JP2001330436A - Surveying method for three-dimensional coordinates on floating-body structure - Google Patents

Surveying method for three-dimensional coordinates on floating-body structure

Info

Publication number
JP2001330436A
JP2001330436A JP2000150237A JP2000150237A JP2001330436A JP 2001330436 A JP2001330436 A JP 2001330436A JP 2000150237 A JP2000150237 A JP 2000150237A JP 2000150237 A JP2000150237 A JP 2000150237A JP 2001330436 A JP2001330436 A JP 2001330436A
Authority
JP
Japan
Prior art keywords
floating structure
total station
dimensional coordinates
surveying
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000150237A
Other languages
Japanese (ja)
Other versions
JP3492598B2 (en
Inventor
Tatsuro Shimizu
達郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2000150237A priority Critical patent/JP3492598B2/en
Publication of JP2001330436A publication Critical patent/JP2001330436A/en
Application granted granted Critical
Publication of JP3492598B2 publication Critical patent/JP3492598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surveying method, for three-dimensional coordinates on a floating-body structure, in which a surveying tower or the like can be installed on the floating-body structure economically and with good accuracy. SOLUTION: A total station 3 is installed on the surface 1A of the floating- body structure 1 which floats on water, and a correlation between the collimation face 3A of the total station 3 and the surface 1A of the structure 1 is found. By the total station 3, a distance up to an installation object (a reception part 5a) installed on the surface 1A of the structure 1 from the total station 3 and its angle are measured. The three-dimensional coordinates which use the collimation face 3A of the total station 3 of the installation object 5a as a reference are found. On the basis of the correlation between the collimation face 3A of the total station 3 and the surface 1A of the structure 1, the three- dimensional coordinates which use the surface 1A of the structure 1 as a reference is obtained, and the installation accuracy of the installation object 5a is confirmed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浮体構造物上にお
ける三次元座標の測量方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring three-dimensional coordinates on a floating structure.

【0002】[0002]

【従来の技術】水中に沈設する沈埋トンネルやケーソン
等の沈埋函の位置決め測量には、いくつかの方法が用い
られているが、一般的には、図5に示すように、沈埋函
51上に設置した測量塔52を陸上から誘導する方法
と、水中で沈埋函51接合部の相対的な位置をソナーや
ダイバー53にて確認する方法とが併用されている。沈
埋函の位置決め測量に関して、GPS(global positio
ning system)や自動追尾式トータルステーションを用
いたリアルタイム測量を行う場合、目標となる構造物
(沈埋函)の座標は、特開平10−280499号公報
の図1に示されるように構造物上に設置されたGPS受
信アンテナもしくは全方向性のプリズム等の受信部を設
置したタワー(測量塔)によってあらわされる。その際
に、あらかじめ構造物の座標とGPS受信アンテナもし
くは測量塔の座標との位置関係を把握しておく必要があ
る。
2. Description of the Related Art Several methods are used for positioning and measuring a submerged box such as a submerged tunnel or caisson submerged in water. In general, as shown in FIG. The method of guiding the survey tower 52 installed on the ground from the land and the method of confirming the relative position of the junction of the buried box 51 in the water with a sonar or a diver 53 are used in combination. GPS (global positio)
In the case of performing real-time surveying using an automatic tracking type total station, the coordinates of the target structure (submerged box) are set on the structure as shown in FIG. 1 of JP-A-10-280499. It is represented by a tower (surveying tower) provided with a receiving unit such as a GPS receiving antenna or an omnidirectional prism. At that time, it is necessary to grasp in advance the positional relationship between the coordinates of the structure and the coordinates of the GPS receiving antenna or the survey tower.

【0003】このアンテナや測量塔の構造物への設置
を、構造物を水上に浮かべる前に行うことができる場合
は、地上で構造物と受信部(アンテナまたは測量塔)の
座標を測定して相互の位置関係を把握すれば良いが、構
造物を水上に浮かべた後に受信部を設置する必要がある
場合は、水上に浮いている構造物(浮体構造物)上で受
信部の三次元座標を確認する必要がある。このような場
合、水上で受信部を設置した後に巻尺で設置精度を確認
する等の方法が行われており、正確な測量が行えなかっ
た。また、受信部を設置する測量塔の高さが高くなるほ
ど誤差が大きくなり、その結果、受信部の座標と構造物
との相対座標との誤差が位置決め測量の誤差となって生
じることとなる。
If the antenna and the survey tower can be installed on the structure before the structure is floated on the water, the coordinates of the structure and the receiving unit (antenna or survey tower) are measured on the ground. It is sufficient to grasp the mutual positional relationship, but if it is necessary to install the receiver after floating the structure on the water, the three-dimensional coordinates of the receiver on the structure floating on the water (floating structure) Need to check. In such a case, methods such as checking the installation accuracy with a tape measure after installing the receiving unit on the water have been performed, and accurate surveying could not be performed. In addition, the error increases as the height of the surveying tower in which the receiving unit is installed increases. As a result, an error between the coordinates of the receiving unit and the relative coordinates of the structure becomes an error in the positioning survey.

【0004】沈埋函上に設置した測量塔を陸上から誘導
する測量では、図6に示すように、陸上測量で得られた
測量塔上部のプリズム61の三次元座標のうち、X,Y
座標が水中で計画勾配に保たれた沈埋函上部の基準点6
2のX,Y座標と一致しているとして水中における沈埋
函の三次元座標(例えば沈埋函端部63の三次元座標)
を算出するため、沈埋函と測量塔に設置したプリズムな
どの目標物との相対的な位置関係の精度の善し悪しが、
位置決め測量の精度を決定付けることになる。
In surveying in which a survey tower installed on a submerged box is guided from the land, as shown in FIG. 6, of the three-dimensional coordinates of the prism 61 above the survey tower obtained by land survey, X, Y
Reference point 6 in the upper part of the submerged box with coordinates maintained at the planned slope in water
The three-dimensional coordinates of the immersed box in water (eg, the three-dimensional coordinates of the immersed box end 63) assuming that they match the X, Y coordinates of 2
To calculate the accuracy of the relative positional relationship between the submerged box and the target such as the prism installed in the survey tower,
The accuracy of the positioning survey will be determined.

【0005】[0005]

【発明が解決しようとする課題】従来、沈埋函の位置決
め測量は、沈設する函体の後方の位置を確認するのみで
あることが多く、測量塔も沈埋函後方に一基のみを設置
する場合が多い。この場合の測量塔上部のプリズム座標
値と沈埋函の座標値との照合は以下のような方法で行う
ことが一般的である。
Conventionally, positioning and surveying of a submerged box is often performed only by confirming the position behind the submerged box, and the surveying tower is also provided with only one unit installed behind the submerged box. There are many. In this case, the collation of the prism coordinate value of the upper part of the survey tower with the coordinate value of the submerged box is generally performed by the following method.

【0006】函体製作時に全ての沈埋函に測量塔を設
置しておく方法 沈埋函の個数が少ない場合には、図7に示すように、函
体(沈埋函)製作時にドライドック71にて、予め全て
の函体(沈埋函)72に測量塔73を設置しておき、沈
埋函72を水上に浮かべる前にプリズム(図示省略)の
位置を決定していた。この方法によれば、沈埋函72と
測量塔73の関係は陸上で確認できるために精度良く測
量できるが、全函体分の測量塔73が必要になり不経済
である。また、工事現場が空港に近いなど、曳航時に高
度制限がある場合には一時的に測量塔73を撤去しなく
てはならないため、沈設地点で再度測量塔73を設置す
る場合の確認測量が必要である。
Method of installing surveying towers in all buried boxes at the time of box production When the number of buried boxes is small, as shown in FIG. A survey tower 73 was previously installed on all the boxes (submerged boxes) 72, and the position of the prism (not shown) was determined before floating the submerged boxes 72 on water. According to this method, the relationship between the submerged box 72 and the surveying tower 73 can be confirmed on land, so that the surveying can be performed with high accuracy. However, the surveying tower 73 for the entire body is required, which is uneconomical. In addition, if the altitude is restricted during towing, such as when the construction site is near the airport, the survey tower 73 must be temporarily removed, so confirmation surveying is required when the survey tower 73 is installed again at the sinking point. It is.

【0007】測量塔をアクセスシャフトと兼用し、測
量塔上部から沈埋函内へ下げ振りをたらす方法 沈埋函81上に設置する測量塔82をアクセスシャフト
と兼用し、沈設中にも沈設函81内に人が立ち入り、測
量塔82上部からた下げ振り83と沈埋函81の下床版
84上に設けた測量基準点85との対比が行えるように
している(図8参照)。この方法では、沈埋函81上部
に漏水の原因となりやすいアクセスシャフトを設置しな
ければならないことや、沈設時に沈埋函81内へ人が立
ち入る必要が有るため沈設作業を無人化することができ
ないことが問題となっている。また、沈設深さが深い場
合にはアクセスシャフトの高さも高くなるので、沈設時
の沈埋函81の動揺により下げ振り83が静止しない等
の問題がある。また、前述したの場合と同様に曳航・
沈設地点に高度制限がある場合は、アクセスシャフトを
部分的に一時的に撤去しなければならない。
A method in which the surveying tower is also used as an access shaft and the swing is lowered from the upper part of the surveying tower into the submerged box, and the surveying tower 82 installed on the submerged box 81 is also used as the access shaft. Then, a person can enter to make a comparison between the down swing 83 from the upper part of the survey tower 82 and the survey reference point 85 provided on the lower floor plate 84 of the submerged box 81 (see FIG. 8). In this method, it is necessary to install an access shaft which is likely to cause water leakage at the upper part of the submerged box 81, and it is necessary to enter the submerged box 81 at the time of submerging, so that the submerging operation cannot be unmanned. It is a problem. In addition, when the burial depth is large, the height of the access shaft also becomes high. Therefore, there is a problem that the swinging of the burial box 81 at the time of burial does not cause the swing down 83 to stop. In addition, as described above,
If the sinking point has altitude restrictions, the access shaft must be partially and temporarily removed.

【0008】測量塔を設置した後に設置精度を巻尺で
確認する方法 測量塔92は設置する沈埋函91毎に水上にて設置する
が、設置精度の確認は、図9に示すように、沈埋函91
上にあらかじめ設置しておいた基準点93から巻尺(図
示省略)で確認する。測量塔92は各沈埋函91の沈設
ごとに設置するため、最低一組製作すれば良いが、各沈
埋函91の縦横断勾配にあわせて測量塔92を傾けなけ
ればならないため、設置作業には巻尺で最低2側線の寸
法を確認しながら微調整を行わなければならず、微調整
が困難である。
Method of Checking the Installation Accuracy by Tape Measure After Installing Surveying Tower The surveying tower 92 is installed on the water for each submerged box 91 to be installed, but the installation accuracy is checked as shown in FIG. 91
It is confirmed with a tape measure (not shown) from the reference point 93 previously set on the upper side. At least one set of the surveying tower 92 is required to be installed for each submerged box 91, but the surveying tower 92 must be tilted in accordance with the vertical and horizontal gradient of each submerged box 91. Fine adjustment must be performed while checking the dimensions of at least two side lines with a tape measure, and fine adjustment is difficult.

【0009】本発明の課題は、浮体構造物上に測量塔等
を経済的に精度よく設置するために、浮体構造物上にお
ける三次元座標の測量方法を提供することである。
An object of the present invention is to provide a method of measuring three-dimensional coordinates on a floating structure in order to economically install a survey tower or the like on the floating structure.

【0010】[0010]

【課題を解決するための手段】以上の課題を解決すべく
請求項1記載の発明は、例えば図4に示すように、水に
浮かべた浮体構造物(1)上面(1A)に測量器(例え
ばトータルステーション3)を設置し、前記測量器によ
って、前記測量器から前記浮体構造物上面に設置した設
置物(例えば受信部5a)までの距離及び角度を測定す
ることを特徴としている。
According to the first aspect of the present invention, as shown in FIG. 4, for example, as shown in FIG. 4, a surveying instrument (1) is provided on the upper surface (1A) of a floating structure (1) floating on water. For example, a total station 3) is installed, and a distance and an angle from the surveying instrument to an installation object (for example, the receiving unit 5a) installed on the upper surface of the floating structure are measured by the surveying instrument.

【0011】ここで測量器とは、測量器に対する設置物
の水平角、鉛直角、距離等を測定するものであり、例え
ばトータルステーション等が挙げられる。トータルステ
ーションとは、光波測距儀とトランシットとが一体化し
た物である。光波測距儀とは2点間(光波測距儀から対
象物まで)を光波が往復する時間を測定して2点間の距
離を求めるものであり、トランシットはトランシットに
対する対象物の水平角及び鉛直角を求めるものであり、
これらを一体化したトータルステーションは単体でトー
タルステーションに対する対象物(設置物)の水平角、
鉛直角、距離等を測定することができるものである。
Here, the surveying instrument measures a horizontal angle, a vertical angle, a distance, and the like of an installed object with respect to the surveying instrument, and includes, for example, a total station. A total station is an integrated lightwave rangefinder and transit. The lightwave ranging device measures the time required for a lightwave to reciprocate between two points (from the lightwave ranging device to the object) to determine the distance between the two points, and the transit indicates the horizontal angle of the object relative to the transit and To determine the vertical angle,
The total station that integrates them is a single unit, the horizontal angle of the object (installed object) with respect to the total station,
It can measure vertical angle, distance, etc.

【0012】請求項1記載の発明によれば、設置物を設
置した浮体構造物上に測量器を設置したことにより、設
置物と同一の構造物上にあるので、浮遊していることに
よって生じる浮体構造物の動揺に影響されることなく、
測量器によって測量器と設置物との距離及び角度を正確
に測定することができる。
According to the first aspect of the invention, since the surveying instrument is installed on the floating structure on which the installation object is installed, the surveying instrument is on the same structure as the installation object. Without being affected by the movement of the floating structure,
The distance and the angle between the surveying instrument and the installation object can be accurately measured by the surveying instrument.

【0013】請求項2記載の発明は、請求項1記載の浮
体構造物上における三次元座標の測量方法であって、前
記測量器の視準面(3A)と、前記浮体構造物上面との
相互関係を求め、前記測量器によって測定した前記測量
器から設置物までの距離及び角度から算出した前記設置
物の測量器視準面を基準とした三次元座標を、前記浮体
構造物の上面を基準とした三次元座標に変換することを
特徴としている。
According to a second aspect of the present invention, there is provided a method for measuring three-dimensional coordinates on a floating structure according to the first aspect, wherein a collimation plane (3A) of the surveying instrument and an upper surface of the floating structure are arranged. Obtain the mutual relationship, the three-dimensional coordinates based on the surveying instrument collimation plane of the installation object calculated from the distance and angle from the surveying instrument to the installation object measured by the surveying instrument, the upper surface of the floating structure It is characterized by conversion into three-dimensional coordinates as a reference.

【0014】請求項2記載の発明によれば、測量器の視
準面と浮体構造物との相互関係を求め、測量器で測定し
た距離及び角度から得た設置物の測量器視準面を基準と
した三次元座標を、浮体構造物上面を基準とした三次元
座標に変換することにより、測量器の設置精度に影響さ
れることく設置物の三次元座標を測量することが可能で
ある。
According to the second aspect of the present invention, the correlation between the collimating plane of the surveying instrument and the floating structure is obtained, and the surveying instrument collimating plane of the installation object obtained from the distance and the angle measured by the surveying instrument is determined. By converting the reference three-dimensional coordinates into three-dimensional coordinates based on the upper surface of the floating structure, it is possible to measure the three-dimensional coordinates of the installed object without being affected by the installation accuracy of the surveying instrument. .

【0015】[0015]

【発明の実施の形態】以下、図を参照して本発明の実施
の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】まず、トータルステーション(測量器)の
視準面と浮体構造物上面との相互関係を求める。求め方
を図1〜図4を用いて説明する。図1に示すように、浮
体構造物1を地上で製作する際に、浮体構造物1の上面
1A上に、浮体構造物1との相対関係が明確な三次元座
標を有する基準点を3点設ける。そして、浮体構造物1
を水に浮かべた後、そのうちの1点2aにトータルステ
ーション(測量器)3を設置し(図2参照)、浮体構造
物の上面からトータルステーション3の眼31までの高
さHを測定する。この眼31が位置する点を点3aとす
る。基準点のうちの残りの2点2b,2cには、図3に
示すように、標尺(スタフ)4を立て、浮体構造物1上
に設置したトータルステーション3でこの標尺4を読み
取る。ここでトータルステーション3は、トータルステ
ーション3の高さ方向に対し、直角方向に読み取るもの
であり、標尺4の読み取りは、トータルステーション3
にて計測を行いながら、標尺4をトータルステーション
3に対し、前後に動かし、読み値が最小となった点を標
尺4の読み目とするものとし、この点を3b、3cとす
る。点3b、3cはトータルステーション3の視準面3
A上のとなる。
First, the correlation between the collimation plane of the total station (surveying instrument) and the upper surface of the floating structure is determined. The way of obtaining will be described with reference to FIGS. As shown in FIG. 1, when the floating structure 1 is manufactured on the ground, three reference points having three-dimensional coordinates in which the relative relationship with the floating structure 1 is clear are formed on the upper surface 1 </ b> A of the floating structure 1. Provide. And the floating structure 1
Is floated on water, a total station (surveying instrument) 3 is set at one of the points 2a (see FIG. 2), and the height H from the upper surface of the floating structure to the eye 31 of the total station 3 is measured. The point where the eye 31 is located is referred to as a point 3a. As shown in FIG. 3, a staff 4 is set up at the remaining two points 2b and 2c of the reference points, and the staff 4 is read by the total station 3 installed on the floating structure 1. Here, the total station 3 is to read in a direction perpendicular to the height direction of the total station 3, and the staff 4 is read in the total station 3.
The staff 4 is moved back and forth with respect to the total station 3 while measuring at, and the point at which the reading value becomes minimum is taken as the reading of the staff 4, and these points are 3b and 3c. Points 3b and 3c are the collimation plane 3 of the total station 3.
On A.

【0017】これにより、トータルステーション3の高
さH及び、トータルステーション3で読み取った標尺の
読み目は、浮体構造物1の上面1A上の3つの基準点2
a、2b、2cからトータルステーション3の視準面3
Aにおろした垂線の長さとなる。この垂線の足(垂線と
トータルステーション3の視準面3Aとの交点)となる
3点3a、3b、3cの視準面3A上におけるX座標及
びY座標は、浮体構造物1の上面1A上の3つの基準点
2a、2b、2cの平面1A上における各基準点間の距
離と、それぞれの垂線の長さから求めることができる。
なお、3点3a、3b、3cは視準面3A上の点である
ので、Z座標は0となる。また、浮体構造物1の上面1
A上の3つの基準点2a、2b、2cの視準面3Aを基
準としたX,Y座標は、それぞれ、点3a、3b、3c
のX,Y座標と等しく、Z座標は、それぞれ点3a、3
b、3cのZ座標より、トータルステーション3の高さ
Hあるいは標尺4の読み目分だけ下となる。従って、3
点3a、3b、3cの座標から、測量プログラムを用い
て視準面3Aの方程式を求めることができ、同様に、基
準点2a、2b、2cの視準面3Aを基準とした座標か
ら浮体構造物1の上面1Aの方程式を求めることがで
き、トータルステーション3の視準面3Aと、浮体構造
物1の上面1Aとの相互関係を得ることができる。
As a result, the height H of the total station 3 and the reading of the staff staff read by the total station 3 correspond to the three reference points 2 on the upper surface 1A of the floating structure 1.
a, 2b, 2c to collimation plane 3 of total station 3
It is the length of the perpendicular drawn to A. The X coordinate and the Y coordinate of the three points 3a, 3b, and 3c, which are legs of the perpendicular (the intersection of the perpendicular and the collimating plane 3A of the total station 3), on the collimating plane 3A are on the upper surface 1A of the floating structure 1. It can be obtained from the distance between each of the three reference points 2a, 2b, 2c on the plane 1A and the length of each perpendicular line.
Since the three points 3a, 3b, and 3c are points on the collimation plane 3A, the Z coordinate is zero. Also, the upper surface 1 of the floating structure 1
The X, Y coordinates of the three reference points 2a, 2b, 2c on A with respect to the collimation plane 3A are points 3a, 3b, 3c, respectively.
Are the same as the X and Y coordinates, and the Z coordinates are points 3a and 3
The height is lower than the Z coordinate of b and 3c by the height H of the total station 3 or the reading of the staff 4. Therefore, 3
From the coordinates of the points 3a, 3b, and 3c, the equation of the collimating plane 3A can be obtained using a surveying program. Similarly, the floating structure can be obtained from the coordinates of the reference points 2a, 2b, and 2c based on the collimating plane 3A. The equation of the upper surface 1A of the object 1 can be obtained, and the correlation between the collimating surface 3A of the total station 3 and the upper surface 1A of the floating structure 1 can be obtained.

【0018】次に、受信部5aを設けた測量塔5を浮体
構造物1に設置し、設置精度を測量する。まず、測量塔
5は浮体構造物1に、浮体構造物1が水に浮いている状
態で設置する。そして、図4に示すように、浮体構造物
1上に設置されているトータルステーション3にて、ト
ータルステーション3から受信部5aまでの距離(斜距
離)Lと、トータルステーション3と受信部5aとを結
ぶ直線とトータルステーション3の視準面3Aとがなす
角(鉛直角)R1と、受信部5aから視準面3Aに下ろ
した垂線の足とトータルステーション3とを結ぶ直線と
基準点(例えば2c)から視準面3Aに下ろした垂線の
足(例えば3c)とトータルステーション3とを結ぶ直
線とがなす角(水平角)R2を測定する。これにより、
受信部5aのトータルステーション3の視準面3Aを基
準とした三次元座標を求めることができる。そして、測
量プログラムにて、あらかじめ求めたトータルステーシ
ョン3の視準面3Aと浮体構造物1の上面1Aとの相互
関係を用いて三次元トラバース測量を行い、受信部5a
のトータルステーション3の視準面3Aを基準とした三
次元座標を浮体構造物1上面1Aを基準とした三次元座
標に変換することができ、この三次元座標から受信部5
a(測量塔5)の設置精度を確認することができる。
Next, the surveying tower 5 provided with the receiving section 5a is installed on the floating structure 1, and the installation accuracy is measured. First, the survey tower 5 is installed on the floating structure 1 in a state where the floating structure 1 is floating on water. Then, as shown in FIG. 4, in the total station 3 installed on the floating structure 1, a distance (oblique distance) L from the total station 3 to the receiving unit 5a and a straight line connecting the total station 3 and the receiving unit 5a. (Vertical angle) R1 formed between the total station 3 and a perpendicular line drawn from the receiver 5a to the collimating plane 3A and a reference point (for example, 2c). An angle (horizontal angle) R2 between a perpendicular leg (for example, 3c) lowered on the surface 3A and a straight line connecting the total station 3 is measured. This allows
The three-dimensional coordinates based on the collimation plane 3A of the total station 3 of the receiving unit 5a can be obtained. Then, a three-dimensional traverse survey is performed by the surveying program using the correlation between the collimation plane 3A of the total station 3 and the upper surface 1A of the floating structure 1 which is obtained in advance, and the receiving unit 5a
Can be converted into three-dimensional coordinates based on the collimation plane 3A of the total station 3 based on the upper surface 1A of the floating structure 1, and the receiving unit 5 can be converted from the three-dimensional coordinates.
a (the survey tower 5) can be checked for installation accuracy.

【0019】なお、ここで用いる測量プログラムは、G
auss−Jordanの掃き出し法を用いて連立一次
方程式を解くものであり、トータルステーションの視準
面上の三点の三次元座標と、浮体構造物上面上の三点の
三次元座標と、トータルステーションによって測定した
受信部までの距離及び角度を入力することにより、視準
面の方程式、構造物上面の方程式及びこの2つの平面の
相互関係を求め、受信部の視準面における三次元座標を
求めた後、三次元トラバース測量により構造物上面上の
三次元座標を算出するものである。また、トータルステ
ーションは、光波が往復する時間を測定して2点間(光
波測距儀から設置物まで)の距離を求める光波測距儀
と、設置物の鉛直角及び水平角を求めるトランシットと
が一体化したものであり、単体でトータルステーション
に対する設置物の鉛直角、水平角、距離等を測定するこ
とができるものである。
The surveying program used here is G
This solves a system of linear equations using the auss-Jordan sweeping method. The three-dimensional coordinates of three points on the collimation plane of the total station, the three-dimensional coordinates of three points on the upper surface of the floating structure, and measurement by the total station After inputting the distance and angle to the receiving unit, the equation of the collimating plane, the equation of the upper surface of the structure and the correlation between these two planes are obtained, and the three-dimensional coordinates of the collimating plane of the receiving unit are obtained. , Three-dimensional coordinates on the upper surface of the structure are calculated by three-dimensional traverse survey. In addition, the total station includes a light wave ranging device that measures the time that the light wave travels back and forth to determine the distance between two points (from the light wave ranging device to the installation object) and a transit that determines the vertical angle and horizontal angle of the installation object. It is an integrated device that can measure the vertical angle, horizontal angle, distance, etc. of the installed object with respect to the total station by itself.

【0020】このように、上記実施の形態の浮体構造物
上における三次元座標の測量方法によれば、受信部5a
を設置する浮体構造物1上に、トータルステーション3
を設置したことにより、浮体構造物1の動揺に影響され
ることなく、受信部5aまでの距離及び角度を正確に測
定することができる。また、トータルステーション3の
視準面3Aを求め、浮体構造物1の上面1Aとの相互関
係を求めるようにしたことにより、トータルステーショ
ン3の設置精度にも影響されることなく、受信部5aの
浮体構造物1上面1Aにおける三次元座標を求めること
ができる。トータルステーション及び受信部5aは、浮
体構造物1を水に浮かべた状態で設置するので、最低一
組ずつあればよく、経済的である。
As described above, according to the method of measuring three-dimensional coordinates on the floating structure according to the above embodiment, the receiving unit 5a
The total station 3 is placed on the floating structure 1 on which the
Is installed, the distance and the angle to the receiving unit 5a can be accurately measured without being affected by the fluctuation of the floating structure 1. In addition, since the collimating surface 3A of the total station 3 is obtained and the correlation with the upper surface 1A of the floating structure 1 is obtained, the floating structure of the receiving unit 5a is not affected by the installation accuracy of the total station 3. Three-dimensional coordinates on the upper surface 1A of the object 1 can be obtained. The total station and the receiving unit 5a are installed in a state where the floating structure 1 is floated on the water, so that at least one set is required, which is economical.

【0021】なお、以上の実施の形態例においては、基
準点を3点としたが、本発明はこれに限定されるもので
はなく、平面を特定できる点が得られればよく、3点以
上であっても良い。また、設置物として、測量塔上に設
けた受信部としたが、浮体構造物に設置でき、トータル
ステーション(測量器)にて距離及び角度を測定できる
物であれば良い。設置物の数や浮体構造物の形状等も任
意であり、その他、具体的な細部構造等についても適宜
に変更可能であることは勿論である。
In the above embodiment, three reference points are used. However, the present invention is not limited to this, and it is only necessary to obtain a point capable of specifying a plane. There may be. In addition, the receiver is provided on the surveying tower as an installation object, but may be an object that can be installed on a floating structure and can measure a distance and an angle by a total station (a surveying instrument). The number of installed objects, the shape of the floating structure, and the like are also arbitrary, and it goes without saying that the specific detailed structure and the like can be appropriately changed.

【0022】[0022]

【発明の効果】請求項1記載の発明によれば、設置物と
同一の浮体構造物上に測量器を設け、この測量器を用い
て測定した測量器から設置物までの距離及び角度から設
置物の三次元座標を測定することにより、浮体構造物の
動揺等に影響されることなく、距離及び角度の測定を行
うことができるため、設置物の三次元座標を正確に測量
することができる。
According to the first aspect of the present invention, a surveying instrument is provided on the same floating structure as the installation object, and the surveying instrument is installed based on the distance and angle from the surveying instrument to the installation object measured using the surveying instrument. By measuring the three-dimensional coordinates of the object, the distance and the angle can be measured without being affected by the movement of the floating structure, etc., so that the three-dimensional coordinates of the installed object can be accurately measured. .

【0023】請求項2記載の発明によれば、測量器の視
準面と浮体構造物上面との相互関係を求めることによ
り、測量器を浮体構造物上に設置した際の設置精度に影
響されることなく、測量器で測定した距離及び角度から
求めた三次元座標から浮体構造物上面を基準とした三次
元座標を得ることができる。
According to the second aspect of the present invention, the correlation between the collimation plane of the surveying instrument and the upper surface of the floating structure is determined, thereby affecting the installation accuracy when the surveying instrument is installed on the floating structure. The three-dimensional coordinates based on the upper surface of the floating structure can be obtained from the three-dimensional coordinates obtained from the distance and the angle measured by the surveying instrument without any need.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した一例としての浮体構造物上に
基準点を設けた状態を示す浮体構造物の斜視図である。
FIG. 1 is a perspective view of a floating structure showing a state where reference points are provided on the floating structure as an example to which the present invention is applied.

【図2】図1における浮体構造物上にトータルステーシ
ョンを設置した状態を示す浮体構造物の斜視図である。
FIG. 2 is a perspective view of the floating structure showing a state where a total station is installed on the floating structure in FIG. 1;

【図3】図2における浮体構造物上に設置した標尺を、
トータルステーションで読み取る状態を示す浮体構造物
の斜視図である。
FIG. 3 shows a staff installed on the floating structure in FIG.
It is a perspective view of a floating structure showing a state where it reads by a total station.

【図4】図3における浮体構造物上に受信部を設置し、
トータルステーションで距離及び角度を読み取る状態を
示す浮体構造物の斜視図である。
FIG. 4 is a view showing a receiver installed on the floating structure shown in FIG. 3;
It is a perspective view of a floating structure showing a state where distance and an angle are read by a total station.

【図5】一般的な沈埋函の位置決め方法を示す概略側面
図である。
FIG. 5 is a schematic side view showing a general method for positioning a submerged box.

【図6】沈埋函上に設けた測量塔を陸上から誘導して位
置決めする方法を示す概略図である。
FIG. 6 is a schematic view showing a method for guiding and positioning a survey tower provided on a submerged box from land.

【図7】函体製作時に全ての沈埋函に測量塔を設置して
おく方法を示す概略図である。
FIG. 7 is a schematic view showing a method of installing a surveying tower in all submerged boxes at the time of manufacturing the box.

【図8】アクセスシャフトと兼用され、内部に下げ振り
を備えた測量塔を有する沈埋函の斜視図である。
FIG. 8 is a perspective view of a submerged box also serving as an access shaft and having a survey tower provided with a plumb bob therein.

【図9】測量塔を設置した後に、測量塔の設置精度を巻
尺で確認する方法を示す概略図である。
FIG. 9 is a schematic diagram showing a method of checking the installation accuracy of the survey tower with a tape measure after installing the survey tower.

【符号の説明】[Explanation of symbols]

1 浮体構造物 1A 浮体構造物上面 3 トータルステーション 3A トータルステーション視準面 5 測量塔 5a 受信部 DESCRIPTION OF SYMBOLS 1 Floating structure 1A Floating structure upper surface 3 Total station 3A Total station collimating plane 5 Survey tower 5a Receiver

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水に浮かべた浮体構造物上面に測量器を設
置し、 前記測量器によって、前記測量器から前記浮体構造物上
面に設置した設置物までの距離及び角度を測定すること
を特徴とする浮体構造物上における三次元座標の測量方
法。
1. A surveying instrument is installed on an upper surface of a floating structure floating on water, and a distance and an angle from the surveying instrument to the installed object installed on the upper surface of the floating structure are measured by the surveying instrument. 3D coordinate survey method on a floating structure.
【請求項2】前記測量器の視準面と、前記浮体構造物上
面との相互関係を求め、 前記測量器によって測定した前記測量器から設置物まで
の距離及び角度から算出した前記設置物の測量器視準面
を基準とした三次元座標を、前記浮体構造物の上面を基
準とした三次元座標に変換することを特徴とする請求項
1記載の浮体構造物上における三次元座標の測量方法。
2. The correlation between the collimation plane of the surveying instrument and the upper surface of the floating structure is determined, and the distance between the surveying instrument and the installation measured by the surveying instrument and the angle of the installation are calculated from the angle. The three-dimensional coordinates on the floating structure according to claim 1, wherein the three-dimensional coordinates based on the surveying instrument collimating plane are converted into three-dimensional coordinates based on the upper surface of the floating structure. Method.
JP2000150237A 2000-05-22 2000-05-22 Survey method of three-dimensional coordinates on floating structures Expired - Fee Related JP3492598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000150237A JP3492598B2 (en) 2000-05-22 2000-05-22 Survey method of three-dimensional coordinates on floating structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000150237A JP3492598B2 (en) 2000-05-22 2000-05-22 Survey method of three-dimensional coordinates on floating structures

Publications (2)

Publication Number Publication Date
JP2001330436A true JP2001330436A (en) 2001-11-30
JP3492598B2 JP3492598B2 (en) 2004-02-03

Family

ID=18655981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000150237A Expired - Fee Related JP3492598B2 (en) 2000-05-22 2000-05-22 Survey method of three-dimensional coordinates on floating structures

Country Status (1)

Country Link
JP (1) JP3492598B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109272846A (en) * 2017-01-13 2019-01-25 大连大学 The total station instrument coordinate measurement method of total station instrument coordinate MEASUREMENT TEACHING model
CN114964161A (en) * 2022-06-06 2022-08-30 中交第一航务工程局有限公司 Immersed tube mounting plane precision detection method
CN115388867A (en) * 2022-10-28 2022-11-25 天津港航工程有限公司 Method for observing and broadcasting sinking attitude of open caisson in real time

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136127B (en) * 2015-07-28 2018-05-11 广州市城市规划勘测设计研究院 A kind of measuring method and system of atural object landform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109272846A (en) * 2017-01-13 2019-01-25 大连大学 The total station instrument coordinate measurement method of total station instrument coordinate MEASUREMENT TEACHING model
CN114964161A (en) * 2022-06-06 2022-08-30 中交第一航务工程局有限公司 Immersed tube mounting plane precision detection method
CN115388867A (en) * 2022-10-28 2022-11-25 天津港航工程有限公司 Method for observing and broadcasting sinking attitude of open caisson in real time

Also Published As

Publication number Publication date
JP3492598B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
KR100898617B1 (en) Construction method for digital elevation model of area coexisting the ground and water through verification of tin data of lidar and mbes measure value
CN101360967B (en) Surveying procedure and system for a high-rise structure
US4820041A (en) Position sensing system for surveying and grading
KR100898618B1 (en) Construction method for digital elevation model of area coexisting the ground and water through undergrounding milestone for fiducial point
CN110794260B (en) Overhead transmission line positioning method based on double RTK unmanned aerial vehicles
JP6910511B2 (en) Laser measurement method, laser measurement sign, and coordinate calculation program
CN109490927B (en) Positioning system and positioning method for underwater leveling frame
KR100898616B1 (en) Construction method for digital elevation model of area coexisting the ground and water
CA2978511A1 (en) Method for underwater scanning of an object and target for underwater scanning of an object
CN112197741B (en) Unmanned aerial vehicle SLAM technology inclination angle measuring system based on extended Kalman filtering
Dąbrowski et al. Installation of GNSS receivers on a mobile railway platform–methodology and measurement aspects
US5046259A (en) Underwater measuring systems and methods
JP3492598B2 (en) Survey method of three-dimensional coordinates on floating structures
CN202928583U (en) Offshore drilling platform attitude monitor and location device
JP4452703B2 (en) Surveying method using GPS
Triglav-Čekada et al. A simplified analytical model for a-priori LiDAR point-positioning error estimation and a review of LiDAR error sources
CN115032695B (en) Submarine cable tracking type detection method based on acoustic side reflection
CN115371599A (en) High-precision ground flatness measuring system and method
CN115075307A (en) Immersed tunnel pipe section sinking butt joint space positioning monitoring system and method
El-Ashmawy Accuracy, time cost and terrain independence comparisons of levelling techniques
Zhao et al. Multi-beam Bathymetric measurement error analysis based on Integrated Navigation System
GB2570101A (en) Survey system and method
RU2777560C2 (en) Method for automatic navigation of a logging machine in real time in a given coordinate system
RU2786847C2 (en) Method for determination of spatial position of pipeline at underwater transition section
JPH04282412A (en) Water-depth measuring method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees