング・トランジスタが必要で、これら駆動のための
周辺回路製作にはコストがかさむ。 【0005】本発明では通常のリレー(2C接点ないし
4C接点)1個と、リレーのON/OFF制御信号1個
を用いて、瞬時電流による駆動が可能であり、小形,簡
便,省エネを低コストで得ることを目的としている。 【0006】 【課題を解決するための手段】上記目的を達成するた
め、本発明のキープソレノイド駆動回路においては、図
1に示すように、復帰用励磁コイル,吸引用励磁コイル
に、それぞれリレー接点を介して直列に、コンデンサC
1,C2を接続し、このコンデンサC1,C2への充電
電流を利用して、復帰用励磁コイル,吸引用励磁コイル
に瞬時電流を流す仕組を構成している。 【0007】図1の回路の動作を以下に説明する。図示
のリレー,キープソレノイドの励磁電圧,コンデンサ容
量,抵抗値等は1例であり、特にコンデンサ容量は、プ
ランジャストロークの大小,ソレノイドの種類によるソ
レノイド励磁エネルギーの大小により適切に選ぶ必要が
ある。リレーは通常の4C接点リレーであり、シーケン
サの1個の出力端子によりON/OFFされる。図示の
接点位置は、シーケンサよりの出力信号がない場合で、
ソレノイドは吸引状態にある。 【0008】ソレノイド電源(24V)ラインより、ソ
レノイド端子1を経て吸引コイルに電流が流れ、端子2
よりリレーb2接点を経て端子5に至る。端子5からコ
ンデンサC2,抵抗R3の並列回路を流れて端子7,b
1接点を経て、電源のOVラインに戻る。この間、コン
デンサC2は、ソレノイドの吸引コイルの直流抵抗と抵
抗器R3の値とで定まる時定数を以て充電され、端子5
の電圧は極く短時間(数10ミリ秒〜数100ミリ秒)
に殆ビ24Vとなるため充電電流(即ち励磁電流)は急
減して、主として抵抗器R3で定まる微少電流(この回
路では約1.2mA)に落着き、この間、ソレノイドの
プランジャは、この充電電流により吸引され、永久磁石
により保持されることになる。 【0009】次にシーケンサ出力端子がONとなり、リ
レーが作動し、a1,a2,a3及びa4接点がONに
なると、電源24Vラインよりの電流は、ソレノイド端
子1を経て復帰コイル終端子3、リレー接点a3,端子
4,6と流れ、リレー接点a4を経て電源OVラインに
戻り、コンデンサC1を充電し、ソレノイドはこの充電
電流により復帰(プランジャが解放)し、外付コイルバ
ネにより、プランジャは突出状態で保持される。この間
にコンデンサC2に充電されていた電荷は、リレー接点
a2と抵抗器R4を経て端子7に至る回路で、コンデン
サC2と抵抗器R4の値で定まる時定数により極めて短
時間(0.2〜0.3秒)で放電して端子5の電圧は0
Vとなり、次の吸引動作における充電を待機する。 【0010】次にシーケンサ出力端子がOFFになる
と、再び 【0008】に述べた吸引動作に戻り、キープソレノイ
ドは吸引状態となる。以上、3線式キープソレノイドの
回路図で動作説明したが、復帰コイルと吸引コイルが共
通になっている2線式キープソレノイドの場合も、ソレ
ノイド電源の極性を切換える。C接点2個を同一リレー
に追加することにより、同じ目的を得ることができる。 【0011】また、コンデンサに充電された電荷を放電
する時、放電抵抗器を通さずに、キープソレノイドのコ
イルを通して放電し、この電流により復帰ないし吸引し
得るよう回路を構成することにより、更に省エネが得ら
れる。 【0012】 【発明の実施の形態】一般に、キープソレノイドの使い
方として、プランジャを短時間押し出して(復帰)、例
えばマイクロスイッチをONさせたり、自動捺印させた
り、その他アクチュエータをトリガーさせた後、直ちに
吸引状態に戻し保持する、と云うシーケンスが多い。こ
の時、ソレノイドを制御するシーケンサの出力端子がO
Nになると、ソレノイドが復帰して、プランジャが解
放,突出し、次に短時間で出力端子をOFFにしてソレ
ノイドを吸引状態にすると云う仕組であり、前述の充放
電回路は吸引コイル側にのみ組込むことで目的を達成で
きる。以下、図2により実施例を説明する。 【0013】 【実施例】発明の実施の形態を実施例にもとづき図2を
参照して説明する。図2のリレーは通常の2C接点リレ
ーで、シーケンサの1個の出力端子からの制御信号でO
N/OFFされる。図示の接点位置は、シーケンサの出
力端子からの信号がOFFの場合で、ソレノイドは吸引
状態にある。 【0008】で述べた如く、この状態では、コンデンサ
C2は、電源電圧24Vに近い電圧に充電され、ソレノ
イドの吸引コイルに流される電流は、コイル直流抵抗
(数10Ω〜200Ω程度)と抵抗器R3によって定ま
り約1.2mA程度であり、プランジャは、ソレノイド
内永久磁石により吸引状態で保持されている。 【0014】次に、シーケンサ出力端子がONとなり、
リレーが作動し、a1,a2接点がONになると 【0009】で述べた如く復帰コイルに電流が流れ、ソ
レノイドは復帰状態となる。この間に、コンデンサC2
に充電された電荷は、a2接点,抵抗器R2を経て急速
(0.2〜0.3秒)に放電し、端子5の電圧は0Vと
なり、次の吸引動作における充電を待機する。必要な復
帰状態の時間は、通常1,2秒以下であり、その時間で
シーケンサ出力をOFFにすれば、リレーがOFF,b
1,b2接点がONとなり 【0008】で述べた動作に移り、ソレノイドは吸引状
態となる。 【0015】 【発明の効果】本発明は、以上説明したように回路が構
成されているので、以下に記載されるような効果が得ら
れる。 【0016】従来は、キープソレノイドを駆動する時、
瞬時電流で作動させるため復帰/吸引動作のそれぞれに
ON時間の短いON/OFF制御信号を出し、リレーを
介してソレノイドの電源をON/OFFするか、スイッ
チングパルス送出回路及びスイッチングトランジスタを
用いてソレノイドの電源をON/OFFしていたが、本
案では、通常のリレー(2C接点ないし4C接点)1個
と、このリレーをON/OFFする制御信号1個、あと
受動素子のみの簡単な回路で、復帰/吸引共、瞬時電流
による駆動が可能となり、小形,簡便,省エネが低価格
で達成できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving a keep solenoid. 2. Description of the Related Art A keep solenoid is a combination of a conventional DC general-purpose solenoid and a permanent magnet, and is designed to be attracted only by pulse input (instantaneous energization). After the suction, the plunger is attracted and held by the attractive force of the permanent magnet,
No current is required during that time. Further, the plunger can be opened and returned by an externally mounted spring by inputting a reverse pulse, which saves energy as compared with a conventional DC general-purpose solenoid. FIG. 3 shows a conventional example of a three-wire keep solenoid drive circuit. In the case of the three-wire system, dedicated coils are used for return and suction, respectively. In the figure, the upper half coil of the solenoid is used for return and the lower half coil is used for suction. FIG. 3A shows a case of driving a switch (relay switch), which requires a neutral changeover switch.
1 is turned on instantly to return to neutral, and then S2 is turned on instantly and returned to neutral when required (the order of S1 and S2 may be reversed).
A signal (control) line is required for the ON / OFF operation of OFF and S2. When controlling with a sequencer, two (switching) output terminals are required. FIG. 3 (b) shows a case of driving a transistor, in which two transistors are used, and as described above, each of them is instantaneously turned on to perform return and suction. (The above, for example, CKD strain [0004] In the conventional keep solenoid driving method, one control signal and one relay (or switch) are used for each return / suction in order to operate with an instantaneous current. And two sets are required.
When a transistor (or a switching diode) is used, a switching pulse sending circuit and a switching transistor are required for each, and the cost of manufacturing peripheral circuits for driving these components is high. According to the present invention, it is possible to drive by an instantaneous current by using one ordinary relay (2C contact or 4C contact) and one ON / OFF control signal of the relay. The goal is to get in. In order to achieve the above object, in a keep solenoid drive circuit of the present invention, as shown in FIG. In series with the capacitor C
1 and C2 are connected to each other, and an instantaneous current is applied to the return excitation coil and the attraction excitation coil by using the charging current to the capacitors C1 and C2. The operation of the circuit shown in FIG. 1 will be described below. The illustrated excitation voltage, capacitor capacity, resistance value, and the like of the relay and keep solenoid are merely examples. In particular, the capacitor capacity must be appropriately selected according to the magnitude of the plunger stroke and the magnitude of the solenoid excitation energy depending on the type of solenoid. The relay is a normal 4C contact relay, and is turned ON / OFF by one output terminal of the sequencer. The contact positions shown are when there is no output signal from the sequencer.
The solenoid is in the suction state. A current flows from a solenoid power supply (24V) line to a suction coil via a solenoid terminal 1 and a terminal 2
Then, it reaches the terminal 5 via the relay b2 contact. The current flows from the terminal 5 through the parallel circuit of the capacitor C2 and the resistor R3 to the terminals 7, b
After one contact, it returns to the OV line of the power supply. During this time, the capacitor C2 is charged with a time constant determined by the DC resistance of the attraction coil of the solenoid and the value of the resistor R3.
Voltage is extremely short (several tens of milliseconds to several hundreds of milliseconds)
The charging current (i.e., the exciting current) sharply decreases because the voltage becomes almost 24 V, and settles to a very small current (about 1.2 mA in this circuit) mainly determined by the resistor R3. It will be attracted and held by the permanent magnet. Next, when the sequencer output terminal is turned on and the relay is activated and the contacts a1, a2, a3 and a4 are turned on, the current from the power supply 24V line passes through the solenoid terminal 1, the return coil terminator 3, the relay The current flows through the contacts a3, the terminals 4, 6 and returns to the power supply OV line via the relay contact a4. The capacitor C1 is charged, and the solenoid is returned (the plunger is released) by the charging current, and the plunger is protruded by the external coil spring. Is held. During this time, the electric charge charged in the capacitor C2 is transferred to the terminal 7 via the relay contact a2 and the resistor R4 and reaches the terminal 7 in an extremely short time (0.2 to 0) by the time constant determined by the values of the capacitor C2 and the resistor R4. .3 seconds) and the voltage at the terminal 5 becomes zero.
V, and waits for charging in the next suction operation. Next, when the sequencer output terminal is turned off, the operation returns to the suction operation described in [1] again, and the keep solenoid enters the suction state. Although the operation has been described with reference to the circuit diagram of the three-wire keep solenoid, the polarity of the solenoid power supply is also switched in the case of the two-wire keep solenoid in which the return coil and the suction coil are common. The same purpose can be obtained by adding two C contacts to the same relay. Further, when discharging the electric charge charged in the capacitor, the electric charge is discharged through the coil of the keep solenoid without passing through the discharge resistor, and the circuit is configured so that the electric current can be restored or sucked by this electric current. Is obtained. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Generally, as a usage of a keep solenoid, a plunger is pushed out (returned) for a short time, for example, a micro switch is turned on, an automatic marking is performed, or another actuator is triggered, and then immediately. There are many sequences that return to the suction state and hold it. At this time, the output terminal of the sequencer that controls the solenoid
When it becomes N, the solenoid is restored, the plunger is released and protruded, and then the output terminal is turned off in a short time to bring the solenoid into a suction state. The above-described charge / discharge circuit is incorporated only on the suction coil side. The purpose can be achieved by doing so. Hereinafter, the embodiment will be described with reference to FIG. An embodiment of the present invention will be described based on an embodiment with reference to FIG. The relay of FIG. 2 is a normal 2C contact relay, and is controlled by a control signal from one output terminal of the sequencer.
N / OFF. The illustrated contact position is when the signal from the output terminal of the sequencer is OFF, and the solenoid is in the suction state. As described above, in this state, the capacitor C2 is charged to a voltage close to the power supply voltage of 24 V, and the current flowing through the attraction coil of the solenoid is controlled by the coil DC resistance (several tens Ω to 200Ω) and the resistor R3. Is about 1.2 mA, and the plunger is held in a suction state by a permanent magnet in the solenoid. Next, the sequencer output terminal is turned on,
When the relay is activated and the contacts a1 and a2 are turned ON, current flows through the return coil as described in [0009], and the solenoid is returned to the return state. During this time, the capacitor C2
Is discharged rapidly (0.2 to 0.3 seconds) through the contact a2 and the resistor R2, the voltage of the terminal 5 becomes 0 V, and the charging in the next suction operation is awaited. The required time for the return state is usually 1 second or less, and if the sequencer output is turned off at that time, the relay is turned off, b
The contacts 1 and 2 are turned on, and the operation shifts to the operation described in (1), and the solenoid is in a suction state. According to the present invention, since the circuit is configured as described above, the following effects can be obtained. Conventionally, when driving a keep solenoid,
An ON / OFF control signal with a short ON time is output for each of the return / suction operations in order to operate with an instantaneous current, and the power supply of the solenoid is turned ON / OFF via a relay, or a solenoid is used by using a switching pulse sending circuit and a switching transistor. Was turned on / off, but in this case, a simple circuit consisting of one normal relay (2C contact or 4C contact), one control signal for turning on / off this relay, and only passive elements, Both return and suction can be driven by an instantaneous current, and compact, simple, and energy-saving can be achieved at low cost.

【図面の簡単な説明】 【図1】キープソレノイド駆動の本案による回路図であ
る。 【図2】キープソレノイド駆動の本案による実施例を示
す回路図である。 【図3】キープソレノイド駆動の従来例を示す回路概念
図である。 【符号の説明】 1:ソレノイド励磁コイルの入力端子 2:ソレノイド吸引コイルの終端子 3:ソレノイド復帰コイルの終端子 4,5:電解コンデンサの+端子 6,7:電解コンデンサの−端子 a1,a2,a3,a4:リレー接点(リレーがONの
時ONとなる。) b1,b2,b3,b4:リレー接点(リレーがOFF
の時ONとなる。) C1,C2:電解コンデンサ D1,D2,D3:コイル保護ダイオード R1,R3:電解コンデンサ保護抵抗器 R2,R4:電解コンデンサ放電抵抗器 S1,S2:切替スイッチ(ニュートラル付) T1,T2:スイッチング・トランジスタ(スイッチン
グ・ダイオード)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a keep solenoid drive according to the present invention. FIG. 2 is a circuit diagram showing an embodiment of the present invention for driving a keep solenoid. FIG. 3 is a circuit conceptual diagram showing a conventional example of keep solenoid drive. [Description of Signs] 1: Input terminal of solenoid exciting coil 2: Terminator of solenoid attraction coil 3: Terminator of solenoid return coil 4, 5: + terminal of electrolytic capacitor 6, 7:-terminal a1, a2 of electrolytic capacitor , A3, a4: relay contacts (turn on when the relay is on) b1, b2, b3, b4: relay contacts (relay is off
ON at the time. C1, C2: Electrolytic capacitors D1, D2, D3: Coil protection diodes R1, R3: Electrolytic capacitor protective resistors R2, R4: Electrolytic capacitor discharge resistors S1, S2: Changeover switch (with neutral) T1, T2: Switching Transistor (switching diode)

Claims (1)

【特許請求の範囲】 【請求項1】 キープソレノイドの吸引コイルの終端子
2及び復帰コイルの終端子3に、スイッチあるいはリレ
ー接点b2(ON)およびa3(OFF)を介してそれ
ぞれ直列に接続されたコンデンサC2及びC1と、上記
接点b2がオフとなり接点a2がオン,接点b3がオフ
となり上記接点a3がオンとなった時、接点a2を通し
て上記コンデンサC2を短絡するように放電抵抗器R4
が接続され、接点b3を通してコンデンサC1を短絡し
ていた放電抵抗器R2が切り離され、コンデンサC1の
端子4が上記接点a3を通して復帰コイルの終端子3に
接続されるよう構成されたキープソレノイド駆動回路。 【請求項2】 キープソレノイドの吸引コイルの終端子
2に、スイッチあるいはリレー接点b2を経て直列にコ
ンデンサC2を接続し、このコンデンサの他端を、接点
b1を介してソレノイド電源のOVラインに接続した回
路と、上記スイッチあるいはリレーがオン(ON)とな
った時、スイッチあるいはリレー接点a2を通して上記
コンデンサを短絡するよう放電抵抗器R2が接続され、
同じく接点a1を通して復帰コイルに励磁電流が流れる
よう接続された回路で構成されるキープソレノイド駆動
回路。 【請求項3】 上記 【請求項1】, 【請求項2】と同じ精神で、キープソレノイドを駆動す
るために必要な瞬時電流を得るため、コンデンサの充/
放電電流を利用するその他の駆動回路。
Claims 1. A terminal 2 of a suction coil and a terminal 3 of a return coil of a keep solenoid are connected in series via switches or relay contacts b2 (ON) and a3 (OFF), respectively. When the contact b2 is turned off and the contact a2 is turned on and the contact b3 is turned off and the contact a3 is turned on, the discharge resistor R4 is connected to the capacitors C2 and C1 so that the capacitor C2 is short-circuited through the contact a2.
Is connected, the discharge resistor R2 that short-circuited the capacitor C1 through the contact b3 is disconnected, and the terminal 4 of the capacitor C1 is connected to the terminator 3 of the return coil through the contact a3. . 2. A capacitor C2 is connected in series to a terminal 2 of a suction coil of a keep solenoid via a switch or a relay contact b2, and the other end of the capacitor is connected to an OV line of a solenoid power supply via a contact b1. When the switch or the relay is turned on (ON), the discharge resistor R2 is connected so as to short-circuit the capacitor through the switch or the relay contact a2,
A keep solenoid drive circuit also composed of a circuit connected so that an exciting current flows through the return coil through the contact a1. 3. In the same spirit as in [1] and [2], a capacitor is charged / removed in order to obtain an instantaneous current required to drive a keep solenoid.
Other drive circuits that use discharge current.
JP2000191875A 2000-05-22 2000-05-22 Keep solenoid driving circuit Pending JP2001332420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000191875A JP2001332420A (en) 2000-05-22 2000-05-22 Keep solenoid driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000191875A JP2001332420A (en) 2000-05-22 2000-05-22 Keep solenoid driving circuit

Publications (1)

Publication Number Publication Date
JP2001332420A true JP2001332420A (en) 2001-11-30

Family

ID=18691094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000191875A Pending JP2001332420A (en) 2000-05-22 2000-05-22 Keep solenoid driving circuit

Country Status (1)

Country Link
JP (1) JP2001332420A (en)

Similar Documents

Publication Publication Date Title
JP2607670Y2 (en) Self-holding solenoid valve
EP0212677A2 (en) Electronic switching device with exciting coil
JP2001086792A (en) Circuit device for operating electromagnetic operation member
US3361939A (en) Electrical actuator
JPH11234893A (en) Controller for contact circuit breaker device with separable contact
JP2001332420A (en) Keep solenoid driving circuit
CA2514685C (en) Circuit breaker including a non-mechanical, electronic status or control circuit
JPH0127549Y2 (en)
SU1707632A1 (en) Electromagnet control device
EP3314626B1 (en) Electric relay structure
WO2000070634A1 (en) Switch
US5696661A (en) Remanence switching device
CN115325250B (en) Solenoid valve drive circuit and solenoid valve drive system
JPH0766733B2 (en) Excitation circuit of relay
SU1638743A1 (en) Device for connecting electromagnetic relay
SU1654892A1 (en) Device for synchronously controlling ac contactor coil
SU1443108A1 (en) Device for starting a reversible electric motor
SU1372407A1 (en) Device for activating electromagnetic relay
KR930005473Y1 (en) Serge current limit circuit
JPS605495Y2 (en) switch circuit
JPH0227528Y2 (en)
RU25958U1 (en) ELECTROMAGNET CONTROL DEVICE
RU2258270C2 (en) Device for forced control of direct-current electromagnetic drive
JPH06260333A (en) Electromagnetic device
JPS6217875Y2 (en)