JP2001326393A - Polyaniline, thermoelectric material using it, and manufacturing method thereof - Google Patents

Polyaniline, thermoelectric material using it, and manufacturing method thereof

Info

Publication number
JP2001326393A
JP2001326393A JP2000140831A JP2000140831A JP2001326393A JP 2001326393 A JP2001326393 A JP 2001326393A JP 2000140831 A JP2000140831 A JP 2000140831A JP 2000140831 A JP2000140831 A JP 2000140831A JP 2001326393 A JP2001326393 A JP 2001326393A
Authority
JP
Japan
Prior art keywords
polyaniline
doped
type conductive
emeraldine
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000140831A
Other languages
Japanese (ja)
Inventor
Naoki Toshima
直樹 戸嶋
Ko Gen
虎 厳
Tsukasa Ota
司 大田
Naonori Ono
尚典 大野
Naohiko Fukuoka
直彦 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2000140831A priority Critical patent/JP2001326393A/en
Publication of JP2001326393A publication Critical patent/JP2001326393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive polyaniline and manufacturing method thereof which has a thermometric power factor(TPF) of thermoelectric characteristics at high placticability which is not attained using a conventional conductive polymer material. SOLUTION: A doped emeraldine type conductive polyaniline together with a thermoelectric material using it, a cooling material, and manufacturing method thereof are provided whose heat-resistance temperature is 180-250 deg.C, thermoelectric power factor(TPF) of thermoelectric characteristics being 10-7-10-4 Wm-1K-2, with molecular orientation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電材料として有
用な導電性ポリアニリン類とその製造方法に関する。
The present invention relates to a conductive polyaniline useful as a thermoelectric material and a method for producing the same.

【0002】[0002]

【従来の技術】本発明者らは、先にカンファースルホン
酸(CSA)でドープした高導電性ポリアニリン膜が初
の有機材料として熱電変換材料として使用できる可能性
があることを見出し、特願平11−126301号発明
として出願した。しかし、さらに研究を進めたところ、
実用的熱電材料としては、まだその熱電特性が充分でな
いことが判った。
BACKGROUND OF THE INVENTION The present inventors have found that a highly conductive polyaniline film doped with camphorsulfonic acid (CSA) may be used as a thermoelectric conversion material as the first organic material. An application was filed as the invention of No. 11-126301. However, after further research,
It has been found that the thermoelectric properties are not yet sufficient as a practical thermoelectric material.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、従来
導電性高分子材料では達成できなかった、実用化可能レ
ベルの高い熱電特性における物理的内部因子(TPF)
を有する導電性ポリアニリン類とその製造方法を提供す
る点にある。
SUMMARY OF THE INVENTION The object of the present invention is to achieve a physical internal factor (TPF) in thermoelectric properties at a practically high level, which has not been achieved with conventional conductive polymer materials.
And a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明の第一は、耐熱温
度が180〜205℃、熱電特性における物理的内部因
子(TPF)が10−7〜10−4Wm−1Κ−2、好
ましくは10−6〜10−4Wm−1Κ−2、とくに好
ましくは10−5〜10−4Wm−1Κ−2であり、か
つ分子配向していることを特徴とするドープしたエメラ
ルジン型導電性ポリアニリン類に関する。
Means for Solving the Problems The first aspect of the present invention is that the heat resistance temperature is 180 to 205 ° C., and the physical internal factor (TPF) in thermoelectric properties is 10 −7 to 10 −4 Wm −1 −2 −2 , preferably. Is 10 −6 to 10 −4 Wm −1 −2 −2 , particularly preferably 10 −5 to 10 −4 Wm -1 −2 −2 , and is a doped emeraldine-type conductive material characterized by being molecularly oriented. Polyanilines.

【0005】本発明のポリアニリン類は、非延伸の同一
ポリアニリン類と比較して、その熱電特性における物理
的内部因子が2倍以上、好ましくは3倍以上向上してい
る点も特徴的である。
[0005] The polyaniline of the present invention is also characterized in that the physical internal factor in the thermoelectric properties is improved by a factor of 2 or more, preferably by a factor of 3 or more, as compared with the same non-stretched polyaniline.

【0006】本発明の第二は、前記ドープしたエメラル
ジン型導電性ポリアニリン類よりなることを特徴とする
熱電材料とくに冷却材料に関する。
A second aspect of the present invention relates to a thermoelectric material, particularly a cooling material, comprising the doped emeraldine-type conductive polyaniline.

【0007】本発明の第三は、ドーパントをポリアニリ
ン類のアニリン単位に対してモル比で0.3〜0.7含
有し、かつ溶媒をポリアニリン類に対して3〜20重量
%含有しているポリアニリン類を、ドーパントと溶媒の
いずれか低い方の沸点(沸点がないものについては分解
温度)以下(通常下限は15〜20℃の室温である)
で、所期の物性を示すのに充分な延伸を行うことを特徴
とする請求項1〜3いずれか記載のドープしたエメラル
ジン型導電性ポリアニリン類の製造方法に関する。
A third aspect of the present invention is that the dopant is contained in a molar ratio of 0.3 to 0.7 with respect to the aniline unit of the polyaniline, and the solvent is contained in a content of 3 to 20% by weight with respect to the polyaniline. The polyaniline is prepared by lowering the boiling point of the lower of the dopant and the solvent (decomposition temperature for those having no boiling point) or less (the lower limit is usually room temperature of 15 to 20 ° C).
4. A method for producing a doped emeraldine-type conductive polyaniline according to any one of claims 1 to 3, wherein the film is stretched sufficiently to exhibit desired physical properties.

【0008】延伸率についてはとくに制限するものでは
ないが、通常少なくとも40%以上、好ましくは60%
以上、とくに好ましくは70%以上であり、ほゞ500
%までの延伸が可能である。
The stretching ratio is not particularly limited, but is usually at least 40% or more, preferably 60% or more.
Above, particularly preferably 70% or more, and about 500%.
% Stretching is possible.

【0009】延伸後、配向したポリアニリンフィルムま
たは繊維は、減圧下(20〜10 Torr、好まし
くは5〜10−4Torr)で、100〜190℃で
0.5〜8時間処理する。これにより、180〜205
℃までの高い耐熱性を有する材料が得られる。
[0009] After stretching, oriented polyaniline films or fibers, under reduced pressure (20 to 10 - 4 Torr, preferably 5 to 10 -4 Torr), the processing 0.5-8 hours at 100 to 190 ° C.. As a result, 180 to 205
A material having high heat resistance up to ° C is obtained.

【0010】本発明において、改善を狙っている熱電特
性とは、セーベック係数S、導電率σ、熱伝導率κ、物
理的内部因子TPF、熱電性能指数Z、無次元熱電性能
指数ZTなどがある。熱電特性がよいと熱(温度差)を
電気に換える効率や電気を用いて冷却する効率を高める
ことができる。なお、前記物理的内部因子TPFは、
In the present invention, the thermoelectric properties to be improved include the Savebeck coefficient S, conductivity σ, thermal conductivity κ, physical internal factor TPF, thermoelectric figure of merit Z, dimensionless thermoelectric figure of merit ZT, and the like. . Good thermoelectric properties can increase the efficiency of converting heat (temperature difference) to electricity and the efficiency of cooling using electricity. The physical internal factor TPF is:

【数1】TPF=Sσ Sはセーベック係数(VΚ−1)(絶対温度差1°当り
の起電力) σは導電率(Ω−1−1) TPFの単位はWm−1Κ−2 で示すことができ、また、無次元熱電性能指数ZTは、
## EQU1 ## TPF = S2σ S is the Söbeck coefficient (VΚ-1) (Per 1 ° absolute temperature difference)
Σ is the conductivity (Ω-1m-1The unit of TPF is Wm-1Κ-2  And the dimensionless thermoelectric figure of merit ZT is

【数2】ZT=(TPF/κ)×T Tは絶対温度 κは熱伝導率(Wm−1Κ−1) で示すことができる。[Number 2] ZT = (TPF / κ) × T T is the absolute temperature kappa can be indicated by the thermal conductivity (Wm -1 Κ -1).

【0011】本発明において、前記熱電特性の測定は、
10〜10−4mAの定電流を流すことのできる定電流
発生装置、温度制御が室温から1000℃まで可能な電
気炉、小型ヒータおよび図6に示す精密電位差測定装置
(0.1μVまで測定可能)を用い、ポリアニリン類の
膜を図のようにセットし、温度毎のセーベック係数Sや
導電率σを測定することなどにより求めることができ
る。具体的に説明するとPt→の部分は白金線であり、
左から右に電流を流す。またポリアニリン膜上にはPt
/Pt−Rh/Ptよりなる熱電対を設け、Pt−Pt
間で電位を測定し,Pt/Pt−Rh熱電対で温度を測
定する。
[0011] In the present invention, the measurement of the thermoelectric properties is performed by:
A constant current generator capable of flowing a constant current of 10 to 10 -4 mA, an electric furnace capable of controlling the temperature from room temperature to 1000 ° C., a small heater, and a precise potential difference measuring device shown in FIG. ), A polyaniline film is set as shown in the figure, and the temperature can be determined by measuring the Söbeck coefficient S and the conductivity σ at each temperature. Specifically, the Pt → part is a platinum wire,
Apply current from left to right. Also, Pt is formed on the polyaniline film.
/ Pt-Rh / Pt thermocouple is provided, and Pt-Pt
The potential is measured and the temperature is measured with a Pt / Pt-Rh thermocouple.

【0012】本発明に用いるドーピング剤は、ポリアニ
リン類に対する機能性酸とくに、カンファースルホン酸
(CSA)、ドデシルベンゼンスルホン酸(DBS)、
2−ナフタレンスルホン酸、リン酸などを挙げることが
できる。
The doping agent used in the present invention is a functional acid for polyanilines, in particular, camphorsulfonic acid (CSA), dodecylbenzenesulfonic acid (DBS),
Examples thereof include 2-naphthalenesulfonic acid and phosphoric acid.

【0013】本発明で用いる溶剤は、とくに制限はない
が、N−メチルピロリドン(NMP)、ジメチルスルホ
キシド(DMSO)、m−クレゾール、ジメチルフラン
(DMF)、N,N′−ジメチルプロピレン尿素(DM
PU)、クロロホルム、トルエン、キシレンなどを例示
することができる。
Although the solvent used in the present invention is not particularly limited, N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), m-cresol, dimethylfuran (DMF), N, N'-dimethylpropylene urea (DM
PU), chloroform, toluene, xylene and the like.

【0014】本発明のドープしたエメラルジン型導電性
ポリアニリン類としては、N−置換アニリン以外のもの
であれば何でもよく、それ以外に特別の制限はないが、
一つの代表グループとしては下記反応式で得られるもの
を例示することができる。また、分子量は通常1万〜1
00万のものを使用する。
The doped emeraldine-type conductive polyaniline of the present invention may be any other than N-substituted aniline, and is not particularly limited.
As one representative group, those obtained by the following reaction formula can be exemplified. The molecular weight is usually 10,000 to 1
Use one million.

【0015】[0015]

【化1】 (式中、R、R、R、Rは、水素、アルキル
基、アリール基、ハロゲン、スルホン酸基、カルボキシ
ル基、ニトリル基よりなる群からそれぞれ独立して選ば
れた基であり、Aはドーピング剤である酸基であり、y
は全ポリアニリン類中におけるキノイド型構造の割合を
示し、nはアニリン単位の数を示す。)
Embedded image (Wherein, R 1 , R 2 , R 3 , and R 4 are each independently selected from the group consisting of hydrogen, an alkyl group, an aryl group, a halogen, a sulfonic acid group, a carboxyl group, and a nitrile group. , A is an acid group as a doping agent, and y
Represents the ratio of the quinoid structure in all polyanilines, and n represents the number of aniline units. )

【0016】延伸処理に適したポリアニリン膜調製用の
混合溶液におけるポリアニリン類とドーパントの割合
は、ポリアニリン類のアニリン単位に対してのモル比で
通常0.2〜2.0、好ましくは0.3〜1.0、とく
に好ましくは0.35〜0.55であり、ポリアニリン
類とドーパントの総量の溶媒に対する重量含有率は、通
常1〜10重量%、好ましくは3〜8重量%、とくに好
ましくは4〜5重量%である。
The proportion of the polyaniline and the dopant in the mixed solution for preparing the polyaniline film suitable for the stretching treatment is usually 0.2 to 2.0, preferably 0.3 to 2.0 in terms of the molar ratio of the polyaniline to the aniline unit. 1.0 to 1.0, particularly preferably 0.35 to 0.55, and the weight content of the total amount of the polyaniline and the dopant to the solvent is usually 1 to 10% by weight, preferably 3 to 8% by weight, particularly preferably It is 4 to 5% by weight.

【0017】前記ポリアニリン類とドーパントおよび溶
媒との混合溶液に、その溶解状態を向上させる目的で超
音波処理を行うことが望ましい。超音波処理機の出力は
110〜930W、液温は20〜55℃、処理時間は1
〜10時間程度であるが、液温はドーパントや溶媒の沸
点によって変化する。このようにして得られた溶液は遠
心分離などの手段によって不溶分を完全に除去すること
が好ましい。
It is desirable that the mixed solution of the polyaniline, the dopant and the solvent is subjected to ultrasonic treatment for the purpose of improving the dissolved state. The output of the ultrasonic processor is 110-930W, the liquid temperature is 20-55 ° C, and the processing time is 1
The liquid temperature varies depending on the dopant and the boiling point of the solvent. It is preferable that the solution thus obtained is completely removed of insoluble components by means such as centrifugation.

【0018】不溶分を除去したポリアニリン類溶液は、
流延成形などの手段でフィルムに成形したり、紡糸によ
り糸状に成形する。フィルムの場合の膜厚は、10〜1
000μm、好ましくは50〜200μm程度のものが
延伸処理に適している。
The polyaniline solution from which insolubles have been removed is
It is formed into a film by means such as casting, or formed into a thread by spinning. The thickness of the film is 10 to 1
Those having a size of about 000 μm, preferably about 50 to 200 μm are suitable for the stretching treatment.

【0019】本発明においては、ドーパントをポリアニ
リン類のアニリン単位に対してモル比で0.3〜0.7
含有し、かつ溶媒をポリアニリン類に対して3〜20重
量%含有しているポリアニリン類(例えばフィルムや繊
維の形のもの)を、ドーパントと溶媒のいずれか低い方
の沸点(沸点がないものについては分解温度)以下で、
所期の物性を示すのに充分な延伸を行い、ドープしたエ
メラルジン型導電性ポリアニリン類の膜類を製造する。
In the present invention, the dopant is used in a molar ratio of 0.3 to 0.7 with respect to the aniline unit of the polyaniline.
Containing polyaniline (for example, in the form of a film or fiber) containing a solvent in an amount of 3 to 20% by weight based on the polyaniline, the lower boiling point of the dopant and the solvent (for those having no boiling point) Below the decomposition temperature)
The film is stretched sufficiently to exhibit the desired physical properties to produce doped emeraldine-type conductive polyaniline films.

【0020】さらに、前記延伸されたポリアニリン類
は、ひきつづいて、20〜10−4Torrの減圧下に
100〜190℃で熱処理することが好ましい。
Further, it is preferable that the stretched polyaniline is subsequently heat-treated at 100 to 190 ° C. under a reduced pressure of 20 to 10 -4 Torr.

【0021】延伸率(%)は、延伸の前と後での延伸方
向の長さの差が延伸前の長さに対してどの程度になって
いるかを百分率(%)で示すものである。延伸率が高い
ほど分子配列の程度が向上する傾向にあり、一軸延伸を
すると、延伸率が80%のとき、その熱電特性における
物理的内部因子(TPF)は延伸方向に平行な方向にお
いては非延伸フィルムの約4倍、延伸方向に垂直な方向
においては非延伸フィルムの約2倍という優れた結果が
得られた。したがって、本発明においては、ポリアニリ
ン類フィルムの熱電特性における物理的内部因子(TP
F)が非延伸フィルムの2倍以上のものとすることは極
めて容易である。
The stretching ratio (%) indicates, as a percentage (%), how much the difference between the length in the stretching direction before and after stretching is relative to the length before stretching. When the stretching ratio is higher, the degree of molecular arrangement tends to be improved. When uniaxial stretching is performed, when the stretching ratio is 80%, the physical internal factor (TPF) in the thermoelectric properties is non-linear in the direction parallel to the stretching direction. Excellent results were obtained, about four times the stretched film and about twice the unstretched film in the direction perpendicular to the stretching direction. Therefore, in the present invention, a physical internal factor (TP) in the thermoelectric properties of the polyaniline film is used.
It is very easy to make F) twice or more that of the unstretched film.

【0022】本発明における熱電材料とは、温度差を直
接電力に変換したり、反対に電力を直接温度差に変換す
る材料であり、可動部がなく直接変換できる点が特徴的
である。具体的には体温で動く時計、振動のない冷蔵庫
(ワイン冷却保存用)、レーザの冷却、人工衛星での温
度差利用発電、自動車などの廃熱利用発電、小さい温度
差を利用した発電、液化天然ガスなどの冷廃熱を利用し
た発電、ペルチエ効果を利用して電力を用いた電子冷却
材などがある。
The thermoelectric material in the present invention is a material that directly converts a temperature difference into electric power or vice versa, and is characterized by a direct conversion without a movable part. Specifically, a clock that moves at body temperature, a refrigerator that does not vibrate (for cooling and storing wine), laser cooling, power generation using a temperature difference using satellites, power generation using waste heat from cars, power generation using a small temperature difference, liquefaction There are power generation using cold waste heat such as natural gas, and electronic coolant using electric power using the Peltier effect.

【0023】[0023]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれにより何等限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited in any way by this.

【0024】実施例1 アニリンを重合温度−8℃〜−6℃で化学酸化重合する
ことにより得られた重量平均分子量(Mw)9900
0、分散度(Mw/Mn)=3.20のポリアニリン
1.0gを(±)−10−カンファースルホン酸1.2
g、m−クレゾール24.9gの混合液に溶解し、液温
20〜55℃において、110〜930W、38KHz
の超音波処理を4時間行い、溶解とドーピングを充分に
進行させた後、遠心分離を行って不溶解分を除去した。
得られた導電性ポリアニリン溶液を基板上に流延成形
し、80℃で24時間加熱して、100μm程度の膜厚
の導電性ポリアニリンフィルムを得、このフィルムを8
0〜100℃に加熱しながら延伸率78%で一軸延伸を
行った。この延伸膜を20Torr〜10−4Torr
の減圧下、190℃で30分間熱処理して熱電特性測定
用サンプルとした。
Example 1 Weight average molecular weight (Mw) 9900 obtained by subjecting aniline to chemical oxidative polymerization at a polymerization temperature of -8 ° C. to -6 ° C.
0, 1.0 g of polyaniline having a dispersity (Mw / Mn) of 3.20 was added to (±) -10-camphorsulfonic acid 1.2.
g and m-cresol in a mixed solution of 24.9 g, and at a liquid temperature of 20 to 55 ° C., 110 to 930 W and 38 KHz.
Was carried out for 4 hours to sufficiently advance dissolution and doping, and then centrifuged to remove insoluble components.
The obtained conductive polyaniline solution was cast on a substrate and heated at 80 ° C. for 24 hours to obtain a conductive polyaniline film having a thickness of about 100 μm.
Uniaxial stretching was performed at a stretching ratio of 78% while heating to 0 to 100 ° C. This stretched film is subjected to 20 Torr to 10 −4 Torr.
The sample was heat-treated at 190 ° C. for 30 minutes under reduced pressure to obtain a sample for measuring thermoelectric properties.

【0025】得られた延伸ポリアニリン膜の耐熱性は、
図1に示すように206℃までは重量変化がほとんど起
らず、すばらしい耐熱性を示す。なお延伸前のポリアニ
リン膜は150℃から重量変化がおきはじめているか
ら、この耐熱性の向上効果は実に驚くべき大きさと言え
る。
The heat resistance of the obtained stretched polyaniline film is as follows:
As shown in FIG. 1, there is almost no change in weight up to 206 ° C., showing excellent heat resistance. Since the weight of the polyaniline film before stretching starts to change from 150 ° C., the effect of improving the heat resistance can be said to be a surprising magnitude.

【0026】図2は、下から(イ)ドーピング処理をし
ていないポリアニリンフィルム(EB=Emerald
ine Base)、(ロ)本実施例のドーピング処理
した未延伸ポリアニリンフィルム(ES=Emeral
dine Salt)、(ハ)190℃で30分間減圧
乾燥(20Torr〜10−4Torr)した実施例1
の延伸ポリアニリンフィルムおよび(ニ)室温から40
0℃にまで昇温速度毎分10℃で加熱した実施例1の延
伸ポリアニリンフィルムのそれぞれのIR吸収スペクト
ルを示す。このように減圧乾燥してもドーピングしたポ
リアニリンの化学構造はほとんど変化せず、組成的に高
い耐熱性をもつことが判る。
FIG. 2 shows, from the bottom, (a) a polyaniline film (EB = Emerald) not doped.
Ine Base), (b) Doped unstretched polyaniline film of this example (ES = Emeral
Dine Salt), (c) Example 1 dried under reduced pressure (20 Torr to 10 −4 Torr) at 190 ° C. for 30 minutes.
Stretched polyaniline film and (d) room temperature to 40
2 shows the IR absorption spectrum of each of the stretched polyaniline films of Example 1 heated at a heating rate of 10 ° C. per minute to 0 ° C. Thus, even when dried under reduced pressure, the chemical structure of the doped polyaniline hardly changes, indicating that the polyaniline has high heat resistance in terms of composition.

【0027】図3に、本発明による熱電特性における物
理的内部因子(TPF)の向上効果を示す。黒丸印は実
施例1の延伸ポリアニリンフィルム(延伸率78%)の
延伸方向に平行な方向の物理的内部因子(TPF)を示
し、白丸印は実施例1の延伸ポリアニリンフィルム(延
伸率78%)の延伸方向に垂直な方向の物理的内部因子
(TPF)を示し、内十字白丸印は実施例1で延伸する
前のポリアニリンフィルムの物理的内部因子(TPF)
を示す。このように、延伸率78%の延伸処理により、
未延伸フィルムに比べ、延伸方向に平行な方向では約4
倍、延伸方向に垂直な方向では約2倍と物理的内部因子
(TPF)が向上していることが判る。
FIG. 3 shows the effect of improving the physical internal factor (TPF) in the thermoelectric characteristics according to the present invention. The black circles indicate the physical internal factor (TPF) in the direction parallel to the stretching direction of the stretched polyaniline film of Example 1 (78% stretch ratio), and the white circles indicate the stretched polyaniline film of Example 1 (78% stretch ratio). Indicates the physical internal factor (TPF) in the direction perpendicular to the stretching direction of the polyaniline film before stretching in Example 1.
Is shown. Thus, by the stretching treatment at a stretching ratio of 78%,
Approximately 4 in the direction parallel to the stretching direction compared to the unstretched film
In the direction perpendicular to the stretching direction, the physical internal factor (TPF) is improved by about twice.

【0028】実施例2 延伸率を0%、13%、42%、78%と変化させた以
外は実施例1と同様にして延伸ポリアニリンフィルムを
つくり、絶対温度345°Kにおける物理的内部因子
(TPF)と絶対温度426°Kの物理的内部因子(T
PF)をそれぞれ求め、図4に前者を白丸印で、後者を
黒丸印で示した。60〜70%の延伸率のあたりから急
激にTPFが向上していることが判る。
Example 2 A stretched polyaniline film was prepared in the same manner as in Example 1 except that the stretching ratio was changed to 0%, 13%, 42%, and 78%, and physical internal factors at an absolute temperature of 345 ° K ( TPF) and a physical internal factor (T
PF) was determined, and the former is shown by a white circle and the latter by a black circle in FIG. It can be seen that the TPF is sharply improved around the stretch ratio of 60 to 70%.

【0029】実施例3 延伸率を0%、30%、40%、50%とした以外は実
施例1を繰り返した。得られたポリアニリンフィルムの
分子配向状態を調べたところ、図5に示すように延伸率
が40%以上になると、延伸により結晶化によるピーク
が一層鋭くなってくるのが判る。なお、図5における縦
軸は回折強度I(単位cps)で、横軸は回折角度(単
位は2θ)である。
Example 3 Example 1 was repeated except that the stretching ratio was 0%, 30%, 40% and 50%. When the molecular orientation state of the obtained polyaniline film was examined, it was found that the peak due to crystallization became sharper due to the stretching when the stretching ratio was 40% or more as shown in FIG. The vertical axis in FIG. 5 is the diffraction intensity I (unit: cps), and the horizontal axis is the diffraction angle (unit: 2θ).

【0030】[0030]

【発明の効果】(1)ドーピング剤で処理したエメラル
ジン型の導電性ポリアニリン類は、延伸により著しく熱
電特性が改善され、FeSiなどの無機半導体の熱電
材料に対抗できる新規な熱電材料を提供することができ
た。 (2)熱電特性の程度は延伸率によって制御できる。 (3)図2にみられるように、延伸、熱処理により耐熱
性も著しく向上する。 (4)本発明のポリアニリン類は、その熱電特性が大き
く改善されているので、無機材料のFeSiの対抗品
として有用である。とくに無機材料はそれ自体は粉末や
結晶体の形としてしか使用できないが、本発明のものは
高分子材料であるから、それ自体自己支持性があり、フ
ィルムや繊維、あるいは不織布、織物あるいはこれらの
積層体として用いることができるので、本発明のものを
例えば発熱するのが避けられないような材料、たとえば
EL素子や超LSIなどに本発明のフィルムなどを積層
し、これに電気を流してペルチエ効果を利用した冷却材
として使用することができる。
EFFECTS OF THE INVENTION (1) The emeraldine-type conductive polyaniline treated with a doping agent has a significantly improved thermoelectric property by stretching, and provides a novel thermoelectric material which can compete with thermoelectric materials of inorganic semiconductors such as FeSi 2. I was able to. (2) The degree of thermoelectric properties can be controlled by the stretching ratio. (3) As shown in FIG. 2, the heat resistance is significantly improved by stretching and heat treatment. (4) Since the polyaniline of the present invention has greatly improved thermoelectric properties, it is useful as a counterpart to the inorganic material FeSi 2 . In particular, inorganic materials themselves can be used only in the form of powders or crystals, but since the materials of the present invention are polymeric materials, they have self-supporting properties themselves, and can be films, fibers, nonwoven fabrics, woven fabrics or these. Since the film of the present invention can be used as a laminate, for example, the film of the present invention is laminated on a material which cannot avoid generation of heat, for example, an EL element or a super LSI, and electricity is passed through the film to make the Peltier. It can be used as a coolant utilizing the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における延伸、熱処理により耐熱性が
著しく向上したことを示すための耐熱性(TG)曲線で
あり、縦軸は重量変化の割合(%)、横軸は温度(℃)
である。
FIG. 1 is a heat resistance (TG) curve showing that the heat resistance was significantly improved by stretching and heat treatment in Example 1, in which the vertical axis represents the rate of weight change (%), and the horizontal axis represents temperature (° C.).
It is.

【図2】非導電性ポリアニリンフィルム(EB)、ドー
ピング処理した未延伸ポリアニリンフィルム(ES)、
延伸ESフィルムを減圧下190℃で30分保持したフ
ィルム、さらに延伸ESフィルムを室温から400℃ま
で昇温速度毎分10℃で加熱したフィルムの四者につい
てのIRスペクトルを示す。
FIG. 2. Non-conductive polyaniline film (EB), doped unstretched polyaniline film (ES),
4 shows IR spectra of a film obtained by holding a stretched ES film under reduced pressure at 190 ° C. for 30 minutes and a film obtained by heating a stretched ES film from room temperature to 400 ° C. at a heating rate of 10 ° C. per minute.

【図3】実施例1の延伸配向によるポリアニリンフィル
ムの熱電特性TPFの向上効果を示すグラフであり、縦
軸はTPF(10−6Wm−1−2)、横軸は絶対温
度(K)である。
FIG. 3 is a graph showing the effect of improving the thermoelectric characteristic TPF of the polyaniline film by the stretching orientation in Example 1, wherein the vertical axis is TPF (10 −6 Wm −1 K −2 ), and the horizontal axis is the absolute temperature (K). It is.

【図4】実施例2に示すように、熱電特性TPFの延伸
率依存性を示すグラフであり、縦軸はTPF(10−6
Wm−1−2)、横軸は延伸率(%)を示す。
FIG. 4 is a graph showing the elongation rate dependence of thermoelectric characteristics TPF as shown in Example 2, where the vertical axis is TPF (10 −6).
Wm −1 K −2 ), and the horizontal axis indicates the stretching ratio (%).

【図5】延伸率とポリアニリンフィルムの分子配向の状
態との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a stretching ratio and a state of molecular orientation of a polyaniline film.

【図6】本発明の熱電特性測定のための装置を示す。FIG. 6 shows an apparatus for measuring thermoelectric properties according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 尚典 山口県小野田市大字須恵西2593−1 (72)発明者 福岡 直彦 兵庫県神戸市中央区東川崎町1丁目3番3 号 ケミプロ化成株式会社内 Fターム(参考) 4F071 AA58 AC14 AF37 BB02 BB07 BC01 4J002 CM051 EV236 GQ02  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor, Naoori Onoda, Yamaguchi Prefecture, Onoda City, 259-1-1, Suenishi (72) Inventor, Naohiko Fukuoka F term (reference) 4F071 AA58 AC14 AF37 BB02 BB07 BC01 4J002 CM051 EV236 GQ02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 耐熱温度が180〜205℃、熱電特性
における物理的内部因子(Thermoelectri
c Power Factor,以下TPFと略す)が
10−7〜10−4Wm−1Κ−2であり、かつ分子配
向していることを特徴とするドープしたエメラルジン型
導電性ポリアニリン類。
1. A heat resistant temperature of 180 to 205 ° C., a physical internal factor in thermoelectric properties (Thermoelectricity).
c Power Factor, hereinafter referred to as TPF) is 10 -7 to 10 a -4 Wm -1 Κ -2, and emeraldine type conductive polyanilines doped, characterized in that the molecularly oriented.
【請求項2】 前記熱電特性における物理的内部因子
(TPF)が10−6〜10−4Wm−1Κ−2である
請求項1記載のドープしたエメラルジン型導電性ポリア
ニリン類。
2. Physical internal factor (TPF) is emeraldine type conductive polyanilines doped according to claim 1, wherein a 10 -6 ~10 -4 Wm -1 Κ -2 in the thermoelectric properties.
【請求項3】 該当する非延伸ポリアニリン類の熱電特
性における物理的内部因子(TPF)の少なくとも2倍
の熱電特性における物理的内部因子(TPF)をもつこ
とを特徴とする請求項1または2記載のドープしたエメ
ラルジン型導電性ポリアニリン類。
3. The non-stretched polyaniline according to claim 1, which has a physical internal factor (TPF) in thermoelectric properties at least twice that of the thermoelectric properties of the corresponding unstretched polyanilines. Emeraldine-type conductive polyanilines doped with:
【請求項4】 請求項1〜3いずれか記載のドープした
エメラルジン型導電性ポリアニリン類よりなることを特
徴とする熱電材料。
4. A thermoelectric material comprising the doped emeraldine-type conductive polyaniline according to claim 1.
【請求項5】 請求項1〜3いずれか記載のドープした
エメラルジン型導電性ポリアニリン類よりなることを特
徴とする冷却材料。
5. A cooling material comprising the doped emeraldine-type conductive polyaniline according to claim 1.
【請求項6】 ドーパントをポリアニリン類のアニリン
単位に対してモル比で0.3〜0.7含有し、かつ溶媒
をポリアニリン類に対して3〜20重量%含有している
ポリアニリン類を、ドーパントと溶媒のいずれか低い方
の沸点(沸点がないものについては分解温度)以下で、
所期の物性を示すのに充分な延伸を行うことを特徴とす
る請求項1〜3いずれか記載のドープしたエメラルジン
型導電性ポリアニリン類の製造方法。
6. A polyaniline containing a dopant in a molar ratio of 0.3 to 0.7 with respect to the aniline unit of the polyaniline, and a solvent containing 3 to 20% by weight of the polyaniline with the dopant. And the solvent below the lower boiling point (decomposition temperature for those without a boiling point)
The method for producing a doped emeraldine-type conductive polyaniline according to any one of claims 1 to 3, wherein the film is stretched sufficiently to exhibit desired physical properties.
【請求項7】 ドーパントをポリアニリン類のアニリン
単位に対してモル比で0.3〜0.7含有し、かつ溶媒
をポリアニリン類に対して3〜20重量%含有している
ポリアニリン類を、ドーパントと溶媒のいずれか低い方
の沸点(沸点がないものについては分解温度)以下で、
所期の物性を示すのに充分な延伸を行い、ついで20〜
10−4Torrの減圧下に100〜190℃で熱処理
することを特徴とするドープしたエメラルジン型導電性
ポリアニリン類の製造方法。
7. A polyaniline containing a dopant in a molar ratio of 0.3 to 0.7 with respect to the aniline unit of the polyaniline and a solvent in an amount of 3 to 20% by weight with respect to the polyaniline is used as a dopant. And the solvent below the lower boiling point (decomposition temperature for those without a boiling point)
Stretching sufficient to show the desired physical properties is performed.
A method for producing a doped emeraldine-type conductive polyaniline, which is heat-treated at 100 to 190 ° C. under a reduced pressure of 10 −4 Torr.
【請求項8】 前記延伸が一軸延伸である請求項6また
は7記載のドープしたエメラルジン型導電性ポリアニリ
ン類の製造方法。
8. The method for producing a doped emeraldine-type conductive polyaniline according to claim 6, wherein the stretching is uniaxial stretching.
JP2000140831A 2000-05-12 2000-05-12 Polyaniline, thermoelectric material using it, and manufacturing method thereof Pending JP2001326393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000140831A JP2001326393A (en) 2000-05-12 2000-05-12 Polyaniline, thermoelectric material using it, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000140831A JP2001326393A (en) 2000-05-12 2000-05-12 Polyaniline, thermoelectric material using it, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2001326393A true JP2001326393A (en) 2001-11-22

Family

ID=18648052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000140831A Pending JP2001326393A (en) 2000-05-12 2000-05-12 Polyaniline, thermoelectric material using it, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2001326393A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
US8287768B2 (en) 2007-09-14 2012-10-16 3M Innovative Properties Company Polythienylenevinylene thermoelectric conversion material
WO2013047730A1 (en) 2011-09-28 2013-04-04 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
WO2014126211A1 (en) * 2013-02-15 2014-08-21 国立大学法人奈良先端科学技術大学院大学 N-type thermoelectric conversion material, thermoelectric conversion component, and manufacturing method for n-type thermoelectric conversion material
WO2015178795A1 (en) * 2014-05-23 2015-11-26 Открытое акционерное общество "Инфотэк Груп" Method for manufacturing a thermoelectric generator
WO2015178793A1 (en) * 2014-05-23 2015-11-26 Открытое акционерное общество "Инфотэк Груп" Method for manufacturing a thermoelectric cooling element
KR20160127740A (en) 2014-02-28 2016-11-04 고쿠리츠다이가쿠호징 나라 센탄카가쿠기쥬츠 다이가쿠인 다이가쿠 Thermoelectric conversion material and thermoelectric conversion element
WO2020085342A1 (en) * 2018-10-22 2020-04-30 国立大学法人東京大学 Electrically conductive polymer material and method for producing same, polymer film and method for producing same, electrically conductive polymer film, photoelectric conversion element, and field effect transistor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP4715157B2 (en) * 2004-10-18 2011-07-06 株式会社豊田中央研究所 Thermoelectric element
US8287768B2 (en) 2007-09-14 2012-10-16 3M Innovative Properties Company Polythienylenevinylene thermoelectric conversion material
WO2013047730A1 (en) 2011-09-28 2013-04-04 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
WO2014126211A1 (en) * 2013-02-15 2014-08-21 国立大学法人奈良先端科学技術大学院大学 N-type thermoelectric conversion material, thermoelectric conversion component, and manufacturing method for n-type thermoelectric conversion material
JPWO2014126211A1 (en) * 2013-02-15 2017-02-02 国立大学法人 奈良先端科学技術大学院大学 N-type thermoelectric conversion material, thermoelectric conversion element, and method for producing n-type thermoelectric conversion material
KR20160127740A (en) 2014-02-28 2016-11-04 고쿠리츠다이가쿠호징 나라 센탄카가쿠기쥬츠 다이가쿠인 다이가쿠 Thermoelectric conversion material and thermoelectric conversion element
WO2015178795A1 (en) * 2014-05-23 2015-11-26 Открытое акционерное общество "Инфотэк Груп" Method for manufacturing a thermoelectric generator
WO2015178793A1 (en) * 2014-05-23 2015-11-26 Открытое акционерное общество "Инфотэк Груп" Method for manufacturing a thermoelectric cooling element
KR101838828B1 (en) 2014-05-23 2018-03-14 오트크리토에 악시오네르노에 오브쉐스트보 “인포텍 그룹” Method for manufacturing a thermoelectric cooling element
WO2020085342A1 (en) * 2018-10-22 2020-04-30 国立大学法人東京大学 Electrically conductive polymer material and method for producing same, polymer film and method for producing same, electrically conductive polymer film, photoelectric conversion element, and field effect transistor
JP7464987B2 (en) 2018-10-22 2024-04-10 国立大学法人 東京大学 Conductive polymer material and method for producing same, photoelectric conversion element and field effect transistor

Similar Documents

Publication Publication Date Title
Tremel et al. Charge transport anisotropy in highly oriented thin films of the acceptor polymer P (NDI2OD‐T2)
Liang et al. NIR Light‐Triggered Shape Memory Polymers Based on Mussel‐Inspired Iron–Catechol Complexes
Constantino et al. Phase transition in poly (vinylidene fluoride) investigated with micro-Raman spectroscopy
Hu et al. Rigid‐rod polymers: synthesis, processing, simulation, structure, and properties
Da Silva et al. Effect of drawing on the dielectric properties and polarization of pressed solution cast β-PVDF films
Zhao et al. Effect of crystalline phase on the dielectric and energy storage properties of poly (vinylidene fluoride)
Liu et al. Strong tough thermogalvanic hydrogel thermocell with extraordinarily high thermoelectric performance
Sannigrahi et al. Polybenzimidazole gel membrane for the use in fuel cell
Sava et al. Aromatic polyamides with pendent acetoxybenzamide groups and thin films made therefrom
Dingler et al. Semiconducting polymer spherulites—From fundamentals to polymer electronics
Lee et al. Highly ordered nanoconfinement effect from evaporation-induced self-assembly of block copolymers on in situ polymerized PEDOT: Tos
JP2001326393A (en) Polyaniline, thermoelectric material using it, and manufacturing method thereof
JP4282948B2 (en) Thermoelectric conversion material and thermoelectric conversion element
Brinkmann et al. Structure and Morphology in Highly Oriented Films of Poly (9, 9-bis (n-octyl) fluorene-2, 7-diyl) and Poly (9, 9-bis (2-ethylhexyl) fluorene-2, 7-diyl) Grown on Friction Transferred Poly (tetrafluoroethylene)
Jia et al. Organic–Inorganic Rare‐Earth Double Perovskite Ferroelectric with Large Piezoelectric Response and Ferroelasticity for Flexible Composite Energy Harvesters
Hussein et al. New polyamides and polyoxazoles based on diphenyl ether segments in the polymers' backbone
Ahmed et al. Effect of dopant concentration on the electrical properties of polyvinyl alcohol (PVA)
JP4766735B2 (en) Polyaniline film-like material and thermoelectric material using it
JP2000323758A (en) Organic thermoelectric material and manufacture thereof
Damaceanu et al. SOLID‐STATE PROPERTIES OF MESOMORPHIC COPOLYMERS CONTAINING OXADIAZOLE AND FLUORENE UNITS
JP2003332638A (en) Thermoelectric conversion material and thermoelectric conversion element
Constantin et al. Advanced materials based on new structurally designed poly (naphthylimide‐amide) s
Frübing et al. Relaxation behaviour of thermoplastic polyurethanes with covalently attached nitroaniline dipoles
Epstein et al. Structure, order and the metallic state in polyaniline and its derivatives
Yang et al. Nanowire Shish‐Kebab Structures and Molecular Orientation Control of All‐Conjugated Diblock Copolymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302