JP3827896B2 - Rolling bearing diagnostic device - Google Patents

Rolling bearing diagnostic device Download PDF

Info

Publication number
JP3827896B2
JP3827896B2 JP30893599A JP30893599A JP3827896B2 JP 3827896 B2 JP3827896 B2 JP 3827896B2 JP 30893599 A JP30893599 A JP 30893599A JP 30893599 A JP30893599 A JP 30893599A JP 3827896 B2 JP3827896 B2 JP 3827896B2
Authority
JP
Japan
Prior art keywords
bearing
life
rolling bearing
load
database
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30893599A
Other languages
Japanese (ja)
Other versions
JP2001124665A (en
Inventor
義彦 鵜原
幸夫 渡部
浩晃 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP30893599A priority Critical patent/JP3827896B2/en
Publication of JP2001124665A publication Critical patent/JP2001124665A/en
Application granted granted Critical
Publication of JP3827896B2 publication Critical patent/JP3827896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポンプ、ファン等の駆動機であるモータと被駆動機であるロータからなり転がり軸受を有する回転機器の軸系の組立て状況を把握し、正常か否かを判断し、また転がり軸受の寿命を推定する転がり軸受の診断装置に関する。
【0002】
【従来の技術】
一般に回転機器の軸受に異常が発生すると、これらの機器の運転中に発する振動に変化が現れる場合が多く、従来より軸受の発する振動を測定し、その状態を監視する手法が用いられている。転がり軸受については、軸受の振動を測定し、その加速度値を評価したり、あるいは振動のエンベロープの周波数解析を実施することにより、軸受の傷の有無や傷の発生場所を推定する手段が確立され実用化されている。
【0003】
一方、転がり軸受の寿命は、軸受レースの表面の疲労により規定される。このレース表面の疲労は、レース表面に加わる荷重により左右される。軸受の設計においては、この荷重の大きさを回転機器の設計仕様から算出するが、回転機器の組立て状態における軸受の芯ずれ等により軸受荷重は大きく変化するため、非常に安全側の設計が行われている。
【0004】
【発明が解決しようとする課題】
軸受の芯が極端にずれて回転機器が組み立てられている場合には、軸受は急速に寿命にいたるため、組立て状態の良否を判定することは、回転機器を健全に運転するために重要である。また、軸受の芯ずれが小さい場合には、軸受の寿命は設計値よりもかなり長くなり、通常は真の寿命に対して十分余裕があるにもかかわらず軸受を交換している場合が多い。
【0005】
しかるに、従来の診断手法は、軸受に傷が発生した場合にその徴候を検知し診断するものであり、事前に軸受組立て状態の良否を判定できるものではなく、また軸受寿命を推定するものではない。
【0006】
そこで本発明は、転がり軸受を有する回転機器の組立時の軸受の芯ずれを検出することができ、実機組立状態での軸受寿命を推定することのできる転がり軸受の診断装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、駆動機であるモータと被駆動機であるロータからなり回転軸が転がり軸受によって支持された回転機器の回転軸の回転に伴う軸変位信号あるいは軸受ハウジングの加速度信号の少なくともいずれか一方を振動波形として採取するデータ採取手段と、採取したデータを保持するデータ保持手段と、軸受のばね定数、軸曲り量、モータ軸とロータ軸を結合するカップリングの芯ずれ及び偏角吸収量を記載した軸受評価用データベースと、診断条件を入力する条件入力手段と、この条件入力手段から指令を受け前記データ保持手段からデータを受けて前記カップリング部に付加質量を付加した場合と付加しない場合の一回転中の振動波形の差を比較評価して付加質量を付加した場合に波形の一部が平坦になっている部分の長さの差を抽出し前記軸受評価用データベースを参照して前記平坦部分の長さの差からモータとロータの軸受芯ずれ量及び軸受荷重の少なくともいずれか一方を推定する波形評価手段と、この波形評価手段の推定の結果を出力する出力手段とを備えた構成とする。
【0008】
請求項2の発明は、請求項1の発明において、回転軸の回転信号を取り出す回転パルス計と、回転パルスから回転パルスまでの1周期の振動波形を複数個切出しこの複数周期分の波形の平均を求める波形平均処理手段とを備えてなる構成とする。
【0009】
請求項3の発明は、駆動機であるモータと被駆動機であるロータからなり回転軸が転がり軸受によって支持された回転機器の回転軸の回転に伴う軸変位信号あるいは軸受ハウジングの加速度信号の少なくともいずれか一方を振動波形として採取するデータ採取手段と、採取したデータを保持するデータ保持手段と、軸受のばね定数、軸曲り量、モータ軸とロータ軸を結合するカップリングの芯ずれ及び偏角吸収量を記載した軸受評価用データベースと、診断条件を入力する条件入力手段と、この条件入力手段から指令を受け前記データ保持手段からデータを受けて前記軸カップリング部に付加質量を付加した場合と付加しない場合の振動振幅の差を評価して軸受芯ずれ量及び軸受荷重の少なくともいずれか一方を推定する振動振幅評価手段と、この振動振幅評価手段の推定の結果を出力する出力手段とを備えた構成とする。
【0010】
請求項4の発明は、請求項1または3の発明において、転がり軸受の寿命に関するデータを格納する軸受寿命データベースと、推定された荷重とこの軸受寿命データベースから軸受の寿命を推定する軸受寿命推定手段とを備えてなる構成とする。
【0011】
請求項5の発明は、請求項4の発明において、軸受寿命データベースは、転がり軸受の型式に応じた寿命算定式を格納し、軸受寿命推定手段は、入力された型式に該当する寿命算定式を抽出し、推定された荷重と前記寿命算定式から軸受の寿命を推定する構成とする。
【0012】
請求項6の発明は、請求項4の発明において、運転履歴データベース及び荷重履歴データベースを備え、軸受寿命推定手段は軸受荷重を入力される毎に、その値を前記荷重履歴データベースに蓄積し、その傾向管理を実施するとともに、その時点の余寿命を再推定する構成とする。
【0019】
このように本発明は、回転機器の組立て直後に軸を加振し、もしくは付加質量を付加し、その振動特性から回転機器の組立状態の良否を評価し、さらにその状態における軸受にかかる荷重を推定し、軸受の寿命を推定するものである。また、軸振動波形、軸受ハウジング振動波形から軸受芯ずれの良否を判断するものである。本発明により、回転機器組立て状態の良否が判定でき、回転機器の健全性を確保することができると共に、軸受の寿命を推定することにより、交換周期が確定し、より効率的な機器の保守が可能となる。
【0020】
【発明の実施の形態】
図1に本発明の第1の実施の形態の転がり軸受の診断装置のブロック図を示し、図2から図5にその動作を示す。
【0021】
図1に示すように、モータ1の軸端にカップリング2を介して、転がり軸受3によって支持されたポンプ4が設置されているとする。このように構成した回転機器の芯ずれを検出し、また転がり軸受3にかかる荷重を評価し寿命を推定するために、カップリング2にナットのような金属塊からなる付加質量5を取付ける。また、カップリング2に近接して例えばうず電流原理による変位計6を設ける。そして、この変位計6の出力信号線をデータ採取手段7に接続し、その後にデータ保持手段8、波形評価手段9及び出力手段10を接続する。また、波形評価手段9には、軸受評価用データベース12および条件入力手段13を接続する。
【0022】
軸受評価用データベース12は、軸受のばね定数、軸曲がり量、カップリングの芯ずれ、偏角吸収量を考慮して予め求められている。図2に示すように、軸受評価用データベース12は、付加質量の大きさをパラメータとして、付加質量有りと無しの状態での波形平坦部の長さ(回転角)の差と軸受芯ずれ量及び軸受荷重の関係を示すものである。
【0023】
このように構成した転がり軸受の診断装置において、変位計6及びデータ採取手段7で採取された振動波形は、データ保持手段8に蓄積される。付加質量5の取付が有る場合と無い場合の振動データが蓄積されると、波形評価手段9は、付加質量5有りの場合と無し場合の波形を比較評価し、軸受評価用データベース12を参照して、振動波形平坦部の変化量と条件入力手段13から入力された軸受の型式等の診断条件から軸受芯ずれ量と軸受荷重を求め、CTR等の出力手段10に出力する。
【0024】
なお、ここで軸振動計として設けられる変位計6の代りに、あるいは変位計6とともに、軸受3に取付けた加速度計11を設けて、軸受3の振動信号をデータ採取手段7に取込むようにしてもよい。
【0025】
次に、診断の原理について説明する。
図3にポンプ(またはファンでもよい)とモータの軸受芯ずれがある場合の回転軸の振動モードの概要を示す。ポンプには、若干の残留アンバランスがあり、アンバランスの影響及び軸受芯ずれの影響から、回転軸の振動モードは図3(a)に示す形となる。なお、便宜上、図3(b)に示すようにポンプ軸受に対してモータ軸受が芯ずれしている方向をX方向とし、ロータの残留アンバランスがX方向を向いているときの回転角を0°と定義する。また、ロータ軸とモータ軸の不連続の部分は例えばフレキシブルカップリングによる回転軸の偏角の吸収を示す。図3(a)中の実線が残留アンバランスが0°方向を向いたときの振動モードであり、破線が180°方向を向いたときの振動モードである。
【0026】
この場合のポンプ軸受部及びモータ軸受部にかかるX方向荷重の、ロータ1回転における変化を図4に示す。センサは上記の0°方向(芯ずれ方向)に設置してあるとする。なお、本図は軸受にかかる荷重を示しているが、軸振動についても本図と同様の動きを示す。
【0027】
ポンプ側軸受において(図4(a))、ポンプの残留アンバランスによる荷重は図中の破線で示される。一方、軸受が偏芯していることにより、モータ軸とのカップリングから受ける荷重は図中の一点鎖線で表される。軸受にかかる全荷重は両者の合計となり、図中の実線となる。図から判るように、軸芯が偏芯している場合には、ポンプ側軸受荷重は、180 °方向でつぶれる形となり、平坦部を生ずる。
【0028】
モータ側では(図4(b))、一般的に残留アンバランスは微小であり、モータ軸受にかかる荷重は軸受偏芯によるカップリングからの荷重のみであり、その変化はポンプ側軸受と180 °逆の形状となる。
【0029】
この状態において、ロータとモータの軸受芯ずれにより発生する回転数の2倍の成分の振動を計測し、センサの設置方向を周方向に移動するかあるいは、任意の直交する2方向で計測することにより、2倍の成分が最も大きい方向を見出し、軸受の芯ずれ方向を推定する。
【0030】
次に軸受芯ずれ量あるいは、軸受荷重の推定方法を説明する。
軸受の芯ずれ方向にセンサを設置した状態で、モータとロータのカップリング部に既知の質量を付加することを考える。図5にモータ側の軸受を例にとり、その影響を示す。この場合、ポンプ側軸受に過大な荷重が加わらない様に、図5(a)に示すように、ポンプ残留アンバランスと180 °逆の方向に付加質量を付けることとする。図5(b)に示すように、付加質量による荷重は破線のように作用し、モータ軸受にかかる荷重は実線のようになり、荷重が平坦になる部分が現れる。付加質量の大きさとこの平坦部の長さ(回転角)の関係を基に、予め求められている軸受評価用データベースを参照して、軸受芯ずれ量と軸受荷重を推定する。
【0031】
本発明の第2の実施の形態を図6に示す。ここではモータ1,軸受3等の図示を省略している。本実施の形態は、第1の実施の形態に加えて、回転パルス計14及び波形平均処理手段15を具備する。波形平均処理手段15では、図7に示すように、採取した振動波形について、回転パルスから回転パルスまでの1周期の波形を複数個切り出し、切り出した複数周期分の波形の平均処理を実施し、これを波形評価手段9に出力する。本実施の形態においては、振動波形に平均処理を施すことによって微小な外乱の影響を排除でき、推定精度を高めることができる。
【0032】
本発明の第3の実施の形態を図8に示す。本実施の形態は、上記第1の実施の形態において、波形評価手段9の代りに、振動振幅評価手段16を具備しており、この振動振幅評価手段16は、付加質量5有り無しの場合の振動値(波高値)の差に基づいて、軸受芯ずれ量と軸受荷重を推定する。本第3の実施の形態では、軸受評価用データベース12は、図9に示すように、付加質量をパラメータとして、振動値の変化量と軸受芯ずれ量及び軸受荷重の関係を示すものである。
【0033】
本発明の第4の実施の形態を図10に示す。本実施の形態は、フィルタ17と、信号加工手段18と、周波数分析手段19と、組立状態良否判定手段20を備える。この実施の形態では、付加質量を付加せずに診断を実施する。本実施の形態では、変位計6等の軸振動計により採取されたデータを信号加工手段18により加工して、特徴をより精度良く抽出し芯ずれの有無を判定することができる。フィルタ17は振動波から回転周波数の3倍以上の周波数の高調波を除去する。
【0034】
信号加工手段18の作用を図11を用いて説明する。軸受が芯ずれしている場合に、波形が頭打ちとなることは前述した。信号加工手段18は、図11に示すように、採取した波形を0を基準として、正(+)側と負(−)側に分離する。次に、正(+)側の信号については、負側の信号を取り除いた部分に、正側の信号の符号を反転し、位相を180 度ずらした波形を合成することにより、正側のみの波形を形成する。負側についても同様の処理を施し、負側のみの波形を形成する。この作用により、同図に示すように、頭が平坦となっていない波形と頭が平坦になっている波形に分離できる。
【0035】
周波数分析手段19は、このようにして形成された正側、負側の波形をそれぞれ周波数解析し、振動スペクトルを算出し、その中から回転に同期した振動成分及び回転数の2倍の振動成分を抽出する。
【0036】
組立状態良否判定手段20は、回転成分及び回転数の2倍の成分各々について、それぞれ正側と負側の比較を実施し、芯ずれの有無を判定する。振動波形の頭が平坦になると、回転数の2倍の成分が大きくなり、回転成分は幾分小さくなることから、これらの差が大きいと芯ずれ量が大きいと判断する。
【0037】
第5の実施の形態は、変位計6等の軸振動計で採取された信号の処理に関するものである。第4の実施の形態と同様であるが、軸振動計の波形は必ずしも0が中心とはならない。従って図12に示すように、信号加工手段18は、信号の平均値を算出し、平均値より大きな値(大側)と小さな値(小側)に信号を分離して、以下第4の実施の形態と同様の処理を実施する。
【0038】
第6の実施の形態は、上記第3の実施の形態においてさらに、上記第4の実施の形態あるいは第5の実施の形態に示したフィルタ、信号加工手段、周波数分析手段を備えたものである。このようにすると、振動振幅値のみに着目するよりもさらに精度の良い推定が可能となる。
【0039】
第7の実施の形態は、図13に示すように、上記第1の実施の形態に加えて、軸受寿命推定手段21及び軸受寿命データベース22を具備し、軸受の寿命を推定するものである。
【0040】
軸受の寿命は通常、軸受のインナレースまたはアウタレースにおける疲労剥離の発生時期で規定される。その発生時期Lは、軸受にかかる荷重をPとすると
L=a(c/P)n
という関係にある。ここで、a,c,nは、軸受のサイズや材質を含む型式で決まる定数である。
【0041】
軸受寿命データベース22は、上記のa,c,nの値が記載してあり、軸受寿命推定手段21は、推定された荷重Pを元に、軸受寿命データベース22を参照して、疲労剥離の発生時期L、すなわち軸受の寿命を推定する。
【0042】
第8の実施の形態は、上記第7の実施の形態における軸受寿命データベースの構成を改良したものである。すなわち、この実施の形態における軸受寿命データベースは、図14に示すように、軸受の型式毎に上記のa,c,nが記載してある。軸受寿命推定手段は、入力された型式に該当する寿命計算式をデータベースから抽出し、荷重推定値を用いて軸受寿命を推定する。
【0043】
第9の実施の形態は、図15に示すように、上記第7または第8の実施の形態に加えて、運転履歴データベース23及び荷重履歴データベース24を具備したものである。軸受荷重を推定する度に荷重値を荷重履歴データベース24に蓄積して、機器の運転履歴、荷重履歴を蓄積し傾向管理を実施するとともに、その時点での余寿命を推定する。
【0044】
次に、図16から図21を用いて本発明の第10の実施の形態を説明する。この実施の形態では、超音波加振手段を用いて軸受の診断を実施する。
転がり軸受3は、インナレース30とアウタレース31、これらの間に転動自在に嵌着された玉あるいはコロの転動体32、及びアウタレース31を保持する軸受ハウジング33からなる。軸受ハウジング33の外周から、超音波発振器34あるいは動電型加振機を用いて、軸受のアウタレース31を転動体32の支持間隔内で局部半径方向に共振振動させる。この周波数は数10kHz であるが、運転中あるいは停止中でも加振できる。
【0045】
ロータとモータの軸受芯ずれが大きく、軸受の荷重が大きい場合には、図16の右半に示すように、軸受の荷重がない周方向範囲が発生し、アウタレース31と転動体32が接触しない状態となり、アウタレース31の転動体32の支持間隔内での局部半径方向に共振周波数が著しく低下する。この特性を利用して、転動体の正常な接触状態の共振周波数にて、軸受ハウジング33の外周から周方向に沿って発振器を移動して加振し、そのインピーダンスの周方向分布を計測する。
【0046】
図17(b),図18(b)はそれぞれ軸受周方向方位による共振周波数の変化及び発振器インピーダンスの変化を例示したグラフであり、各図中の方位角はそれぞれ図17(a),図18(a)に示す方位角に対応する。
【0047】
図17に示すように、アウタレース31と転動体32が接触しないアウタレース31と転動体32の支持間隔内での局部半径方向の共振周波数は著しく低く、加振周波数と一致しないので、図18に示すようにこの方位のインピーダンスは大きくなる。この方位の反対方位が、軸受芯ずれ方位と推定できる。
【0048】
上記と同様に、発振器の加振周波数を変化させて、軸受ハウジング33の外周から周方向に沿って、アウタレース31の転動体32の支持間隔内での局部半径方向の共振周波数の周方向分布を計測すると、図17に示したところにより、その共振周波数の高い方位が、軸受荷重が大きい方位と推定できる。
【0049】
また図19に示すように、インピーダンスの大きさの周方向での変化量と軸受荷重の大きさとの関係を表すデータベースを作成しておけば、そのデータベースを用いることにより、計測したインピーダンスの大きさから、軸受荷重を推定することができる。
【0050】
また、図20に示すように周方向に沿った共振周波数の変化量と、軸受荷重の大きさとの関係を表すデータベースを作成しておけば、そのデータベースを用いることにより、計測した周波数差から、軸受荷重が推定できる。
【0051】
軸受荷重をさらに精度良く推定するためには、運転中において、ロータとモータとの軸カップリングに、既知の質量の付加質量を付加し、軸受ハウジングの超音波加振手段を用いて軸受アウタレースリング半径方向を局部的に加振し、その際の超音波加振手段のインピーダンスの周方向変化量、あるいはアウタレースリングの局部的な共振周波数の周方向変化量を求める。そして、図21に示すような付加質量の大きさをパラメータとし、インピーダンスあるいは共振周波数の周方向変化量の差と軸受荷重との関係を表すデータベースを用いることによって軸受荷重を精度よく推定することができる。
【0052】
【発明の効果】
本発明によれば、回転機器組立時の転がり軸受の偏芯を推定することができるので、定常運転に入る前に軸受のアライメントを適正に修正することができ、回転機器の信頼性を向上させることができる。また、軸受荷重を推定することができるので、転がり軸受の寿命を推定することができ、適正な時期に交換を実施できるため、保守の失敗や過剰な保守を避けることができ、信頼性をもってかつ経済的に、回転機器の保守を行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の転がり軸受の診断装置の構成を示す図。
【図2】本発明の第1の実施の形態の転がり軸受の診断装置における軸受評価用データベースに蓄えられるデータを示す図。
【図3】ポンプとモータの軸受芯ずれが生じた軸の状態を示し、(a)は軸に平行の図、(b)は軸に垂直の図。
【図4】軸受芯ずれ時の軸受荷重を示し、(a)はポンプ軸受荷重、(b)はモータ軸受荷重の図。
【図5】付加質量取付時の状態を示し、(a)は軸の振動モードを示す図、(b)はモータ軸受荷重を示す図。
【図6】本発明の第2の実施の形態の転がり軸受の診断装置の構成を示す図。
【図7】本発明の第2の実施の形態の転がり軸受の診断装置における波形平均処理手段の動作を説明する図。
【図8】本発明の第3の実施の形態の転がり軸受の診断装置の構成を示す図。
【図9】本発明の第3の実施の形態の転がり軸受の診断装置における軸受評価用データベースに蓄えられるデータを示す図。
【図10】本発明の第4の実施の形態の転がり軸受の診断装置の構成を示す図。
【図11】本発明の第4の実施の形態の転がり軸受の診断装置の動作を説明する図。
【図12】本発明の第5の実施の形態の転がり軸受の診断装置が検出する振動波形を概念的に示す図。
【図13】本発明の第7の実施の形態の転がり軸受の診断装置の構成を示す図。
【図14】本発明の第8の実施の形態の転がり軸受の診断装置における軸受寿命データベースに蓄えられるデータを示す図。
【図15】本発明の第9の実施の形態の転がり軸受の診断装置の構成を示す図。
【図16】本発明の第10の実施の形態の転がり軸受の診断方法を説明する図。
【図17】本発明の第10の実施の形態の転がり軸受の診断方法において軸受周方向方位による共振周波数の変化を例示する図。
【図18】本発明の第10の実施の形態の転がり軸受の診断方法において軸受周方向方位による発振器インピーダンスの変化を例示する図。
【図19】本発明の第10の実施の形態の転がり軸受の診断方法においてインピーダンス変化量と軸受荷重の関係を示す図。
【図20】本発明の第10の実施の形態の転がり軸受の診断方法において共振周波数変化量と軸受荷重の関係を示す図。
【図21】本発明の第10の実施の形態の転がり軸受の診断方法において用いるデータベースに蓄えるデータを示す図。
【符号の説明】
1…モータ、2…カップリング、3…転がり軸受、4…ポンプ、5…付加質量、6…変位計、7…データ採取手段、8…データ保持手段、9…波形評価手段、10…出力手段、11…加速度計、12…軸受評価用データベース、13…条件入力手段、14…パルス計、15…波形平均処理手段、16…振動振幅評価手段、17…フィルタ、18…信号加工手段、19…周波数分析手段、20…組立状態良否判定手段、21…軸受寿命推定手段、22…軸受寿命データベース、23…運転履歴データベース、24…荷重履歴データベース、30…インナレース、31…アウタレース、32…転動体、33…軸受ハウジング、34…超音波発振器、35…正常な接触状態での共振周波数あるいはインピーダンスの状態、36…軸受芯ずれ大により転動体が接触せず正常より共振周波数が低いあるいはインピーダンスが高い状態。
[0001]
BACKGROUND OF THE INVENTION
The present invention grasps an assembly state of a shaft system of a rotating device comprising a motor that is a driving machine such as a pump and a fan and a rotor that is a driven machine and has a rolling bearing, determines whether or not it is normal, and is also a rolling bearing. The present invention relates to a diagnostic device for a rolling bearing that estimates the life of the roller .
[0002]
[Prior art]
In general, when an abnormality occurs in a bearing of a rotating device, a change often appears in the vibration generated during operation of these devices, and conventionally, a method of measuring the vibration generated by the bearing and monitoring the state is used. For rolling bearings, means have been established to measure the bearing vibration and evaluate its acceleration value, or by analyzing the frequency of the envelope of the vibration to estimate the presence or absence of scratches on the bearing and where the damage occurs. It has been put into practical use.
[0003]
On the other hand, the life of the rolling bearing is defined by the surface fatigue of the bearing race. This race surface fatigue depends on the load applied to the race surface. In the design of bearings, the magnitude of this load is calculated from the design specifications of the rotating equipment, but the bearing load changes greatly due to misalignment of the bearing in the assembled state of the rotating equipment. It has been broken.
[0004]
[Problems to be solved by the invention]
When rotating equipment is assembled with the bearing core extremely displaced, determining the quality of the assembled state is important for operating the rotating equipment soundly because the bearings reach the end of their service life quickly. . In addition, when the misalignment of the bearing is small, the life of the bearing is considerably longer than the design value, and usually the bearing is often replaced even though there is a sufficient margin for the true life.
[0005]
However, the conventional diagnostic method detects and diagnoses the sign when a bearing is damaged, and does not determine the quality of the bearing assembly state in advance, nor does it estimate the bearing life. .
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a rolling bearing diagnostic apparatus that can detect the misalignment of a bearing during assembly of a rotating device having a rolling bearing and can estimate the bearing life in an actual machine assembly state. And
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention of claim 1 is directed to an axial displacement signal associated with rotation of a rotating shaft of a rotating device comprising a motor that is a driving machine and a rotor that is a driven machine, the rotating shaft being supported by a rolling bearing. A data collecting means for collecting at least one of the acceleration signals of the bearing housing as a vibration waveform, a data holding means for holding the collected data, a spring constant of the bearing, a shaft bending amount, a cup for coupling the motor shaft and the rotor shaft A bearing evaluation database describing the ring misalignment and the amount of angular absorption, a condition input means for inputting diagnostic conditions, a command received from the condition input means, data received from the data holding means, and the coupling unit Part of the waveform is flat when additional mass is added by comparing and evaluating the difference in vibration waveform during one rotation with and without additional mass A waveform for extracting at least one of the bearing misalignment amount and the bearing load of the motor and the rotor from the difference in the length of the flat portion with reference to the bearing evaluation database by extracting the difference in the length of the formed portion The configuration includes an evaluation unit and an output unit that outputs the estimation result of the waveform evaluation unit.
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, a rotation pulse meter for extracting a rotation signal of the rotation shaft, and a plurality of one-cycle vibration waveforms from the rotation pulse to the rotation pulse are cut out and the average of the waveforms for the plurality of cycles Waveform averaging processing means for obtaining
[0009]
According to a third aspect of the present invention, there is provided at least an axial displacement signal or an acceleration signal of a bearing housing associated with rotation of a rotating shaft of a rotating device comprising a motor as a driving machine and a rotor as a driven machine and whose rotating shaft is supported by a rolling bearing. Data collecting means for collecting one of them as a vibration waveform, data holding means for holding the collected data, the spring constant of the bearing, the amount of shaft bending, and the misalignment and declination of the coupling connecting the motor shaft and the rotor shaft A database for bearing evaluation describing the amount of absorption, condition input means for inputting diagnostic conditions, and a command received from the condition input means for receiving data from the data holding means and adding an additional mass to the shaft coupling unit A vibration amplitude evaluation means for evaluating a difference in vibration amplitude when not added and estimating at least one of a bearing misalignment and a bearing load A configuration in which an output means for outputting the result of estimation of the vibration amplitude evaluation unit.
[0010]
According to a fourth aspect of the present invention, in the first or third aspect of the present invention, a bearing life database for storing data relating to the life of the rolling bearing, and a bearing life estimation means for estimating the life of the bearing from the estimated load and the bearing life database. It is set as the structure provided with.
[0011]
According to a fifth aspect of the present invention, in the invention of the fourth aspect, the bearing life database stores a life calculation formula corresponding to the type of the rolling bearing, and the bearing life estimation means has a life calculation formula corresponding to the input type. The life of the bearing is estimated based on the extracted load and the life calculation formula.
[0012]
The invention of claim 6 comprises an operation history database and a load history database according to the invention of claim 4, and the bearing life estimation means accumulates the value in the load history database every time the bearing load is inputted, The trend management is implemented and the remaining life at that time is reestimated.
[0019]
As described above, the present invention vibrates the shaft immediately after the assembly of the rotating device or adds an additional mass, evaluates the quality of the assembled state of the rotating device from its vibration characteristics, and further determines the load applied to the bearing in that state. Estimate the bearing life. Further, the quality of the bearing misalignment is judged from the shaft vibration waveform and the bearing housing vibration waveform. According to the present invention, the quality of the rotating equipment assembly state can be determined, the soundness of the rotating equipment can be ensured, and the life of the bearing can be estimated, so that the replacement period can be determined and more efficient equipment maintenance can be performed. It becomes possible.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a block diagram of a rolling bearing diagnostic apparatus according to a first embodiment of the present invention, and FIGS. 2 to 5 show the operation thereof.
[0021]
As shown in FIG. 1, it is assumed that a pump 4 supported by a rolling bearing 3 is installed at a shaft end of a motor 1 via a coupling 2. In order to detect misalignment of the rotating device configured as described above, and to evaluate the load applied to the rolling bearing 3 and estimate the life, an additional mass 5 made of a metal lump such as a nut is attached to the coupling 2. Further, a displacement meter 6 based on, for example, the eddy current principle is provided in the vicinity of the coupling 2. Then, the output signal line of the displacement meter 6 is connected to the data sampling means 7, and then the data holding means 8, the waveform evaluating means 9 and the output means 10 are connected. The waveform evaluation means 9 is connected to a bearing evaluation database 12 and a condition input means 13.
[0022]
The bearing evaluation database 12 is obtained in advance in consideration of the spring constant of the bearing, the amount of shaft bending, the misalignment of the coupling, and the amount of declination absorption. As shown in FIG. 2, the bearing evaluation database 12 uses the magnitude of the additional mass as a parameter, the difference in the length (rotation angle) of the corrugated flat portion with and without the additional mass, the amount of bearing misalignment, It shows the relationship of bearing load.
[0023]
In the rolling bearing diagnosis apparatus configured as described above, the vibration waveforms collected by the displacement meter 6 and the data collection means 7 are accumulated in the data holding means 8. When the vibration data with and without the additional mass 5 is accumulated, the waveform evaluation means 9 compares and evaluates the waveform with and without the additional mass 5 and refers to the bearing evaluation database 12. Then, the amount of bearing misalignment and the bearing load are obtained from the change amount of the vibration waveform flat portion and the diagnostic conditions such as the bearing type inputted from the condition input means 13, and output to the output means 10 such as CTR.
[0024]
Note that an accelerometer 11 attached to the bearing 3 is provided instead of the displacement meter 6 provided as the shaft vibrometer or together with the displacement meter 6 so that the vibration signal of the bearing 3 is taken into the data collection means 7. Good.
[0025]
Next, the principle of diagnosis will be described.
FIG. 3 shows an outline of the vibration mode of the rotating shaft when there is a bearing misalignment between the pump (or fan) and the motor. The pump has a slight residual unbalance, and the vibration mode of the rotating shaft takes the form shown in FIG. 3A due to the effect of unbalance and the effect of bearing misalignment. For convenience, as shown in FIG. 3B, the direction in which the motor bearing is misaligned with respect to the pump bearing is defined as the X direction, and the rotation angle when the residual unbalance of the rotor is in the X direction is 0. Define as °. Further, the discontinuous portion between the rotor shaft and the motor shaft shows absorption of the deflection angle of the rotating shaft by, for example, a flexible coupling. The solid line in FIG. 3A is the vibration mode when the residual imbalance is in the 0 ° direction, and the vibration mode is when the broken line is in the 180 ° direction.
[0026]
FIG. 4 shows a change in the rotation of the rotor in the X direction load applied to the pump bearing portion and the motor bearing portion in this case. It is assumed that the sensor is installed in the above 0 ° direction (center misalignment direction). In addition, although this figure has shown the load concerning a bearing, it shows the motion similar to this figure also about an axial vibration.
[0027]
In the pump-side bearing (FIG. 4A), the load due to the residual unbalance of the pump is indicated by a broken line in the figure. On the other hand, the load received from the coupling with the motor shaft due to the eccentricity of the bearing is represented by a one-dot chain line in the figure. The total load applied to the bearing is the sum of both, and is the solid line in the figure. As can be seen from the figure, when the shaft core is eccentric, the pump-side bearing load is crushed in the direction of 180 °, resulting in a flat portion.
[0028]
On the motor side (Fig. 4 (b)), the residual unbalance is generally very small, and the load applied to the motor bearing is only the load from the coupling due to the eccentricity of the bearing. The reverse shape.
[0029]
In this state, measure the vibration of the component twice the number of rotations caused by the bearing misalignment between the rotor and motor, and move the sensor installation direction in the circumferential direction, or measure it in any two orthogonal directions Thus, the direction in which the double component is the largest is found, and the misalignment direction of the bearing is estimated.
[0030]
Next, a method for estimating the amount of bearing misalignment or the bearing load will be described.
Consider adding a known mass to the coupling part of the motor and rotor with the sensor installed in the direction of misalignment of the bearing. FIG. 5 shows the influence of a motor-side bearing as an example. In this case, in order to prevent an excessive load from being applied to the pump-side bearing, as shown in FIG. As shown in FIG. 5B, the load due to the additional mass acts as shown by a broken line, the load applied to the motor bearing becomes as shown by a solid line, and a portion where the load becomes flat appears. Based on the relationship between the size of the added mass and the length (rotation angle) of the flat portion, the bearing misalignment amount and the bearing load are estimated with reference to a previously obtained bearing evaluation database.
[0031]
A second embodiment of the present invention is shown in FIG. Here, illustration of the motor 1, the bearing 3, etc. is omitted. This embodiment includes a rotation pulse meter 14 and a waveform average processing means 15 in addition to the first embodiment. As shown in FIG. 7, the waveform averaging processing means 15 cuts out a plurality of waveforms of one cycle from the rotation pulse to the rotation pulse with respect to the collected vibration waveform, and performs average processing of the cut-out waveforms for the plurality of cycles, This is output to the waveform evaluation means 9. In the present embodiment, the influence of minute disturbances can be eliminated by performing an averaging process on the vibration waveform, and the estimation accuracy can be increased.
[0032]
A third embodiment of the present invention is shown in FIG. In the present embodiment, vibration amplitude evaluation means 16 is provided in place of the waveform evaluation means 9 in the first embodiment, and this vibration amplitude evaluation means 16 is provided when there is no additional mass 5. Based on the difference in vibration value (crest value), the amount of bearing misalignment and the bearing load are estimated. In the third embodiment, as shown in FIG. 9, the bearing evaluation database 12 shows the relationship between the vibration value change amount, the bearing misalignment amount, and the bearing load, with the additional mass as a parameter.
[0033]
A fourth embodiment of the present invention is shown in FIG. The present embodiment includes a filter 17, a signal processing means 18, a frequency analysis means 19, and an assembly state quality determination means 20. In this embodiment, diagnosis is performed without adding an additional mass. In the present embodiment, data collected by a shaft vibrometer such as the displacement meter 6 can be processed by the signal processing means 18 to extract features more accurately and determine the presence or absence of misalignment. The filter 17 removes harmonics having a frequency that is at least three times the rotational frequency from the vibration wave.
[0034]
The operation of the signal processing means 18 will be described with reference to FIG. As described above, when the bearing is misaligned, the waveform reaches a peak. As shown in FIG. 11, the signal processing means 18 separates the collected waveform into a positive (+) side and a negative (−) side with 0 as a reference. Next, for the positive (+) signal, only the positive signal is obtained by inverting the sign of the positive signal and synthesizing the waveform with the phase shifted by 180 degrees in the portion from which the negative signal has been removed. Form a waveform. Similar processing is performed on the negative side to form a waveform only on the negative side. By this action, as shown in the figure, the waveform can be separated into a waveform with a non-flat head and a waveform with a flat head.
[0035]
The frequency analysis means 19 performs frequency analysis on the positive and negative waveforms thus formed, calculates a vibration spectrum, and a vibration component synchronized with the rotation and a vibration component twice the number of rotations. To extract.
[0036]
The assembly state pass / fail determination means 20 performs a comparison between the positive side and the negative side for each of the rotational component and the component twice the rotational speed, respectively, and determines the presence or absence of misalignment. When the head of the vibration waveform becomes flat, the component twice the number of rotations becomes large and the rotation component becomes somewhat small. Therefore, if these differences are large, it is determined that the misalignment amount is large.
[0037]
The fifth embodiment relates to processing of signals collected by an axial vibration meter such as the displacement meter 6. Although it is the same as that of the fourth embodiment, the waveform of the axial vibrometer is not necessarily centered on zero. Therefore, as shown in FIG. 12, the signal processing means 18 calculates the average value of the signal, separates the signal into a value larger (larger side) and a smaller value (smaller side) than the average value, and the fourth embodiment will be described below. The same processing as in the embodiment is performed.
[0038]
In the sixth embodiment, the filter, signal processing means, and frequency analysis means shown in the fourth or fifth embodiment are further provided in the third embodiment. . In this way, it is possible to perform estimation with higher accuracy than focusing only on the vibration amplitude value.
[0039]
As shown in FIG. 13, the seventh embodiment includes a bearing life estimation means 21 and a bearing life database 22 in addition to the first embodiment, and estimates the bearing life.
[0040]
The life of a bearing is usually defined by the time when fatigue separation occurs in the inner race or outer race of the bearing. The generation time L is L = a (c / P) n where P is the load applied to the bearing.
There is a relationship. Here, a, c, and n are constants determined by the model including the size and material of the bearing.
[0041]
The bearing life database 22 describes the values of a, c, and n described above, and the bearing life estimation means 21 refers to the bearing life database 22 based on the estimated load P to generate fatigue peeling. The time L, that is, the life of the bearing is estimated.
[0042]
In the eighth embodiment, the structure of the bearing life database in the seventh embodiment is improved. That is, in the bearing life database in this embodiment, as shown in FIG. 14, the above a, c, n are described for each bearing type. The bearing life estimation means extracts a life calculation formula corresponding to the input model from the database, and estimates the bearing life using the estimated load value.
[0043]
As shown in FIG. 15, the ninth embodiment includes an operation history database 23 and a load history database 24 in addition to the seventh or eighth embodiment. Each time the bearing load is estimated, the load value is accumulated in the load history database 24, and the operation history and load history of the device are accumulated to manage the trend, and the remaining life at that time is estimated.
[0044]
Next, a tenth embodiment of the present invention will be described with reference to FIGS. In this embodiment, the diagnosis of the bearing is performed using ultrasonic vibration means.
The rolling bearing 3 includes an inner race 30 and an outer race 31, a ball or roller rolling element 32 fitted between the inner race 30 and the outer race 31, and a bearing housing 33 that holds the outer race 31. From the outer periphery of the bearing housing 33, the outer race 31 of the bearing is resonantly vibrated in the local radial direction within the support interval of the rolling elements 32 by using an ultrasonic oscillator 34 or an electrodynamic exciter. This frequency is several tens of kHz, but can be vibrated during operation or while stopped.
[0045]
When the bearing misalignment between the rotor and motor is large and the bearing load is large, as shown in the right half of FIG. 16, there is a circumferential range where there is no bearing load, and the outer race 31 and the rolling element 32 do not contact each other. As a result, the resonance frequency is remarkably lowered in the local radial direction within the support interval of the rolling elements 32 of the outer race 31. Using this characteristic, the oscillator is moved along the circumferential direction from the outer periphery of the bearing housing 33 at the resonance frequency in a normal contact state of the rolling element, and the circumferential distribution of the impedance is measured.
[0046]
FIGS. 17 (b) and 18 (b) are graphs illustrating changes in the resonance frequency and changes in the oscillator impedance depending on the bearing circumferential direction, respectively. The azimuth angles in each figure are shown in FIGS. 17 (a) and 18 respectively. This corresponds to the azimuth angle shown in (a).
[0047]
As shown in FIG. 17, the resonance frequency in the local radial direction within the support interval between the outer race 31 and the rolling element 32 where the outer race 31 and the rolling element 32 do not contact is remarkably low and does not match the excitation frequency. Thus, the impedance in this direction becomes large. The opposite direction of this direction can be estimated as the bearing misalignment direction.
[0048]
Similarly to the above, by changing the excitation frequency of the oscillator, the circumferential distribution of the resonance frequency in the local radial direction within the support interval of the rolling elements 32 of the outer race 31 along the circumferential direction from the outer periphery of the bearing housing 33 is obtained. When measured, it can be estimated from FIG. 17 that an orientation with a high resonance frequency is an orientation with a large bearing load.
[0049]
In addition, as shown in FIG. 19, if a database showing the relationship between the amount of change in the circumferential direction of the impedance and the size of the bearing load is created, the measured impedance magnitude can be obtained by using the database. From this, the bearing load can be estimated.
[0050]
Further, if a database representing the relationship between the amount of change in the resonance frequency along the circumferential direction and the size of the bearing load is created as shown in FIG. 20, by using the database, from the measured frequency difference, Bearing load can be estimated.
[0051]
In order to estimate the bearing load more accurately, during operation, an additional mass of a known mass is added to the shaft coupling between the rotor and the motor, and the bearing outer race is applied using the ultrasonic vibration means of the bearing housing. The ring radial direction is locally excited, and the amount of change in the circumferential direction of the impedance of the ultrasonic vibration means at that time or the amount of change in the circumferential direction of the local resonance frequency of the outer race ring is obtained. Then, it is possible to accurately estimate the bearing load by using a database representing the relationship between the difference in the circumferential direction change amount of the impedance or the resonance frequency and the bearing load, using the size of the additional mass as shown in FIG. 21 as a parameter. it can.
[0052]
【The invention's effect】
According to the present invention, the eccentricity of the rolling bearing at the time of assembling the rotating device can be estimated, so that the alignment of the bearing can be properly corrected before entering the steady operation, and the reliability of the rotating device is improved. be able to. In addition, since the bearing load can be estimated, the life of the rolling bearing can be estimated, and replacement can be performed at an appropriate time, so that maintenance failure and excessive maintenance can be avoided, and reliability can be ensured. Economically, maintenance of rotating equipment can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a rolling bearing diagnostic apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram showing data stored in a bearing evaluation database in the rolling bearing diagnostic apparatus according to the first embodiment of the present invention.
FIGS. 3A and 3B show a state of a shaft in which a shaft misalignment occurs between the pump and the motor, where FIG. 3A is a view parallel to the shaft, and FIG.
FIGS. 4A and 4B show bearing loads when a bearing center is displaced, FIG. 4A is a pump bearing load, and FIG. 4B is a motor bearing load.
FIGS. 5A and 5B show a state when an additional mass is attached, where FIG. 5A shows a shaft vibration mode, and FIG. 5B shows a motor bearing load;
FIG. 6 is a diagram showing a configuration of a rolling bearing diagnostic apparatus according to a second embodiment of the present invention.
FIG. 7 is a view for explaining the operation of the waveform averaging processing means in the rolling bearing diagnostic apparatus according to the second embodiment of the present invention.
FIG. 8 is a diagram showing a configuration of a rolling bearing diagnostic apparatus according to a third embodiment of the present invention.
FIG. 9 is a diagram showing data stored in a bearing evaluation database in the rolling bearing diagnostic apparatus according to the third embodiment of the present invention.
FIG. 10 is a diagram showing a configuration of a rolling bearing diagnostic apparatus according to a fourth embodiment of the present invention.
FIG. 11 is a diagram for explaining the operation of the rolling bearing diagnostic apparatus according to the fourth embodiment of the present invention.
FIG. 12 is a diagram conceptually showing a vibration waveform detected by a rolling bearing diagnostic apparatus according to a fifth embodiment of the present invention.
FIG. 13 is a diagram showing a configuration of a rolling bearing diagnostic apparatus according to a seventh embodiment of the present invention.
FIG. 14 is a diagram showing data stored in a bearing life database in the rolling bearing diagnostic apparatus according to the eighth embodiment of the present invention.
FIG. 15 is a diagram showing a configuration of a rolling bearing diagnostic apparatus according to a ninth embodiment of the present invention.
FIG. 16 is a diagram for explaining a rolling bearing diagnosis method according to a tenth embodiment of the present invention;
FIG. 17 is a diagram exemplifying a change in resonance frequency depending on the bearing circumferential direction orientation in the rolling bearing diagnosis method according to the tenth embodiment of the present invention;
FIG. 18 is a diagram exemplifying changes in oscillator impedance due to bearing circumferential direction orientation in the rolling bearing diagnostic method according to the tenth embodiment of the present invention;
FIG. 19 is a diagram showing a relationship between an impedance change amount and a bearing load in the rolling bearing diagnosis method according to the tenth embodiment of the present invention.
FIG. 20 is a diagram showing the relationship between the amount of change in resonance frequency and the bearing load in the rolling bearing diagnosis method according to the tenth embodiment of the present invention.
FIG. 21 is a diagram showing data stored in a database used in the rolling bearing diagnosis method according to the tenth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Coupling, 3 ... Rolling bearing, 4 ... Pump, 5 ... Additional mass, 6 ... Displacement meter, 7 ... Data collection means, 8 ... Data holding means, 9 ... Waveform evaluation means, 10 ... Output means , 11 ... Accelerometer, 12 ... Bearing evaluation database, 13 ... Condition input means, 14 ... Pulse meter, 15 ... Waveform averaging means, 16 ... Vibration amplitude evaluation means, 17 ... Filter, 18 ... Signal processing means, 19 ... Frequency analysis means, 20 ... Assembly state pass / fail judgment means, 21 ... Bearing life estimation means, 22 ... Bearing life database, 23 ... Operation history database, 24 ... Load history database, 30 ... Inner race, 31 ... Outer race, 32 ... Rolling element 33 ... Bearing housing, 34 ... Ultrasonic oscillator, 35 ... State of resonance frequency or impedance in normal contact state, 36 ... Rolling element does not contact due to large bearing misalignment, resonance frequency is lower than normal or impeder Vinegar high state.

Claims (6)

駆動機であるモータと被駆動機であるロータからなり回転軸が転がり軸受によって支持された回転機器の回転軸の回転に伴う軸変位信号あるいは軸受ハウジングの加速度信号の少なくともいずれか一方を振動波形として採取するデータ採取手段と、採取したデータを保持するデータ保持手段と、軸受のばね定数、軸曲り量、モータ軸とロータ軸を結合するカップリングの芯ずれ及び偏角吸収量を記載した軸受評価用データベースと、診断条件を入力する条件入力手段と、この条件入力手段から指令を受け前記データ保持手段からデータを受けて前記カップリング部に付加質量を付加した場合と付加しない場合の一回転中の振動波形の差を比較評価して付加質量を付加した場合に波形の一部が平坦になっている部分の長さの差を抽出し前記軸受評価用データベースを参照して前記平坦部分の長さの差からモータとロータの軸受芯ずれ量及び軸受荷重の少なくともいずれか一方を推定する波形評価手段と、この波形評価手段の推定の結果を出力する出力手段とを備えたことを特徴とする転がり軸受の診断装置。  As a vibration waveform, at least one of an axial displacement signal and an acceleration signal of the bearing housing associated with the rotation of the rotating shaft of a rotating device that includes a motor as a driving machine and a rotor as a driven machine and whose rotating shaft is supported by a rolling bearing is used. Data collection means for collecting, data holding means for holding collected data, bearing evaluation describing the spring constant of the bearing, the amount of shaft bending, the misalignment of the coupling connecting the motor shaft and the rotor shaft, and the amount of declination absorption Database, condition input means for inputting diagnostic conditions, and one rotation in the case of adding an additional mass to the coupling unit when receiving a command from the condition input means and receiving data from the data holding means When the difference in vibration waveform is compared and the additional mass is added, the difference in length of the portion where the waveform is flat is extracted and the bearing is extracted. A waveform evaluation unit that estimates at least one of the bearing misalignment amount and the bearing load of the motor and the rotor from the difference in length of the flat portion with reference to the price database, and outputs the estimation result of the waveform evaluation unit A rolling bearing diagnostic device, comprising: 回転軸の回転信号を取り出す回転パルス計と、回転パルスから回転パルスまでの1周期の振動波形を複数個切出しこの複数周期分の波形の平均を求める波形平均処理手段とを備えたことを特徴とする請求項1記載の転がり軸受の診断装置。  A rotation pulse meter for extracting a rotation signal of the rotation shaft, and a waveform averaging processing means for cutting out a plurality of vibration waveforms of one cycle from the rotation pulse to the rotation pulse and calculating an average of the waveforms for the plurality of cycles. The rolling bearing diagnostic device according to claim 1. 駆動機であるモータと被駆動機であるロータからなり回転軸が転がり軸受によって支持された回転機器の回転軸の回転に伴う軸変位信号あるいは軸受ハウジングの加速度信号の少なくともいずれか一方を振動波形として採取するデータ採取手段と、採取したデータを保持するデータ保持手段と、軸受のばね定数、軸曲り量、モータ軸とロータ軸を結合するカップリングの芯ずれ及び偏角吸収量を記載した軸受評価用データベースと、診断条件を入力する条件入力手段と、この条件入力手段から指令を受け前記データ保持手段からデータを受けて前記軸カップリング部に付加質量を付加した場合と付加しない場合の振動振幅の差を評価して軸受芯ずれ量及び軸受荷重の少なくともいずれか一方を推定する振動振幅評価手段と、この振動振幅評価手段の推定の結果を出力する出力手段とを備えたことを特徴とする転がり軸受の診断装置。  As a vibration waveform, at least one of an axial displacement signal and an acceleration signal of the bearing housing associated with the rotation of the rotating shaft of a rotating device that includes a motor as a driving machine and a rotor as a driven machine and whose rotating shaft is supported by a rolling bearing is used. Data collection means for collecting, data holding means for holding collected data, bearing evaluation describing the spring constant of the bearing, the amount of shaft bending, the misalignment of the coupling connecting the motor shaft and the rotor shaft, and the amount of declination absorption Database, condition input means for inputting diagnostic conditions, vibration amplitude when the command is received from the condition input means and data is received from the data holding means and when additional mass is added to the shaft coupling unit Vibration amplitude evaluation means for evaluating the difference between the bearings and estimating at least one of the bearing misalignment amount and the bearing load, and the vibration amplitude evaluation Diagnostic device of a rolling bearing, characterized in that an output means for outputting the results of the stage of estimation. 転がり軸受の寿命に関するデータを格納する軸受寿命データベースと、推定された荷重とこの軸受寿命データベースから軸受の寿命を推定する軸受寿命推定手段とを備えたことを特徴とする請求項1または3記載の転がり軸受の診断装置。  4. A bearing life database for storing data relating to the life of the rolling bearing, and a bearing life estimation means for estimating the life of the bearing from the estimated load and the bearing life database. A diagnostic device for rolling bearings. 軸受寿命データベースは、転がり軸受の型式に応じた寿命算定式を格納し、軸受寿命推定手段は、入力された型式に該当する寿命算定式を抽出し、推定された荷重と前記寿命算定式から軸受の寿命を推定することを特徴とする請求項4記載の転がり軸受の診断装置。  The bearing life database stores the life calculation formula corresponding to the type of rolling bearing, and the bearing life estimation means extracts the life calculation formula corresponding to the input type, and the bearing is calculated from the estimated load and the life calculation formula. The rolling bearing diagnosis apparatus according to claim 4, wherein the life of the rolling bearing is estimated. 運転履歴データベース及び荷重履歴データベースを備え、軸受寿命推定手段は軸受荷重を入力される毎に、その値を前記荷重履歴データベースに蓄積し、その傾向管理を実施するとともに、その時点の余寿命を再推定することを特徴とする請求項4記載の転がり軸受の診断装置。  An operation history database and a load history database are provided, and the bearing life estimation means accumulates the value in the load history database every time a bearing load is input, manages its tendency, and restores the remaining life at that time. The rolling bearing diagnosis apparatus according to claim 4, wherein the rolling bearing diagnosis apparatus estimates the rolling bearing.
JP30893599A 1999-10-29 1999-10-29 Rolling bearing diagnostic device Expired - Fee Related JP3827896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30893599A JP3827896B2 (en) 1999-10-29 1999-10-29 Rolling bearing diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30893599A JP3827896B2 (en) 1999-10-29 1999-10-29 Rolling bearing diagnostic device

Publications (2)

Publication Number Publication Date
JP2001124665A JP2001124665A (en) 2001-05-11
JP3827896B2 true JP3827896B2 (en) 2006-09-27

Family

ID=17987051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30893599A Expired - Fee Related JP3827896B2 (en) 1999-10-29 1999-10-29 Rolling bearing diagnostic device

Country Status (1)

Country Link
JP (1) JP3827896B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3880455B2 (en) 2002-05-31 2007-02-14 中国電力株式会社 Rolling bearing remaining life diagnosis method and remaining life diagnosis apparatus
JP3875981B2 (en) * 2004-03-17 2007-01-31 新日本製鐵株式会社 Anomaly diagnosis method and apparatus for rolling bearing
JP4929810B2 (en) * 2006-04-17 2012-05-09 日本精工株式会社 Abnormality diagnosis apparatus and abnormality diagnosis method
JP4491432B2 (en) * 2006-05-22 2010-06-30 日立Geニュークリア・エナジー株式会社 Axis inclination information acquisition method and axial vibration suppression method for nuclear reactor coolant recirculation pump
DE102006025626A1 (en) * 2006-06-01 2007-12-06 Schaeffler Kg Procedure for rolling bearing diagnosis
KR100954063B1 (en) 2008-05-19 2010-04-20 충북대학교 산학협력단 Dynamic Characteristic Analysis Device Of Superspeed Air Bearing Spindle
WO2017145222A1 (en) * 2016-02-22 2017-08-31 株式会社日立製作所 Bearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system
JP6499611B2 (en) 2016-04-21 2019-04-10 ファナック株式会社 Control device and abnormality diagnosis device
CN106370294A (en) * 2016-11-21 2017-02-01 国网浙江省电力公司温州供电公司 Galloping monitoring system and galloping monitoring method for high-voltage transmission lines
CN108106847B (en) * 2018-02-28 2024-04-30 西安科技大学 Water lubrication rubber bearing performance test bench and test method thereof
WO2020209361A1 (en) * 2019-04-12 2020-10-15 株式会社サタケ Operation monitoring system for sieving device
CN110132581A (en) * 2019-06-27 2019-08-16 三一重能有限公司 A kind of shaft coupling slipping monitoring system and method
CN114577468B (en) * 2022-03-03 2023-08-18 潍柴动力股份有限公司 Method and system for detecting failure of elastic coupling under dynamic cylinder breaking of engine

Also Published As

Publication number Publication date
JP2001124665A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
JP3827896B2 (en) Rolling bearing diagnostic device
CN109488630B (en) Centrifugal fan rotor misalignment fault diagnosis method based on harmonic relative index
CN101266197B (en) Method of detecting damage to an antifriction bearing of a motor
CN100504337C (en) Method and device for detecting centrifugal pump fault
KR102393095B1 (en) A system for predicting and diagnosing malfunctions in rotating equipment based on artificial intelligence using vibration, sound, and image data
EP1451540B1 (en) Cyclic time averaging for machine monitoring
JP3278452B2 (en) Adjustment support device for connecting the rotating body
US20190195733A1 (en) Strain Based Systems and Methods for Performance Measurement and/or Malfunction Detection of Rotating Machinery
CN101430239B (en) Real-time diagnosis method for oil film whirl fault of large steam turbine-generator
JP4767148B2 (en) Rolling bearing remaining life diagnosis method using normal database, remaining life diagnosis system, and computer program used for remaining life diagnosis
JP2016090546A (en) Current diagnostic device and current diagnostic method
Trajin et al. Comparison between vibration and stator current analysis for the detection of bearing faults in asynchronous drives
US20170097323A1 (en) System and method for detecting defects in stationary components of rotary machines
RU2395068C2 (en) Method of diagnostics of turbo machine impeller
JP4608564B2 (en) Abnormality diagnosis method for low-speed rotating machinery
CN111044277A (en) Fault diagnosis system and method for pump station unit
KR102068077B1 (en) A Diagnosis Apparatus For Rotating Machinery Using Complex Signals
EP3055661B1 (en) A method for determining current eccentricity of rotating rotor and method of diagnostics of eccentricity of rotating rotor
RU2451279C1 (en) Method of diagnosing resonance vibrations in axial turbomachine impeller vanes
CN114018480A (en) Real-time diagnosis method for rotor unbalance fault of large-scale rotating machinery
JP2020143934A (en) Bearing information analyzer and bearing information analysis method
JP4253104B2 (en) Abnormal diagnosis method for rotating machinery
Sopcik et al. How sensor performance enables condition-based monitoring solutions
JP2572530B2 (en) Vibration spectrum monitoring device, and health monitoring method and device
Naldi et al. New approach to torsional vibration monitoring

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Ref document number: 3827896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees