JP2001330510A - Abnormality diagnostic method of rotating machine - Google Patents

Abnormality diagnostic method of rotating machine

Info

Publication number
JP2001330510A
JP2001330510A JP2000148144A JP2000148144A JP2001330510A JP 2001330510 A JP2001330510 A JP 2001330510A JP 2000148144 A JP2000148144 A JP 2000148144A JP 2000148144 A JP2000148144 A JP 2000148144A JP 2001330510 A JP2001330510 A JP 2001330510A
Authority
JP
Japan
Prior art keywords
vibration
vector
abnormality
bearing
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000148144A
Other languages
Japanese (ja)
Other versions
JP4253104B2 (en
Inventor
Kenichi Tezuka
塚 健 一 手
Shuichi Omori
森 修 一 大
Yukio Watabe
部 幸 夫 渡
Kenji Ozaki
崎 健 司 尾
Hidekazu Usui
井 秀 和 薄
Yoshihiko Uhara
原 義 彦 鵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2000148144A priority Critical patent/JP4253104B2/en
Publication of JP2001330510A publication Critical patent/JP2001330510A/en
Application granted granted Critical
Publication of JP4253104B2 publication Critical patent/JP4253104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • F16C17/246Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety related to wear, e.g. sensors for measuring wear

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality diagnostic method of a rotating machine allowing quantitative and accurate diagnosis of an abnormality caused by abrasion of a bearing. SOLUTION: At least two vibration detectors are disposed in a casing of a machine body with phase shifted circulferentially of a rotating shaft, frequencies of vibration waveforms simultaneously detected by respective vibration detectors are analyzed. Regarding to the vibration waveforms, vibration amplitude in a frequency band region including frequency regions before and after a rotation frequency and a phase at the rotation frequency wave number of the other vibration waveform with reference to the vibration waveform with the largest vibration amplitude are determined. Each vibration vector 32 of the other vibration detector is determined based on the determined vibration amplitude and the phase, each changing vector 33 of a difference between a reference vibration vector 31 predetermined in a normal state and each vibration vector 32 is determined, and the changing vector 33 is compared with a predetermined discrimination reference 34. Thus, certainty of abnormality occurrence of the bearing is discriminated quantitatively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポンプ等の回転機
械の異常診断方法に係り、特に、回転軸の軸受けの発す
る振動を検出して異常の有無を診断する回転機械の異常
診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of diagnosing abnormalities of a rotary machine such as a pump, and more particularly to a method of diagnosing abnormalities of a rotary machine which detects vibrations generated by bearings of a rotary shaft and diagnoses whether there is any abnormality.

【0002】[0002]

【従来の技術】一般に発電プラントに用いられるポンプ
やタービンなどの回転機械では、運転中に、回転軸の軸
受に摩耗が進行し、何らかの異常が発生すると振動に変
化が現れる場合が多い。このため、この種の回転機械で
は、回転軸の軸受の異常の有無を常時監視する手法が従
来から採用されている。
2. Description of the Related Art In general, in rotating machines such as pumps and turbines used in power generation plants, during operation, abrasion of a rotating shaft bearing progresses, and when an abnormality occurs, the vibration often changes. For this reason, in this type of rotating machine, a method of constantly monitoring for the presence or absence of abnormality in the bearing of the rotating shaft has been conventionally employed.

【0003】図7は、振動の問題になる回転機械の一例
を示す。この図7において、50は、羽根車が収容され
たケーシングで、51a、51bは、羽根車の回転軸を
回転自在に支持する軸受である。52は駆動モータであ
る。
FIG. 7 shows an example of a rotating machine which causes a problem of vibration. In FIG. 7, reference numeral 50 denotes a casing accommodating the impeller, and 51a and 51b denote bearings for rotatably supporting the rotating shaft of the impeller. 52 is a drive motor.

【0004】軸受51a、51bで摩耗が進行していく
と、軸受のばね定数、減衰定数が低下し、軸振動が大き
くなる。そのままに放置していくと、羽根車がケーシン
グ50と接触し、終いにはケーシング50自体の振動が
大きくなって、ケーシング50に接合されている配管等
に疲労破壊が生じるに至る。このような異常振動を未然
に防ぐために、予め軸受51a、51bには、許容され
る摩耗量が設定されており、通常は、定期的な分解点検
により、軸受けの摩耗量を計測し、軸受の寿命を監視し
ている。
[0004] As the wear progresses in the bearings 51a and 51b, the spring constant and damping constant of the bearings decrease, and the shaft vibration increases. If the impeller is left as it is, the impeller comes into contact with the casing 50, and finally the vibration of the casing 50 itself increases, leading to a fatigue failure in the pipes and the like joined to the casing 50. In order to prevent such abnormal vibration, an allowable wear amount is set in advance for the bearings 51a and 51b. Usually, the wear amount of the bearing is measured by regular overhaul and the wear of the bearing is measured. Monitors life expectancy.

【0005】また、軸受51a、51bには、振動を加
速度から評価するための加速度計53a、53bが軸受
ハウジングに取り付けられている。また、軸振動の周波
数解析を実施できるように軸振動計54が配置されてい
る。振動の採取による軸受の異常を監視する場合、従来
は、回転軸の基準の周方向位置を検知するために回転パ
ルス計55を利用して周波数解析を行い、加速度計53
a、53b、軸振動計54により検出した振動について
回転周波数での位相の大きさの絶対値から異常の有無を
判定している。
[0005] Accelerometers 53a and 53b for evaluating vibration from acceleration are attached to the bearing housings 51a and 51b. Further, a shaft vibrometer 54 is arranged so that a frequency analysis of the shaft vibration can be performed. Conventionally, when monitoring an abnormality of a bearing due to sampling of vibration, a frequency analysis is performed using a rotation pulse meter 55 to detect a reference circumferential position of the rotation shaft, and an accelerometer 53 is used.
a, 53b, the presence or absence of abnormality is determined from the absolute value of the phase magnitude at the rotation frequency for the vibration detected by the shaft vibrometer 54.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、回転機
械によっては、回転軸が外部に露出しておらずに回転パ
ルスを計測できない場合があり、そのような回転機械で
は、回転周波数での位相を求めることができないため、
軸受の異常診断を簡易に実施することができない状況が
ある。
However, in some rotating machines, the rotation axis cannot be measured because the rotating shaft is not exposed to the outside. In such a rotating machine, the phase at the rotation frequency is obtained. Because you ca n’t
There are situations in which it is not possible to easily perform a bearing abnormality diagnosis.

【0007】他方、振動の周波数解析による異常診断で
は、軸受の摩耗に起因する振動の変化は、ごくわずかで
あるので、軸受の摩耗量が許容値と比較してどうかとい
うような精度の高い診断までは困難であるのが実情であ
る。したがって、通常では、振動による監視を並行しな
がら、定期的に回転機械の分解点検を行って、軸受の摩
耗量を計測して寿命に達したかどうかを判断している。
実際問題としては、回転機械の分解点検は、大掛かりな
作業となることから頻度を多くすることができないこと
から、軸受の摩耗寿命に対して十分余裕があるにもかか
わらず早めに軸受を交換している場合が多い。
On the other hand, in the abnormality diagnosis based on the frequency analysis of the vibration, since the change in the vibration caused by the wear of the bearing is very small, a highly accurate diagnosis as to whether the wear amount of the bearing is compared with an allowable value or not is performed. Until then, it is difficult. Therefore, usually, the rotating machine is periodically disassembled and inspected while monitoring the vibration, and the wear amount of the bearing is measured to determine whether or not the life has been reached.
As a practical matter, the overhaul of rotating machinery is a large-scale operation and cannot be performed frequently.Therefore, it is necessary to replace the bearing early even though there is sufficient room for the bearing's wear life. Often have.

【0008】そこで、本発明の目的は、前記従来技術の
有する問題点を解消し、軸受の摩耗に起因する異常を定
量的にしかも精度良く診断することできるようにした回
転機械の異常診断方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for diagnosing abnormalities in a rotating machine which solves the problems of the prior art described above and is capable of quantitatively and accurately diagnosing abnormalities caused by bearing wear. To provide.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、請求項1に記載した発明は、軸受で支持された回
転軸を有する回転機械の運転中に発する振動の変化から
異常を診断する方法であって、回転軸の周方向に位相を
ずらして少なくとも2個の振動検出器を機械本体のケー
シングに配置し、前記それぞれの振動検出器によって同
時に検出された振動波形について周波数分析を行い、各
々の振動波形について、回転周波数を中心としてその前
後の周波数域を含む周波数帯域での振動振幅と、最も振
動振幅の大きい振動波形を基準として他の振動波形につ
いて回転周波数での位相を求め、得られた振動振幅と位
相から他の振動検出器についてそれぞれの振動ベクトル
を求め、正常な状態において予め求めた基準振動ベクト
ルと振動ベクトルとの差の変化ベクトルをそれぞれ求
め、前記変化ベクトルを所定の判断基準と比較すること
により、軸受の異常発生の確からしさを定量的に判断す
ることを特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, an invention according to claim 1 diagnoses an abnormality from a change in vibration generated during operation of a rotating machine having a rotating shaft supported by a bearing. A method comprising: arranging at least two vibration detectors on a casing of a machine main body with a phase shift in a circumferential direction of a rotating shaft, and performing a frequency analysis on vibration waveforms simultaneously detected by the respective vibration detectors. For each of the vibration waveforms, the vibration amplitude in the frequency band including the frequency band around the rotation frequency and the frequency band around the rotation frequency, and the phase at the rotation frequency for the other vibration waveforms based on the vibration waveform with the largest vibration amplitude are obtained. From the obtained vibration amplitude and phase, the respective vibration vectors for other vibration detectors are obtained, and the reference vibration vector and the vibration vector previously obtained in a normal state are obtained. Determination of the difference between the change vectors, respectively, by comparing the change vector and predetermined criteria, those characterized by quantitatively determining the likelihood of the occurrence of abnormality in the bearing.

【0010】この発明によれば、基準振動ベクトルに対
して比較対象の振動ベクトルがどの程度変化しているか
を両者の変化ベクトルに基づいて判断するため、容易に
振動計測、あるいは回転パルスが計測できない回転機械
について振動モードの変化を定量的に診断でき、また、
軸受摩耗によるわずかな振動モードの変化も捉えること
ができる。
According to the present invention, the degree of change of the vibration vector to be compared with the reference vibration vector is determined based on both change vectors, so that vibration measurement or rotation pulse cannot be easily measured. Quantitatively diagnose changes in vibration mode for rotating machinery,
Even a slight change in the vibration mode due to bearing wear can be detected.

【0011】また、請求項2に記載した発明は、上記請
求項1において、回転軸の周方向に位相をずらした少な
くとも2個の振動検出器を一の組として、他の組の少な
くとも2個の振動検出器を前記回転軸の軸方向の異なる
位置に配置することを特徴とするものである。この発明
によれば、より精度を高く振動モードの変化を検知する
ことができ、診断の確度を高めることができる。
According to a second aspect of the present invention, in the first aspect, at least two vibration detectors whose phases are shifted in the circumferential direction of the rotation shaft are regarded as one set, and at least two vibration detectors of another set are used. Are arranged at different positions in the axial direction of the rotating shaft. According to the present invention, a change in the vibration mode can be detected with higher accuracy, and the accuracy of diagnosis can be increased.

【0012】上記判断基準としては、請求項3に記載し
た発明のように、基準ベクトルの終点を中心として、異
常事象としての判断の基礎となるしきい値を半径とする
円からなり、前記変化ベクトルの前記円内における大き
さおよび方向から異常発生の確からしさを定量的に判断
するようにすることができる。
The criterion is a circle centered on the end point of the reference vector and having a radius equal to a threshold value which is a basis for determination as an abnormal event. It is possible to quantitatively determine the probability of occurrence of an abnormality from the size and direction of the vector within the circle.

【0013】[0013]

【発明の実施の形態】以下、本発明による回転機械の異
常診断方法の一実施形態について、添付の図面を参照し
ながら説明する。図1は、本発明による診断方法が適用
される回転機械の例としてのキャンドポンプ10を模式
的に示している。このキャンドポンプ10は、回転軸が
外部に露出していない構造のもので、従来技術で説明し
たように、外部から回転パルスが計測できない構造にな
っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 schematically shows a canned pump 10 as an example of a rotating machine to which the diagnostic method according to the present invention is applied. This canned pump 10 has a structure in which the rotating shaft is not exposed to the outside, and has a structure in which a rotating pulse cannot be measured from the outside as described in the related art.

【0014】このキャンドポンプ10は、本体の下半分
が基礎台11に埋設されるようにして設置されており、
羽根車12と回転軸13とロータ14が一体となり、ケ
ーシング15の内部に密封されている。回転軸13は、
上部軸受16と下部軸受17によって回転自在に支持さ
れている。この上部軸受16a、下部軸受16bが摩耗
すると、軸受のばね定数や減衰定数が低下し、軸振動が
大きくなる。そのまま軸受の摩耗を放置していると、ケ
ーシング15の振動が大きくなってケーシング15に接
合されている図示しない配管等が疲労破壊するに至るこ
とがある。
The can pump 10 is installed such that the lower half of the main body is buried in the base 11.
The impeller 12, the rotating shaft 13, and the rotor 14 are integrated, and are sealed inside a casing 15. The rotating shaft 13 is
It is rotatably supported by an upper bearing 16 and a lower bearing 17. When the upper bearing 16a and the lower bearing 16b wear, the spring constant and the damping constant of the bearing decrease, and the shaft vibration increases. If the bearing wear is left unattended, the vibration of the casing 15 may increase, and the pipes (not shown) connected to the casing 15 may be damaged by fatigue.

【0015】この上部軸受16aと下部軸受16bの摩
耗に起因する振動の変化を振動の大きさだけでなく、振
幅および位相をもった振動モードの変化として定量的に
検出するために、ケーシング15には次のような箇所に
加速度計が配設されている。
In order to quantitatively detect a change in vibration caused by wear of the upper bearing 16a and the lower bearing 16b as a change in a vibration mode having an amplitude and a phase as well as the magnitude of the vibration, a casing 15 is provided. Has accelerometers at the following locations:

【0016】図2(a)は、ケーシング15の下部に取
り付けた加速度計17、18の取付位置を示している。
この場合、加速度計17と加速度計18とは軸方向の位
置は同じであるが、周方向回転方向に90度偏位した位
置関係にある。同様に、図2(b)は、ケーシング15
の上部に取り付けた加速度計19、20の取付位置を示
している。この場合、加速度計19と加速度計20は、
下部の加速度計17と加速度計18とは軸方向にずれた
位置関係にあるが、周方向回転方向の位置は下部の加速
度計17、18と同じに90度偏位している位置関係に
ある。
FIG. 2A shows the mounting positions of the accelerometers 17 and 18 mounted on the lower part of the casing 15.
In this case, the accelerometer 17 and the accelerometer 18 have the same axial position, but have a positional relationship deviated by 90 degrees in the circumferential rotation direction. Similarly, FIG.
Shows the mounting positions of the accelerometers 19 and 20 mounted on the upper part of FIG. In this case, the accelerometer 19 and the accelerometer 20
The lower accelerometer 17 and the accelerometer 18 have a positional relationship shifted in the axial direction, but the position in the circumferential rotation direction has a positional relationship deviated by 90 degrees like the lower accelerometers 17 and 18. .

【0017】このような4個の加速度計17乃至20に
より同時に振動の変化を計測して周波数分析を行い、以
下のようにして上部軸受16aと下部軸受16bの摩耗
状態を診断する。
The vibrations are simultaneously measured by the four accelerometers 17 to 20 to perform frequency analysis, and the wear state of the upper bearing 16a and the lower bearing 16b is diagnosed as follows.

【0018】図3は、キャンドポンプ10の運転中にお
ける回転周波数での振動モードを示している。ケーシン
グ下部の加速度計17、18により計測される振動モー
ドは、楕円20a(正常時)、楕円20b(劣化時)の
波形で表示することができる。同様にケーシング上部の
加速度計19、20により計測される振動モードは、楕
円21a(正常時)、楕円21b(軸受劣化時)で表示
することができる。正常な運転時と、軸受に劣化が生じ
たときとでは振動モードの波形が異なってくるので、両
者を比較することで軸受摩耗を診断できることがわか
る。例えば、両者について、振動波形の偏向方向及びそ
の長軸、短軸の大きさを比較することである程度の診断
は可能である。本発明では、具体的に以下のようにして
診断する。
FIG. 3 shows a vibration mode at a rotation frequency during operation of the canned pump 10. Vibration modes measured by the accelerometers 17 and 18 at the lower part of the casing can be displayed by waveforms of an ellipse 20a (when normal) and an ellipse 20b (when deteriorated). Similarly, the vibration modes measured by the accelerometers 19 and 20 in the upper part of the casing can be indicated by an ellipse 21a (when normal) and an ellipse 21b (when the bearing is deteriorated). Since the waveforms of the vibration modes are different between normal operation and when the bearing is deteriorated, it can be seen that bearing wear can be diagnosed by comparing the two. For example, a diagnosis can be made to some extent by comparing the deflection directions of the vibration waveforms and the magnitudes of the major axis and the minor axis thereof. In the present invention, diagnosis is specifically performed as follows.

【0019】そこでまず、4個の加速度計18乃至20
により採取した振動を周波数分析することにより、それ
ぞれの振動について回転周波数を中心としてその前後の
周波数域を含む周波数帯域での振動振幅を求める。次い
で、求めた振動振幅のうち、振幅が大きいものを基準の
振動計として(ここでは例えば、加速度計17で計測し
た振動の振幅が最も大きかったものとする。)、他の加
速度計18、19、20で得た振動波形ついて、加速度
計17の振動波形を基準としてその位相を算出する。
First, four accelerometers 18 to 20 are used.
By performing frequency analysis of the vibrations collected by the above, the vibration amplitude of each vibration in the frequency band including the frequency band before and after the rotation frequency is determined. Next, among the obtained vibration amplitudes, the one with the larger amplitude is used as a reference vibrometer (here, for example, the amplitude of the vibration measured by the accelerometer 17 is the largest), and the other accelerometers 18 and 19 are used. , 20 is calculated based on the vibration waveform of the accelerometer 17.

【0020】このようにして、例えば、加速度計18で
得た振動波形については、図4において、それ自体の振
幅と、基準となる加速度計17の振動波形に対して所定
の位相をもった振動ベクトル32としてベクトル表示を
行うことができる。他の加速度計19、20のそれぞれ
で計測した振動について同じようにして振動ベクトルを
表示する。
In this way, for example, the vibration waveform obtained by the accelerometer 18 is shown in FIG. 4 by its own amplitude and a vibration having a predetermined phase with respect to the reference vibration waveform of the accelerometer 17. Vector display can be performed as the vector 32. Vibration vectors are displayed for vibrations measured by the other accelerometers 19 and 20 in the same manner.

【0021】図4において、31は、例えば、基準の振
動ベクトルであり、予め、図3(a)の正常な運転状態
において計測し、周波数分析を行ってそれぞれの加速度
計に対応させて求めておいた基準振動ベクトルである。
In FIG. 4, reference numeral 31 denotes, for example, a reference vibration vector, which is measured in advance in a normal operation state shown in FIG. 3A, frequency-analyzed, and obtained in correspondence with each accelerometer. This is the reference vibration vector set.

【0022】そこで、基準振動ベクトル31に対して比
較対象の振動ベクトル32がどの程度変化しているかを
みるために、両者のベクトル差の変化ベクトル33を求
める。ここで、図8は、図2に示すような周方向に離れ
た2個の加速度計17、18により得た振動のリサージ
ュ波形の変化を示す。61は、加速度計18によるリサ
ージュ波形で、62は加速度計17によるリサージュ波
形である。軸受の摩耗の進行に起因する振動の変化の場
合、両者のリサージュ波形61、62の間に振幅の差は
少なく、軸受の摩耗を検知できない。しかしながら、図
9に示すように、リサージュ波形61の加速度振幅a17
に対する振動ベクトル63と、リサージュ波形62の加
速度振幅a17とから加速度計18の加速度計17を基準
とする振動ベクトルを求めれば、加速度振幅a18の変化
ベクトル65として、細い楕円が幅広の楕円となる変化
を検出することができる。
Therefore, in order to see how much the vibration vector 32 to be compared has changed with respect to the reference vibration vector 31, a change vector 33 between the two is calculated. Here, FIG. 8 shows a change in the Lissajous waveform of the vibration obtained by the two accelerometers 17 and 18 separated in the circumferential direction as shown in FIG. 61 is a Lissajous waveform by the accelerometer 18 and 62 is a Lissajous waveform by the accelerometer 17. In the case of a change in vibration caused by the progress of bearing wear, the difference in amplitude between the two Lissajous waveforms 61 and 62 is small, and bearing wear cannot be detected. However, as shown in FIG. 9, the acceleration amplitude a17 of the Lissajous waveform 61
When a vibration vector based on the accelerometer 17 of the accelerometer 18 is obtained from the vibration vector 63 and the acceleration amplitude a17 of the Lissajous waveform 62, a change in which a thin ellipse becomes a wide ellipse is obtained as a change vector 65 of the acceleration amplitude a18. Can be detected.

【0023】次に、図4において、符号34は、変化ベ
クトル33について、軸受けの摩耗の進行が正常と異常
との間でどの程度のものであるかを判断するための基準
となるものである。この円34は、基準ベクトル31の
終点を中心として、上部軸受16aまたは下部軸受16
bの摩耗が交換を必要とするような異常事象として認定
される程度に進んだとの判断の基礎となるしきい値を半
径とする円からなるもので、変化ベクトル33の大きさ
が、異常と認定される前記しきい値を半径とする円34
内において、その中心からどの程度離れているかをその
大きさおよび方向の両面から評価し、これにより異常発
生の確からしさを定量的に判断する。例えば、変化ベク
トル33の終点が円34に近づいているほど、摩耗が確
実に進行していると評価することができる。なお、図4
において、しきい値を半径とする円34の替わりに、振
幅の大きさと位相について上下限値を設けるようにして
もよい。
Next, in FIG. 4, reference numeral 34 is a reference for judging the degree of progress of wear of the bearing between the normal state and the abnormal state for the change vector 33. . This circle 34 is centered on the end point of the reference vector 31 and is either the upper bearing 16 a or the lower bearing 16.
b is a circle having a radius of a threshold value on which the judgment is made that the wear has progressed to the extent that the wear is recognized as an abnormal event requiring replacement, and the magnitude of the change vector 33 is abnormal. A circle having a radius equal to the threshold value determined as
Within, the distance from the center is evaluated from both the size and the direction, and thereby the probability of occurrence of an abnormality is quantitatively determined. For example, as the end point of the change vector 33 approaches the circle 34, it can be evaluated that the wear has progressed more reliably. FIG.
In the above, upper and lower limits may be provided for the magnitude and phase of the amplitude instead of the circle 34 having the radius as the threshold.

【0024】このような異常事象に対する判断の確から
しさをより定量的にするために、図5に示すようなメン
バーシップ関数41を利用して、しきい値sに対する上
記の変化ベクトル33の大きさの割合を以って、異常事
象に対する確信度に置き換える。なお、このメンバーシ
ップ関数41は、実際の事例による軸受摩耗量等を調べ
てその経験的なデータに基づいて、変化ベクトルの大き
さを軸受摩耗に起因する異常事象に関連付けて定量的に
評価できるように予め設定されているものである。な
お、正常な運転状態でも変化ベクトル33は検出される
ことから、メンバーシップ関数41には、所定の幅で不
感領域を設けている。
In order to more quantitatively determine the likelihood of a judgment on such an abnormal event, the magnitude of the change vector 33 with respect to the threshold value s is determined using a membership function 41 as shown in FIG. Is replaced with the certainty factor for the abnormal event. The membership function 41 can quantitatively evaluate the magnitude of a change vector in association with an abnormal event caused by bearing wear based on empirical data obtained by examining a bearing wear amount or the like in an actual case. It is set in advance as follows. Since the change vector 33 is detected even in a normal operation state, the membership function 41 has a dead area with a predetermined width.

【0025】なお、基準となる加速度計18での振動の
振幅については、図6に示すようなメンバーシップ関数
42を利用して、同じようにして、異常事象に対する確
信度を定量的に評価するようにしてもよい。この図6で
示すメンバーシップ関数42では、振幅の場合、軸受摩
耗量が小さくても振幅が大きくなる場合があるため、下
限しきい値S1と上限しきい値S2が設定され、その中間
に不感領域が設定されている。
As for the amplitude of the vibration in the accelerometer 18, which is the reference, the confidence of the abnormal event is quantitatively evaluated in the same manner using the membership function 42 as shown in FIG. You may do so. In the membership function 42 shown in FIG. 6, in the case of amplitude, since the amplitude may increase even if the bearing wear amount is small, the lower limit threshold value S1 and the upper limit threshold value S2 are set. The area has been set.

【0026】以上のようにして、定量的に得られた確信
度データと、実際の軸受摩耗の異常事例ごとに収集蓄積
されたデータとを比較することにより、相当の蓋然性を
以って軸受摩耗量を推定し、許容摩耗量との比較におい
て交換が必要がどうかの判断が可能となる。なお、軸受
摩耗だけでなく、確信度データを従来から行われている
プロセス量(電流、流量)とももにポンプの運転状態の
異常の有無を診断するデータとして利用ことも可能であ
る。
By comparing the confidence data obtained quantitatively as described above with the data collected and accumulated for each abnormal case of actual bearing wear, bearing wear is considerably increased. By estimating the amount and comparing with the allowable amount of wear, it is possible to determine whether or not replacement is necessary. In addition to the bearing wear, the certainty data can be used as data for diagnosing the presence or absence of an abnormality in the operation state of the pump based on the process amount (current, flow rate) conventionally performed.

【0027】以上、本発明について加速度計を4個使用
した実施形態を挙げて説明したが、ケーシングの上下の
うち一方の方で異常に対して敏感な方の加速度計を2個
以上選定するようにしてもよい。
Although the present invention has been described with reference to the embodiment in which four accelerometers are used, two or more accelerometers which are more sensitive to abnormalities in one of the upper and lower casings are selected. It may be.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
によれば、回転軸について外部から容易に振動計測や回
転パルスの計測がてきない回転機械について、軸受摩耗
等による異常を定量な確度をもって診断できるので、回
転機械の信頼性を向上させることが可能となる。
As is apparent from the above description, according to the present invention, for a rotating machine in which vibration measurement and rotation pulse measurement cannot be easily performed from the outside with respect to a rotating shaft, an abnormality due to bearing wear and the like can be quantitatively and accurately determined. Therefore, the reliability of the rotating machine can be improved.

【0029】また、軸受けの摩耗量についても定量的に
推定可能となるため、軸受の寿命を推定することがで
き、適正な時期に交換を実施で、適正な保守を実現する
ことができる。
In addition, since the amount of wear of the bearing can be quantitatively estimated, the life of the bearing can be estimated, and replacement can be performed at an appropriate time, so that appropriate maintenance can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による診断方法が適用される回転機械を
示す説明図。
FIG. 1 is an explanatory view showing a rotating machine to which a diagnostic method according to the present invention is applied.

【図2】本発明の一実施形態における加速度計の配置を
示す説明図。
FIG. 2 is an explanatory diagram showing an arrangement of an accelerometer according to one embodiment of the present invention.

【図3】図2の加速度計により計測した振動モードの変
化を示す説明図。
FIG. 3 is an explanatory diagram showing a change in a vibration mode measured by the accelerometer of FIG. 2;

【図4】本発明の実施形態による振動ベクトル図。FIG. 4 is a vibration vector diagram according to the embodiment of the present invention.

【図5】本発明の実施形態において、診断データから確
信度を算出するメンバーシップ関数の例を示す説明図。
FIG. 5 is an explanatory diagram showing an example of a membership function for calculating a certainty factor from diagnostic data in the embodiment of the present invention.

【図6】他のメンバーシップ関数の例を示す説明図。FIG. 6 is an explanatory diagram showing an example of another membership function.

【図7】従来の回転機の診断方法の説明図。FIG. 7 is an explanatory view of a conventional rotating machine diagnosis method.

【図8】周方向に離れた2個の加速度計により計測した
振動のリサージュ波形の変化を示す図。
FIG. 8 is a diagram showing a change in a Lissajous waveform of vibration measured by two accelerometers separated in a circumferential direction.

【図9】図8のリサージュ波形の振動ベクトルの変化を
示す図。
FIG. 9 is a diagram showing a change in a vibration vector of the Lissajous waveform in FIG. 8;

【符号の説明】[Explanation of symbols]

10 キャンドポンプ 11 基礎台 12 羽根車 13 回転軸 14 ロータ 15 ケーシング 16 上部軸受 17 下部軸受 17〜20 加速度計 31 基準ベクトル 32 振動ベクトル 33 変化ベクトル 41 メンバーシップ関数 42 メンバーシップ関数 REFERENCE SIGNS LIST 10 canned pump 11 base stand 12 impeller 13 rotating shaft 14 rotor 15 casing 16 upper bearing 17 lower bearing 17-20 accelerometer 31 reference vector 32 vibration vector 33 change vector 41 membership function 42 membership function

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 11/00 R (72)発明者 大 森 修 一 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 渡 部 幸 夫 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 尾 崎 健 司 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 薄 井 秀 和 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 鵜 原 義 彦 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 2G024 AD03 BA21 BA27 CA13 FA04 2G064 AA17 AB01 AB02 AB22 BA02 CC13 CC17 CC41 CC61 2G075 BA03 CA14 DA09 FA17 FB07 FB09 FB15 FC14 GA21 3J011 EA05 EA10 5H611 AA01 BB01 PP03 PP05 QQ09 RR00 UA04 UA05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02K 11/00 R (72) Inventor Shuichi Omori 4-1 Egasakicho, Tsurumi-ku, Yokohama-shi, Kanagawa No. Tokyo Electric Power Company, Inc. (72) Inventor Yukio Watanabe 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama Works Co., Ltd. 8 Shinsugita-cho, Toshiba Yokohama Office (72) Inventor Hidekazu Usui 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa, Japan Toshiba Yokohama Office (72) Inventor Yoshihiko Uhara, Yokohama, Kanagawa 8 Shinshinsugita-cho, Isogo-ku F-term in Toshiba Yokohama Office (reference) 2G024 AD03 BA21 BA27 CA13 FA04 2G064 AA17 AB01 AB02 AB22 BA02 CC13 CC17 CC41 CC61 2G 075 BA03 CA14 DA09 FA17 FB07 FB09 FB15 FC14 GA21 3J011 EA05 EA10 5H611 AA01 BB01 PP03 PP05 QQ09 RR00 UA04 UA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】軸受で支持された回転軸を有する回転機械
の運転中に発する振動の変化から異常を診断する方法で
あって、 回転軸の周方向に位相をずらして少なくとも2個の振動
検出器を機械本体のケーシングに配置し、前記それぞれ
の振動検出器によって同時に検出された振動波形につい
て周波数分析を行い、 各々の振動波形について、回転周波数を中心としてその
前後の周波数域を含む周波数帯域での振動振幅と、最も
振動振幅の大きい振動波形を基準として他の振動波形に
ついて回転周波数での位相を求め、 得られた振動振幅と位相から他の振動検出器についてそ
れぞれの振動ベクトルを求め、 正常な状態において予め求めた基準振動ベクトルと振動
ベクトルとの差の変化ベクトルをそれぞれ求め、 前記変化ベクトルを所定の判断基準と比較することによ
り、軸受の異常発生の確からしさを定量的に判断するこ
とを特徴とする回転機械の異常診断方法。
1. A method for diagnosing an abnormality from a change in vibration generated during operation of a rotating machine having a rotating shaft supported by a bearing, wherein at least two vibrations are detected by shifting a phase in a circumferential direction of the rotating shaft. The device is placed in the casing of the machine body, and a frequency analysis is performed on the vibration waveforms simultaneously detected by the respective vibration detectors. The phase at the rotation frequency is obtained for the other vibration waveforms with reference to the vibration amplitude of the vibration and the vibration waveform having the largest vibration amplitude, and the respective vibration vectors for the other vibration detectors are obtained from the obtained vibration amplitude and phase. In each state, a change vector of a difference between a reference vibration vector and a vibration vector obtained in advance is obtained, and the change vector is determined by a predetermined determination base. And by comparing, rotary machine abnormality diagnosis method characterized by quantitatively determining the likelihood of the occurrence of abnormality in the bearing.
【請求項2】前記回転軸の周方向に位相をずらした少な
くとも2個の振動検出器を一の組として、他の組の少な
くとも2個の振動検出器を前記回転軸の軸方向の異なる
位置に配置することを特徴とする請求項1に記載の回転
機械の異常診断方法。
2. The method according to claim 1, wherein at least two vibration detectors whose phases are shifted in the circumferential direction of the rotation shaft are regarded as one set, and at least two vibration detectors of another set are positioned at different positions in the axial direction of the rotation shaft. The method for diagnosing abnormality of a rotary machine according to claim 1, wherein the abnormality is disposed in a rotating machine.
【請求項3】前記判断基準は、基準ベクトルの終点を中
心として、異常事象としての判断の基礎となるしきい値
を半径とする円からなり、前記変化ベクトルの前記円内
における大きさおよび方向から異常発生の確からしさを
定量的に判断することを特徴とする請求項1または2に
記載の回転機械の異常診断方法。
3. The criterion is a circle centered on an end point of a reference vector and having a radius as a threshold value on which an abnormal event is determined, and the magnitude and direction of the change vector in the circle. The method for diagnosing abnormality of a rotary machine according to claim 1, wherein the probability of occurrence of an abnormality is quantitatively determined from the data.
【請求項4】前記判断基準は、経験的に起こりうる異常
事象に対して予め設定されているメンバーシップ関数か
らなることを特徴とする請求項3に記載の回転機械の異
常診断方法。
4. The method according to claim 3, wherein the criterion comprises a membership function set in advance for an abnormal event that may occur empirically.
JP2000148144A 2000-05-19 2000-05-19 Abnormal diagnosis method for rotating machinery Expired - Fee Related JP4253104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000148144A JP4253104B2 (en) 2000-05-19 2000-05-19 Abnormal diagnosis method for rotating machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148144A JP4253104B2 (en) 2000-05-19 2000-05-19 Abnormal diagnosis method for rotating machinery

Publications (2)

Publication Number Publication Date
JP2001330510A true JP2001330510A (en) 2001-11-30
JP4253104B2 JP4253104B2 (en) 2009-04-08

Family

ID=18654221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148144A Expired - Fee Related JP4253104B2 (en) 2000-05-19 2000-05-19 Abnormal diagnosis method for rotating machinery

Country Status (1)

Country Link
JP (1) JP4253104B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345154A (en) * 2004-05-31 2005-12-15 Kyushu Electric Power Co Inc Method and device for detecting omen of abnormality
US7065469B2 (en) 2002-09-27 2006-06-20 Kabushiki Kaisha Toshiba Manufacturing apparatus and method for predicting life of a manufacturing apparatus which uses a rotary machine
JP2007010415A (en) * 2005-06-29 2007-01-18 Toshiba Corp Abnormality diagnosis system, device, and technique of bearing
JP2007309861A (en) * 2006-05-22 2007-11-29 Hitachi Ltd Method of acquiring shaft inclination data for reactor coolant recirculation pump, and shaft vibration suppression method
JP2009008529A (en) * 2007-06-28 2009-01-15 Toshiba Corp Vibration measuring system
JP2011075522A (en) * 2009-10-02 2011-04-14 Jfe Mechanical Co Ltd Diagnostic apparatus of facility equipment
JP2012241578A (en) * 2011-05-18 2012-12-10 Toyota Motor Corp Control device of vehicle
KR101249576B1 (en) * 2010-09-13 2013-04-01 한국수력원자력 주식회사 Rotating Machinery Fault Diagnostic Method and System Using Support Vector Machines
KR101381822B1 (en) * 2012-07-04 2014-04-17 한국전기연구원 Vibration signal analysis method in motors
KR101474187B1 (en) 2011-04-29 2014-12-17 에이비비 테크놀로지 아게 Method for monitoring demagnetization
EP3514389A1 (en) 2017-12-28 2019-07-24 Ebara Corporation Pump apparatus, test operation method of pump apparatus, motor assembly and method for identifying abnormal vibration of motor assembly

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380103C (en) * 2002-09-27 2008-04-09 株式会社东芝 Manufacturing apparatus and life predictive method for whirler
US7065469B2 (en) 2002-09-27 2006-06-20 Kabushiki Kaisha Toshiba Manufacturing apparatus and method for predicting life of a manufacturing apparatus which uses a rotary machine
JP2005345154A (en) * 2004-05-31 2005-12-15 Kyushu Electric Power Co Inc Method and device for detecting omen of abnormality
JP2007010415A (en) * 2005-06-29 2007-01-18 Toshiba Corp Abnormality diagnosis system, device, and technique of bearing
JP4491432B2 (en) * 2006-05-22 2010-06-30 日立Geニュークリア・エナジー株式会社 Axis inclination information acquisition method and axial vibration suppression method for nuclear reactor coolant recirculation pump
JP2007309861A (en) * 2006-05-22 2007-11-29 Hitachi Ltd Method of acquiring shaft inclination data for reactor coolant recirculation pump, and shaft vibration suppression method
JP2009008529A (en) * 2007-06-28 2009-01-15 Toshiba Corp Vibration measuring system
JP2011075522A (en) * 2009-10-02 2011-04-14 Jfe Mechanical Co Ltd Diagnostic apparatus of facility equipment
KR101249576B1 (en) * 2010-09-13 2013-04-01 한국수력원자력 주식회사 Rotating Machinery Fault Diagnostic Method and System Using Support Vector Machines
KR101474187B1 (en) 2011-04-29 2014-12-17 에이비비 테크놀로지 아게 Method for monitoring demagnetization
JP2012241578A (en) * 2011-05-18 2012-12-10 Toyota Motor Corp Control device of vehicle
KR101381822B1 (en) * 2012-07-04 2014-04-17 한국전기연구원 Vibration signal analysis method in motors
EP3514389A1 (en) 2017-12-28 2019-07-24 Ebara Corporation Pump apparatus, test operation method of pump apparatus, motor assembly and method for identifying abnormal vibration of motor assembly
EP3748162A1 (en) 2017-12-28 2020-12-09 Ebara Corporation Pump apparatus, test operation method of pump apparatus, motor assembly and method for identifying abnormal vibration of motor assembly
US11209008B2 (en) 2017-12-28 2021-12-28 Ebara Corporation Pump apparatus, test operation method of pump apparatus, motor assembly and method for identifying abnormal vibration of motor assembly

Also Published As

Publication number Publication date
JP4253104B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
US6526831B2 (en) Condition based monitoring by vibrational analysis
US7089154B2 (en) Automatic machinery fault diagnostic method and apparatus
TWI751170B (en) Pump assembly, method of analysing data received from an accelerometer mounted on a pump and computer program
JP2001330510A (en) Abnormality diagnostic method of rotating machine
US6789422B1 (en) Method and system for balancing a rotating machinery operating at resonance
WO2018180764A1 (en) Blade abnormality detecting device, blade abnormality detecting system, rotary machine system, and blade abnormality detecting method
KR102068077B1 (en) A Diagnosis Apparatus For Rotating Machinery Using Complex Signals
JP3827896B2 (en) Rolling bearing diagnostic device
JP2002181038A (en) Abnormality diagnosis device
JP2020143934A (en) Bearing information analyzer and bearing information analysis method
US11519930B2 (en) Determination of rpm from vibration spectral plots based on percentage RPM
Laggan Vibration monitoring
JP2008058191A (en) Method of diagnosing rotary machine, program therefor, and diagnosing device therefor
JPH04204021A (en) Apparatus for diagnosing vibration and sound of rotating machine
JP6243940B2 (en) Wind power generation system abnormality sign diagnosis system
CN103867475A (en) Method for detecting on-line running state of dual-rotor axial flow fan
JP2000162035A (en) Method and device for determining abnormality in rotating equipment
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
JP2001349877A (en) Diagnostic system for rotary electric machine
US20210247414A1 (en) Rotation detection device and method for detecting rotation
JP2018173297A (en) Blade vibration monitoring apparatus, rotation machine system, and blade vibration monitoring method
Forland Why phase information is important for diagnosing machinery problems
JPH09170403A (en) Monitoring device for rotary machine
WO2020149292A1 (en) Abnormality diagnosis system for rotary electric machine
KR100228023B1 (en) Prediction method of bearing life

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

R150 Certificate of patent or registration of utility model

Ref document number: 4253104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees