JP2001325998A - Manufacturing method of pigment sensitization type solar battery - Google Patents
Manufacturing method of pigment sensitization type solar batteryInfo
- Publication number
- JP2001325998A JP2001325998A JP2000145896A JP2000145896A JP2001325998A JP 2001325998 A JP2001325998 A JP 2001325998A JP 2000145896 A JP2000145896 A JP 2000145896A JP 2000145896 A JP2000145896 A JP 2000145896A JP 2001325998 A JP2001325998 A JP 2001325998A
- Authority
- JP
- Japan
- Prior art keywords
- dye
- film
- solar cell
- particles
- sensitized solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、太陽光または人工
光のエネルギーを電気エネルギーに変換する色素増感型
太陽電池の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dye-sensitized solar cell which converts energy of sunlight or artificial light into electric energy.
【0002】[0002]
【従来の技術】色素増感型太陽電池は、導電性を有する
基材の表面に金属酸化物膜を形成してなる一方の電極
と、この金属酸化物膜に吸着した色素の層と、電解質層
を介して対極を備えるものであり、太陽光または人工光
のエネルギーを電気エネルギーに変換するものとして近
年注目されている。2. Description of the Related Art A dye-sensitized solar cell comprises one electrode formed by forming a metal oxide film on the surface of a conductive substrate, a dye layer adsorbed on the metal oxide film, and an electrolyte. It has a counter electrode via a layer, and has recently attracted attention as a device for converting the energy of sunlight or artificial light into electric energy.
【0003】上記色素増感型太陽電池は、Natur
e,353(1991)P737のB.O’Regan
とM.Glatzelの報告以来、各国で追試や改良が
行われている。日本においても、有機色素を用いて増感
する太陽電池が特開平10−92477号公報等で開示
されている。[0003] The above dye-sensitized solar cell is available from Natur.
e, 353 (1991) p. O'Regan
And M. Since Glatzel's report, there have been additional tests and improvements in various countries. In Japan, a solar cell sensitized by using an organic dye is disclosed in Japanese Patent Application Laid-Open No. Hei 10-92477.
【0004】このような色素増感型太陽電池は、フッ素
が添加された酸化スズ(フッ素ドープ酸化スズと記す)
をコートしたガラス基板(透明導電ガラス)の表面に、
酸化チタン等の金属酸化物の粒子を分散したゾルをドク
ターブレード法等によって塗布し、この金属酸化物を塗
布した基板を500℃程度の温度で焼成して電極を形成
するものである。そして、光電変換効率を向上させるた
めに、上記電極を四塩化チタンの水溶液に浸漬すること
が採用されている。[0004] Such a dye-sensitized solar cell is made of tin oxide doped with fluorine (hereinafter referred to as fluorine-doped tin oxide).
On the surface of a glass substrate (transparent conductive glass) coated with
A sol in which particles of a metal oxide such as titanium oxide are dispersed is applied by a doctor blade method or the like, and the substrate coated with the metal oxide is fired at a temperature of about 500 ° C. to form an electrode. In order to improve the photoelectric conversion efficiency, immersing the electrode in an aqueous solution of titanium tetrachloride is employed.
【0005】また、上記色素増感型太陽電池の電極を色
素増感するために用いる色素は、例えば、Ru(4,
4’−dicarboxil−2−2’−bipyri
dine)2 (NCS)2 などのRu錯体が多用されて
いる。上記特開平10−92477号公報で開示された
太陽電池は、この色素を有機色素に置き換えるものであ
る。The dye used for dye-sensitizing the electrode of the dye-sensitized solar cell is, for example, Ru (4,4).
4'-dicarboxil-2-2'-bipyri
Ru complexes such as (dine) 2 (NCS) 2 are frequently used. The solar cell disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 10-92477 replaces this dye with an organic dye.
【0006】また、上記色素増感型太陽電池の対極は、
透明導電ガラスに白金を蒸着したものが汎用されてい
る。実験等の簡易的に作製する場合、対極は、透明導電
ガラスの表面を鉛筆で黒く塗ることでカーボンを付着さ
せたものを用いることがある。上記色素増感型太陽電池
の電解質は、例えば、エチレンカーボネートとアセトニ
トリルの混合溶液にヨウ化テトラプロピルアンモニウム
とヨウ素を混合したものが用いられ、液漏れを防止する
ために固体化したものが利用されているものもある(例
えば、特開2000-90990号公報等)。[0006] The counter electrode of the above dye-sensitized solar cell is:
What deposited platinum on transparent conductive glass is used widely. In the case of simple production such as an experiment, the counter electrode may use a transparent conductive glass surface coated with carbon by applying black paint with a pencil. As the electrolyte of the dye-sensitized solar cell, for example, a mixture of tetrapropylammonium iodide and iodine in a mixed solution of ethylene carbonate and acetonitrile is used, and a solidified one is used to prevent liquid leakage. Some of them (for example, JP-A-2000-90990).
【0007】[0007]
【発明が解決しようとする課題】上記色素増感型太陽電
池は、P−N接合型半導体太陽電池と比較して、製造に
真空を必要としないので製造のためのエネルギーが小さ
い、資源枯渇が危惧されているシリコン等の材料を用い
ない、コスト的にも低コストで作製が可能である等の理
由から、新しい太陽電池として注目されている。しか
し、上記色素増感型太陽電池の実用化にあたっては、よ
り発生電流の増大したものが要望されており、また、同
出力であればその装置が小型のものが要望されている。
そのため、上記色素増感型太陽電池として、光電変換効
率がより向上したものが求められている。The above-mentioned dye-sensitized solar cell does not require a vacuum for its production as compared with a PN junction type semiconductor solar cell, so that the energy for production is small and resources are depleted. Attention has been paid to new solar cells because they do not use materials such as silicon, which are concerned, and can be manufactured at low cost. However, when the above-mentioned dye-sensitized solar cell is put into practical use, it is demanded that the generated current be further increased, and if the output is the same, the device is required to be small.
Therefore, there is a demand for a dye-sensitized solar cell having improved photoelectric conversion efficiency.
【0008】本発明は上記の事情に鑑みてなされたもの
で、その目的とするところは、光電変換効率がより良好
な色素増感型太陽電池の製造方法を提供することにあ
る。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a dye-sensitized solar cell having a better photoelectric conversion efficiency.
【0009】[0009]
【課題を解決するための手段】本発明者は、上記目的を
達成するために鋭意研究を重ねた結果、導電性及び透明
性を有する基材の表面に粒子を分散したゾルをコートし
て粒子膜を形成した後に、金属のフッ化物溶液又はフッ
化錯体溶液と粒子膜を接触させて上記粒子の表面に微細
構造を有する金属酸化物膜を析出させて被膜を形成する
と、この被膜は、優れた光電変換効率を発揮することを
見出し、本発明を完成するに至ったものである。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, coated a sol in which particles are dispersed on the surface of a conductive and transparent base material to obtain particles. After the film is formed, a metal fluoride solution or a fluoride complex solution is brought into contact with the particle film to deposit a metal oxide film having a fine structure on the surface of the particle, thereby forming a film. It has been found that the present invention exhibits excellent photoelectric conversion efficiency, and has completed the present invention.
【0010】なかでも、色素増感型太陽電池としては、
粒子膜を形成する酸化スズあるいは酸化チタンの粒子
に、後述する液相析出法で酸化チタンの微粒子を析出さ
せて作製した膜が、高い光電変換効率を発揮することを
見出したものである。この光電変換効率の向上は、粒子
膜の粒子の表面に微粒子からなる金属酸化物膜を形成さ
せることで被膜の表面積が増すため色素吸着量が多くな
ることによるものか、あるいは、、粒子の表面に微粒子
からなる金属酸化物膜を形成させることで、粒子の粒子
間界面の面積が拡大することで粒子膜内の内部抵抗の抑
制効果(インターパーティクルネッキングの拡大効果)
によるものか、いずれかであると推考される。[0010] Above all, as a dye-sensitized solar cell,
It has been found that a film produced by depositing fine particles of titanium oxide on a tin oxide or titanium oxide particle forming a particle film by a liquid phase deposition method described later exhibits high photoelectric conversion efficiency. This improvement in photoelectric conversion efficiency is due to the fact that the surface area of the film is increased by forming a metal oxide film composed of fine particles on the surface of the particles of the particle film, thereby increasing the amount of dye adsorbed. By forming a metal oxide film composed of fine particles on the surface, the area of the interface between the particles increases, thereby suppressing the internal resistance in the particle film (expanding effect of interparticle necking)
It is presumed to be either.
【0011】請求項1記載の色素増感型太陽電池の製造
方法は、導電性及び透明性を有する基材の表面に金属酸
化物の被膜を形成して一方の電極とし、この被膜の表面
に色素を吸着した後に、電解質層を介して対極を形成す
る色素増感型太陽電池の製造方法において、上記基材の
表面に粒子を分散したゾルをコートして粒子膜を形成し
た後に、金属のフッ化物溶液又はフッ化錯体溶液と粒子
膜を接触させて上記粒子の表面に微細構造を有する金属
酸化物膜を析出させて被膜を形成して一方の電極とし、
次いでこの電極の被膜の表面に色素を吸着することを特
徴とする。According to a first aspect of the present invention, there is provided a method for manufacturing a dye-sensitized solar cell, wherein a metal oxide film is formed on a surface of a conductive and transparent substrate to form one electrode, and the surface of the film is formed on the electrode. After adsorbing the dye, in the method of manufacturing a dye-sensitized solar cell forming a counter electrode through the electrolyte layer, after forming a particle film by coating a sol in which particles are dispersed on the surface of the substrate, the metal A fluoride solution or a fluoride complex solution is brought into contact with the particle film to deposit a metal oxide film having a fine structure on the surface of the particle to form a film and form one electrode,
Next, a dye is adsorbed on the surface of the electrode coating.
【0012】請求項2記載の色素増感型太陽電池の製造
方法は、請求項1記載の色素増感型太陽電池の製造方法
において、上記粒子が、酸化スズ、酸化チタンの少なく
ともいずれか一つであることを特徴とする。上記によっ
て、粒子が酸化チタンの場合は、粒子膜の表面に金属酸
化膜が十分に覆っていない部分が生じたとしてもその部
分への色素からの電子注入の速度が大きくなるので、光
電変換効率の良好な色素増感型太陽電池が得られるもの
である。また、上記によって、粒子が酸化スズの場合
は、耐熱性が高く、内部電気抵抗が小さくなるので、光
電変換効率の良好な色素増感型太陽電池が得られるもの
である。According to a second aspect of the present invention, there is provided a method of manufacturing a dye-sensitized solar cell according to the first aspect, wherein the particles are at least one of tin oxide and titanium oxide. It is characterized by being. As described above, when the particles are titanium oxide, even if a part of the surface of the particle film is not sufficiently covered with the metal oxide film, the speed of the electron injection from the dye into the part increases, so that the photoelectric conversion efficiency is increased. Is obtained. Further, as described above, when the particles are tin oxide, the heat resistance is high and the internal electric resistance is low, so that a dye-sensitized solar cell having good photoelectric conversion efficiency can be obtained.
【0013】請求項3記載の色素増感型太陽電池の製造
方法は、請求項1又は請求項2記載の色素増感型太陽電
池の製造方法において、上記金属酸化物膜は、酸化チタ
ンの膜であることを特徴とする。上記によって、色素か
らの電子注入速度が大きくなるので、光電変換効率の良
好な色素増感型太陽電池が得られるものである。According to a third aspect of the present invention, in the method of manufacturing a dye-sensitized solar cell according to the first or second aspect, the metal oxide film is a titanium oxide film. It is characterized by being. As described above, since the electron injection speed from the dye is increased, a dye-sensitized solar cell having good photoelectric conversion efficiency can be obtained.
【0014】請求項4記載の色素増感型太陽電池の製造
方法は、請求項3記載の色素増感型太陽電池の製造方法
において、上記金属酸化物膜の析出が、下記(1)で表
されるチタンフッ化アンモニウムの加水分解平衡反応を
右に進める添加剤を添加して酸化チタン膜を形成するこ
とを特徴とする。(NH4)2 TiF6 +2H2 O ⇔
TiO2 +4HF+2NH4 F (1)請求項5記載
の色素増感型太陽電池の製造方法は、請求項1乃至請求
項4いずれか記載の色素増感型太陽電池の製造方法にお
いて、上記金属酸化物膜の膜厚を1〜100nmに形成
してなることを特徴とする。According to a fourth aspect of the present invention, in the method of manufacturing a dye-sensitized solar cell according to the third aspect, the deposition of the metal oxide film is represented by the following (1). And a titanium oxide film is formed by adding an additive which promotes the hydrolysis equilibrium reaction of ammonium ammonium fluoride to the right. (NH 4 ) 2 TiF 6 + 2H 2 O
TiO 2 + 4HF + 2NH 4 F (1) The method for producing a dye-sensitized solar cell according to claim 5 is the method for producing a dye-sensitized solar cell according to any one of claims 1 to 4, wherein The film is formed to have a thickness of 1 to 100 nm.
【0015】[0015]
【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1は、本発明の実施の形態の一例を摸
式的に示した概略断面図であり、図2は、被膜の作製工
程をステップ毎に示した概略断面図である。Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view schematically showing an example of an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing a film forming process for each step.
【0016】本発明の対象となる色素増感型太陽電池
は、導電性及び透明性を有する基材1の表面に金属酸化
物を含む被膜5を形成してなる一方の電極と、この被膜
5に吸着した色素の層6と、電解質層7を介して対極8
を備えるものである。The dye-sensitized solar cell which is the object of the present invention has one electrode formed by forming a coating 5 containing a metal oxide on the surface of a substrate 1 having conductivity and transparency; The dye layer 6 adsorbed on the electrode and the counter electrode 8 via the electrolyte layer 7
It is provided with.
【0017】上記基材1は、導電性及び透明性を有する
ものであり、その材料としては、後述の液相析出法で用
いる反応液と反応しないか又は反応が非常に遅いもので
あれば、どのような材料のものでも採用することができ
るが、導電性、透明性、及び耐熱性の点からスズ系酸化
物をコートしたコート層1bを有するガラス1aが好ま
しい。上記スズ系酸化物としては、例えば、インジウム
/スズ複合酸化物(ITOと記す)、アンチモン/スズ
複合酸化物(ATOと記す)、フッ素ドープ酸化スズ等
が挙げられ、なかでも、数百℃の熱によっても導電性が
低下しない点や取扱い易い点からはフッ素ドープ酸化ス
ズが好ましく、大量に生産されているので安価で入手の
し易い点からはITOが好ましい。The base material 1 has conductivity and transparency, and if the material does not react with the reaction solution used in the liquid phase deposition method described below or reacts very slowly, Any material can be used, but glass 1a having a coating layer 1b coated with a tin-based oxide is preferable in terms of conductivity, transparency, and heat resistance. Examples of the tin-based oxide include indium / tin composite oxide (described as ITO), antimony / tin composite oxide (described as ATO), and fluorine-doped tin oxide. Fluorine-doped tin oxide is preferred from the viewpoint that the conductivity is not reduced by heat and that it is easy to handle, and ITO is preferred because it is produced in large quantities and is inexpensive and easily available.
【0018】本発明においては、導電性及び透明性を有
する基材1の表面に粒子3を分散したゾルをコートし
て、図2(a)に示すような粒子3が積み重なった粒子
膜2を形成する。In the present invention, a surface of a substrate 1 having conductivity and transparency is coated with a sol in which particles 3 are dispersed, and a particle film 2 in which the particles 3 are stacked as shown in FIG. Form.
【0019】上記ゾルは、溶液中に固体成分である粒子
(粉体)3が分散されたものを用いる。溶媒としては、
有機溶媒あるいは水をそれぞれ単独で用いてもよいし、
有機溶媒と水の混合物を用いてもよい。また分散される
固体の粒子3は、反応液と反応しない又は反応しにくい
ものであれば、どのようなものでも採用することがで
き、例えばセラミックや金属や有機ポリマーなどの粒子
3を用いることができる。特に、上記粒子3としては、
焼成などの熱処理により性質や粒径等が変化しにくいと
いう理由からセラミックの粒子3を用いるのが好まし
い。上記セラミックの粒子3としては、例えば、酸化ス
ズ、酸化チタン、シリカ、アルミナ、アンチモン/スズ
複合酸化物(ATO)、酸化亜鉛等が挙げられ、これら
を単独、または二種類以上を複合したり混合したりして
用いることができる。なかでも、上記粒子3としては、
酸化スズまたは酸化チタンが、電池に高い光電変換効率
を発現する点で特に好ましい。上記粒子3の粒径は、任
意に設定されるが、被膜5の表面積を大きくして色素の
吸着量を増加させるという理由から、粒子3の粒径は、
小さいほど好ましい。しかし粒子3の粒径が小さ過ぎる
と、ゾルをコートすることが難しくなって粒子膜2を形
成するのが困難となる恐れがある。そこで粒子3の粒径
は、5〜100nmに設定するのが好ましい。The sol used is a solution in which particles (powder) 3 as a solid component are dispersed in a solution. As the solvent,
Organic solvent or water may be used alone,
A mixture of an organic solvent and water may be used. As the solid particles 3 to be dispersed, any particles can be used as long as they do not react with or hardly react with the reaction solution. For example, particles 3 of ceramic, metal, organic polymer, or the like can be used. it can. In particular, as the particles 3,
It is preferable to use the ceramic particles 3 because the properties, the particle size and the like are hardly changed by heat treatment such as firing. Examples of the ceramic particles 3 include tin oxide, titanium oxide, silica, alumina, antimony / tin composite oxide (ATO), zinc oxide, and the like. These may be used alone, or two or more kinds may be compounded or mixed. Can be used. Above all, as the above particles 3,
Tin oxide or titanium oxide is particularly preferred in that the battery exhibits high photoelectric conversion efficiency. The particle diameter of the particles 3 is arbitrarily set. However, the particle diameter of the particles 3 is increased because the surface area of the coating 5 is increased to increase the amount of dye adsorbed.
Smaller is more preferable. However, when the particle size of the particles 3 is too small, it is difficult to coat the sol, and it may be difficult to form the particle film 2. Therefore, the particle size of the particles 3 is preferably set to 5 to 100 nm.
【0020】上記ゾルは、被膜5の内部で光の散乱を利
用して光電変換効率をより向上させるために、光を散乱
する1μm以上の粒子を添加してもよい。また、上記ゾ
ルは、電池から取り出される電流及び電圧を増加するた
めに、上記粒子3と異なる粒径で異なるバンドキャップ
エネルギーを有する金属酸化物を添加してもよい。ま
た、上記ゾルは、粒子膜2に多孔性を付与するために、
ポリエチレングリコール等の有機高分子を添加してもよ
い。上記有機高分子は、ゾルをコートした後に数百℃の
温度で焼成することで炭酸ガスに分解され、粒子膜2の
多孔度を増加することができ、その結果色素増感型太陽
電池の光電変換効率を向上させることができるものであ
る。The sol may contain light scattering particles of 1 μm or more in order to further improve photoelectric conversion efficiency by utilizing light scattering inside the coating 5. Further, the sol may include a metal oxide having a particle diameter different from that of the particles 3 and having a different band cap energy in order to increase the current and voltage taken out of the battery. The sol is used to impart porosity to the particle membrane 2.
An organic polymer such as polyethylene glycol may be added. The organic polymer is decomposed into carbon dioxide by baking at a temperature of several hundred degrees Celsius after coating the sol, and the porosity of the particle film 2 can be increased. As a result, the photoelectric conversion of the dye-sensitized solar cell can be performed. The conversion efficiency can be improved.
【0021】上記ゾルを調製する方法としては、溶液中
に粒子3をほぼ均一に分散させることができるのであれ
ば、どのような方法を用いてよいが、例えば、粒子3を
空気中や不活性ガス中で焼成することにより結晶化さ
せ、この結晶化した粒子3を溶媒に配合してペイントシ
ェイカーなどの攪拌機で攪拌することによって、溶液中
に粒子3が分散したゾルを調製することができる。ま
た、ゾルの調製方法としては、結晶化する前の粒子3を
溶媒に配合してペイントシェイカーなどの攪拌機で攪拌
して溶液中に粒子3を分散させ、この後、溶液中の粒子
3をオートクレーブ中で結晶化させるようにしてゾルを
調製するようにしてもよい。ゾルをコートして形成され
る粒子膜2の透明性をより高くしたり表面積をより大き
くしたりする場合は、溶液中の粒子3をオートクレーブ
処理して結晶化させる方法を採用することが好ましく、
ゾルをコートして形成される粒子膜2を安価に作製する
場合は、空気中や不活性ガス中で焼成して結晶化させた
粒子3を溶媒に分散させる方法を採用することが好まし
い。As a method for preparing the above sol, any method may be used as long as the particles 3 can be substantially uniformly dispersed in a solution. By baking in a gas for crystallization, the crystallized particles 3 are mixed with a solvent, and stirred with a stirrer such as a paint shaker to prepare a sol in which the particles 3 are dispersed in a solution. As a method for preparing the sol, the particles 3 before crystallization are mixed with a solvent and stirred with a stirrer such as a paint shaker to disperse the particles 3 in the solution. Thereafter, the particles 3 in the solution are autoclaved. The sol may be prepared by crystallization in the sol. In order to increase the transparency or increase the surface area of the particle film 2 formed by coating the sol, it is preferable to employ a method of autoclaving the particles 3 in the solution and crystallizing the particles.
When the particle film 2 formed by coating the sol is produced at low cost, it is preferable to adopt a method of dispersing the crystallized particles 3 in a solvent by firing in air or an inert gas.
【0022】基材1にゾルをコートする方法は、例え
ば、グラビアコート法、スピンコート法、ドクタブレー
ド法、ディップコーティング法等の従来から行なわれて
いる方法を適宜採用することができる。上記粒子膜2の
膜厚は、2μm以上に設定するのが好ましく、これを考
慮してゾルの塗布量を調整する。上記粒子膜2の膜厚が
2μm未満であると光電変換効率が低下する恐れがあ
る。また、粒子膜2の膜厚の上限は、基材1と被膜5の
密着性が低下しない程度であればよく、例えば20μm
に設定することができる。上記粒子膜2を形成した後、
基材1と粒子膜2の密着性を高めるために、必要に応じ
て、焼成工程を行なってもよい。As a method of coating the substrate 1 with the sol, for example, a conventionally used method such as a gravure coating method, a spin coating method, a doctor blade method, a dip coating method or the like can be appropriately adopted. The thickness of the particle film 2 is preferably set to 2 μm or more, and the coating amount of the sol is adjusted in consideration of this. If the thickness of the particle film 2 is less than 2 μm, the photoelectric conversion efficiency may be reduced. The upper limit of the film thickness of the particle film 2 may be such that the adhesion between the substrate 1 and the film 5 does not decrease, for example, 20 μm.
Can be set to After forming the particle film 2,
In order to enhance the adhesion between the substrate 1 and the particle film 2, a firing step may be performed as necessary.
【0023】次に、本発明においては、上記粒子膜2を
形成した後に、金属のフッ化物溶液又はフッ化錯体溶液
と粒子膜2を接触させて、図2(b)に示すような上記
粒子3の表面に微細構造を有する金属酸化物膜4を析出
させて被膜5を形成する。Next, in the present invention, after the particle film 2 is formed, the particle film 2 is brought into contact with a metal fluoride solution or a fluoride complex solution to form the particle film as shown in FIG. A metal oxide film 4 having a fine structure is deposited on the surface of 3 to form a film 5.
【0024】上記微細構造を有する金属酸化物膜4を析
出させる方法としては、液相析出法が用いられる。この
液相析出法で反応液として用いる金属のフッ化物溶液又
はフッ化錯体溶液は、水や有機溶媒等の溶媒に金属のフ
ッ化物あるいは金属のフッ化錯体を混合して調製される
ものであって、金属酸化物膜4として酸化チタン(チタ
ニア)の膜を形成する場合には、フッ化チタン酸水溶液
やチタンフッ化アンモニウム水溶液などを用いることが
できる。均一な膜厚や性質の金属酸化物膜4を短時間で
形成するためには、チタンフッ化アンモニウム水溶液等
のフッ化錯体溶液とこれらの加水分解平衡反応を移動さ
せる添加剤を用いるのが好ましい。As a method for depositing the metal oxide film 4 having the fine structure, a liquid phase deposition method is used. The metal fluoride solution or complex fluoride solution used as a reaction solution in this liquid phase deposition method is prepared by mixing a metal fluoride or a complex metal fluoride in a solvent such as water or an organic solvent. When a film of titanium oxide (titania) is formed as the metal oxide film 4, an aqueous solution of titanic acid fluoride or an aqueous solution of titanium ammonium fluoride can be used. In order to form the metal oxide film 4 having a uniform film thickness and properties in a short time, it is preferable to use a fluoride complex solution such as an aqueous solution of ammonium titanium fluoride and an additive for moving these hydrolysis equilibrium reactions.
【0025】上記液相析出法とは、金属のフッ化物溶液
又はフッ化物錯体溶液の加水分解平衡反応を利用して、
その溶液と基材1や粒子膜2を接触させることで基材1
や粒子膜2の粒子3の表面に金属酸化物膜(特に薄膜)
4を形成させる方法である。加水分解平衡反応を移動さ
せる手段は、どのようなものであっても構わないが、例
えば、温度差によって平衡移動させたり、ほう酸等の平
衡を移動させる添加剤を添加して平衡移動させたりする
方法を採用することができる。The above-mentioned liquid phase precipitation method utilizes the equilibrium reaction of hydrolysis of a metal fluoride solution or a fluoride complex solution.
By bringing the solution into contact with the substrate 1 or the particle film 2,
Metal oxide film (especially thin film) on the surface of particle 3
4 is formed. The means for moving the hydrolysis equilibrium reaction may be any means.For example, the equilibrium movement is performed by a temperature difference, or the equilibrium movement is performed by adding an additive for shifting the equilibrium such as boric acid. A method can be adopted.
【0026】例えば、液相析出法が反応液としてチタン
フッ化アンモニウム水溶液を用いる場合、下記(1)で
表される加水分解平衡反応を右に進める添加剤を添加し
て反応液を酸化チタンの過飽和溶液にし、この溶液と粒
子膜を接触させることによって、粒子膜2の粒子3の表
面に酸化チタンの薄膜を形成する。 (NH4)2 TiF6 +2H2 O ⇔ TiO2 +4HF+2NH4 F (1) この場合、チタンフッ化アンモニウムの濃度は、0.3
モル/リットル未満であることが好ましい。上記濃度
が、0.3モル/リットル以上であると酸化チタンの金
属酸化物膜4を得ることができず、NH4 TiOF3 と
TiOF2 が混在した金属酸化物膜4となる恐れがあ
る。反応液中のチタンフッ化アンモニウム濃度の下限
は、特に設定されないが、十分な製膜速度を得るために
0.08モル/リットル以上であることが好ましい。ま
た反応液に添加される添加剤の使用量が少な過ぎると、
酸化チタンが粒子膜2の粒子3の表面に析出しない恐れ
があり、多過ぎると水溶液中に酸化チタンの沈澱物が生
じると共に均一な厚みの酸化チタンの膜を形成すること
ができない恐れがある。従って、添加剤としてほう酸を
用いる場合は、反応液中のほう酸の濃度が0.01〜
0.4モル/リットルとなるように反応液にほう酸を添
加する。さらに、粒子膜2と反応液を接触させている間
において、反応液の温度は、25℃以上100℃未満で
あることが好ましい。反応液の温度が25℃未満であれ
ば、所定の膜厚の酸化チタンの膜を得るまでに時間がか
かり生産性が低くなる恐れがあり、反応液の温度が10
0℃以上になると、反応液が沸騰してしまって均一な酸
化チタンの膜の析出が妨げられる恐れがある。For example, when an aqueous solution of titanium ammonium fluoride is used as a reaction solution in the liquid phase deposition method, an additive for promoting the hydrolysis equilibrium reaction represented by the following (1) is added to the reaction solution to supersaturate the titanium oxide. A solution is formed, and by contacting the solution with the particle film, a thin film of titanium oxide is formed on the surfaces of the particles 3 of the particle film 2. (NH 4 ) 2 TiF 6 + 2H 2 O⇔TiO 2 + 4HF + 2NH 4 F (1) In this case, the concentration of titanium ammonium fluoride is 0.3
Preferably it is less than mol / l. If the concentration is 0.3 mol / L or more, the metal oxide film 4 of titanium oxide cannot be obtained, and the metal oxide film 4 may be a mixture of NH 4 TiOF 3 and TiOF 2 . The lower limit of the titanium ammonium fluoride concentration in the reaction solution is not particularly set, but is preferably 0.08 mol / L or more in order to obtain a sufficient film forming rate. Also, if the amount of the additive used in the reaction solution is too small,
There is a possibility that the titanium oxide does not precipitate on the surface of the particles 3 of the particle film 2. If the amount is too large, a precipitate of the titanium oxide may be generated in the aqueous solution and a titanium oxide film having a uniform thickness may not be formed. Therefore, when using boric acid as an additive, the concentration of boric acid in the reaction solution is 0.01 to
Boric acid is added to the reaction solution so as to be 0.4 mol / liter. Further, the temperature of the reaction solution is preferably 25 ° C. or more and less than 100 ° C. while the particle film 2 is in contact with the reaction solution. If the temperature of the reaction solution is lower than 25 ° C., it may take time to obtain a titanium oxide film having a predetermined thickness, and the productivity may be reduced.
When the temperature is 0 ° C. or higher, the reaction solution may be boiled, and a uniform deposition of a titanium oxide film may be hindered.
【0027】上述のようにして、本発明は、粒子3の表
面に微細構造を有する金属酸化物膜4を析出させる。上
記金属酸化物4の膜厚は、1〜100nmに設定するこ
とができ、これを考慮して反応液中のフッ化物やフッ化
錯体の濃度を調整したり粒子膜2と溶液の接触時間を調
整する。金属酸化物4の膜厚が1nm未満であれば、十
分に大きな光電変換効率を得られない恐れがあり、金属
酸化物4の膜厚が100nmを超えると、金属酸化物膜
4の形成後の乾燥や焼成による金属酸化物膜4の体積収
縮で粒子膜2が破壊される恐れがある。特に、表面積の
大きな被膜5を得るために粒子3として粒径の小さなも
のを用いた場合は、液相析出法により粒子膜2の構造が
壊れ易いので、金属酸化物4の膜厚は1〜10nmに設
定するのが好ましい。このようにして粒子膜2とその粒
子3の表面の金属酸化物膜4とから構成される被膜5を
有する電極を形成することができる。As described above, according to the present invention, the metal oxide film 4 having a fine structure is deposited on the surface of the particle 3. The thickness of the metal oxide 4 can be set to 1 to 100 nm. In consideration of this, the concentration of the fluoride or the fluoride complex in the reaction solution is adjusted or the contact time between the particle film 2 and the solution is reduced. adjust. If the film thickness of the metal oxide 4 is less than 1 nm, a sufficiently large photoelectric conversion efficiency may not be obtained. If the film thickness of the metal oxide 4 exceeds 100 nm, the post-formation of the metal oxide film 4 may not be obtained. There is a possibility that the particle film 2 is destroyed due to volume shrinkage of the metal oxide film 4 due to drying or baking. In particular, when a particle 3 having a small particle size is used in order to obtain a coating 5 having a large surface area, the structure of the particle film 2 is easily broken by the liquid phase deposition method. Preferably, it is set to 10 nm. Thus, an electrode having the coating 5 composed of the particle film 2 and the metal oxide film 4 on the surface of the particle 3 can be formed.
【0028】次に、本発明においては、この電極の被膜
5の表面に色素を吸着する。上記色素としては、公知の
ものを用いることができ、例えば、Ru(4,4’−d
icarboxil−2−2’−bipyridin
e)2 (NCS)2 などのRu錯体が挙げられる。色素
を吸着させる方法は、例えば、上記色素をエタノール等
の溶媒に溶解させて色素吸着液を作製し、この色素吸着
液に電極を浸漬する方法が挙げられる。Next, in the present invention, a dye is adsorbed on the surface of the coating 5 of the electrode. As the dye, known dyes can be used. For example, Ru (4,4′-d)
icarboxil-2-2'-bipyridin
e) Ru complexes such as 2 (NCS) 2 . The method for adsorbing the dye includes, for example, a method in which the dye is dissolved in a solvent such as ethanol to prepare a dye adsorption solution, and the electrode is immersed in the dye adsorption solution.
【0029】本発明において電解質層7を形成する電解
質は、例えば、エチレンカーボネートとアセトニトリル
の混合溶液にヨウ化テトラプロピルアンモニウムとヨウ
素を混合した電解液を用いることができ、液漏れを防止
するためには、固体化したものが好ましい。In the present invention, the electrolyte forming the electrolyte layer 7 may be, for example, an electrolyte obtained by mixing tetrapropylammonium iodide and iodine in a mixed solution of ethylene carbonate and acetonitrile. Is preferably solidified.
【0030】本発明において形成される対極8は、透明
導電ガラスに白金を蒸着したものが挙げられる。また、
実験等の簡易的に作製する場合、上記対極8としては、
例えば、透明導電ガラスの表面を鉛筆で黒く塗ることで
カーボンを付着させたものを用いることができる。The counter electrode 8 formed in the present invention may be formed by depositing platinum on transparent conductive glass. Also,
In the case of simple production such as an experiment, as the counter electrode 8,
For example, a transparent conductive glass whose surface is painted black with a pencil to which carbon is attached can be used.
【0031】本発明の製造方法で得られる色素増感型太
陽電池は、従来の色素増感型太陽電池と比較して光電変
換効率が優れたものである。The dye-sensitized solar cell obtained by the production method of the present invention has excellent photoelectric conversion efficiency as compared with the conventional dye-sensitized solar cell.
【0032】[0032]
【実施例】本発明の効果を確認するために、スペーサー
を用いて評価用の色素増感型太陽電池を組み立て、評価
試験を行った。EXAMPLES In order to confirm the effects of the present invention, a dye-sensitized solar cell for evaluation was assembled using a spacer, and an evaluation test was performed.
【0033】(実施例1)導電性及び透明性を有する基
材として、縦、横の長さがそれぞれ40mm、35m
m、厚さが1.1mmのITO膜付のガラスを十分に洗
浄、乾燥したものを用いた。ゾルとして酸化チタンゾル
(テイカ株式会社製、品番TK−298)を用い、ゾル
をグラビアコート法でこの基材の表面に20×20mm
の範囲内に膜厚が5μmとなるようにコートした。次
に、これを室温で乾燥した後、空気中で500℃の温度
で1時間焼成して基材の表面に酸化チタンの粒子からな
る粒子膜を形成した。(Example 1) As a substrate having conductivity and transparency, the vertical and horizontal lengths were 40 mm and 35 m, respectively.
A glass with an ITO film having a thickness of 1.1 mm and a thickness of 1.1 mm was sufficiently washed and dried. Titanium oxide sol (manufactured by Teica Co., Ltd., product number TK-298) was used as the sol, and the sol was gravure coated on the surface of the substrate by 20 × 20 mm
Was coated so as to have a thickness of 5 μm. Next, this was dried at room temperature and then fired in air at a temperature of 500 ° C. for 1 hour to form a particle film made of titanium oxide particles on the surface of the substrate.
【0034】次に、上記粒子膜を形成した基材に液相析
出法で酸化チタンの薄膜を以下のようにして形成した。
先ず、濃度が0.4モル/リットルのチタンフッ化アン
モニウムの水溶液を62.5ミリリットル用意し、これ
に濃度が0.5モル/リットルのほう酸水溶液を100
ミリリットル加え、これを水で希釈して250ミリリッ
トルの反応液を調製した。この反応液中のチタンフッ化
アンモニウムの濃度は0.1モル/リットルで、またほ
う酸の濃度は0.2モル/リットルであった。この反応
液に粒子膜が形成された上記基材を浸漬し、粒子膜の粒
子の表面に膜厚が約10nmの酸化チタンの薄膜を析出
させた。この後、これを空気中で300℃の温度で焼成
して粒子の表面に酸化チタンの薄膜である金属酸化物膜
を形成し、基材の表面に粒子膜と金属酸化物膜からなる
被膜を有する電極を作製した。Next, a thin film of titanium oxide was formed on the substrate on which the particle film was formed by a liquid phase deposition method as follows.
First, 62.5 ml of an aqueous solution of titanium ammonium fluoride having a concentration of 0.4 mol / l was prepared, and 100 ml of an aqueous solution of boric acid having a concentration of 0.5 mol / l was added thereto.
Milliliter was added and diluted with water to prepare a 250 ml reaction solution. The concentration of ammonium titanium fluoride in this reaction solution was 0.1 mol / l, and the concentration of boric acid was 0.2 mol / l. The substrate on which the particle film was formed was immersed in the reaction solution, and a thin film of titanium oxide having a thickness of about 10 nm was deposited on the surface of the particles of the particle film. Thereafter, this is fired at a temperature of 300 ° C. in air to form a metal oxide film, which is a thin film of titanium oxide, on the surface of the particles, and a film composed of the particle film and the metal oxide film is formed on the surface of the substrate The electrode which has was produced.
【0035】次に、色素の吸着を行った。ルテニウム色
素(Solaronix株式会社製、品番Ruthen
ium535)0.184gを1リットルのエタノール
に溶解させて色素吸着液とした。作製した電極をこの色
素吸着液に1昼夜浸漬することで、電極の表面に色素を
吸着させた。その後、この色素が吸着した電極をエタノ
ールで洗浄し、室温で乾燥した。Next, the dye was adsorbed. Ruthenium dye (manufactured by Solaronix, part number Ruthen
Ium535) 0.184 g was dissolved in 1 liter of ethanol to obtain a dye-adsorbing solution. The prepared electrode was immersed in the dye-adsorbing liquid for one day to allow the dye to be adsorbed on the surface of the electrode. Thereafter, the electrode on which the dye was adsorbed was washed with ethanol and dried at room temperature.
【0036】次に、電解質層を形成するために、電解液
を調製した。エチレンカーボネート80体積%とアセト
ニトリル20体積%の混合溶液に、ヨウ化テトラプロピ
ルアンモニウムを0.46モル/リットル、及びヨウ素
を0.06モル/リットルとなるように溶解して電解液
とした。Next, an electrolytic solution was prepared to form an electrolyte layer. In a mixed solution of 80% by volume of ethylene carbonate and 20% by volume of acetonitrile, tetrapropylammonium iodide was dissolved at a concentration of 0.46 mol / l and iodine at a concentration of 0.06 mol / l to prepare an electrolytic solution.
【0037】対極は、以下のものを準備した。縦、横の
長さがそれぞれ40mm、35mm、厚さが1.1mm
のITO膜付のガラスを十分に洗浄、乾燥した。このガ
ラスの表面を2Bの鉛筆で黒く塗ることでカーボンを付
着させて対極とした。As the counter electrode, the following were prepared. Vertical and horizontal lengths are 40 mm and 35 mm, respectively, and thickness is 1.1 mm
Was thoroughly washed and dried. The surface of this glass was painted black with a 2B pencil to attach carbon, and used as a counter electrode.
【0038】スペーサーは、以下のものを準備した。
縦、横の長さがそれぞれ30mm、30mm、厚さが
0.5mmのシリコーンゴムの中心部に、20mm×2
0mmで切り抜いてスペーサーとした。このスペーサー
は、20mm×20mmの窓とその周囲に5mmの枠が
ある構造のものである。The following spacers were prepared.
20mm x 2mm at the center of silicone rubber with length and width 30mm, 30mm and thickness 0.5mm respectively
The spacer was cut out at 0 mm. The spacer has a 20 mm × 20 mm window and a 5 mm frame around the window.
【0039】色素増感型太陽電池は、以下のようにして
組み立てた。上記色素が吸着した電極の上に上記スペー
サーを、被膜が見えるようにして置き、スペーサーの空
洞部分に電解液を入れた。その上に対極を空気が入らな
いようにして置き、クリップで電極と対極を挟んで固定
し、色素増感型太陽電池とした。The dye-sensitized solar cell was assembled as follows. The spacer was placed on the electrode on which the dye was adsorbed so that the coating was visible, and the electrolyte was poured into the cavity of the spacer. A counter electrode was placed thereon so that air did not enter, and the electrode and the counter electrode were sandwiched and fixed with clips to obtain a dye-sensitized solar cell.
【0040】得られた色素増感型太陽電池の光電変換効
率を解放電圧と短絡電流を測定し、評価した。色素増感
型太陽電池を蛍光灯(松下電工株式会社製、品番SQ9
82F、54W)のもとにおき、電極と対極との間の解
放電圧と短絡電流を測定した。結果は、解放電圧が0.
755V、短絡電流が4.55mAであった。The photoelectric conversion efficiency of the obtained dye-sensitized solar cell was evaluated by measuring the release voltage and the short-circuit current. Use a dye-sensitized solar cell with a fluorescent lamp (manufactured by Matsushita Electric Works, part number SQ9).
82F, 54W), the open-circuit voltage and the short-circuit current between the electrode and the counter electrode were measured. The result is that the release voltage is 0.
755 V and short circuit current was 4.55 mA.
【0041】(比較例1)実施例1において、液相析出
法で酸化チタンの薄膜を形成する工程を行わずに、粒子
膜に色素を吸着した以外は、実施例1と同様の方法で色
素増感型太陽電池を作製した。この色素増感型太陽電池
を実施例1と同様にして解放電圧と短絡電流を測定し
た。結果は、解放電圧が0.684V、短絡電流が3.
60mAであった。Comparative Example 1 A dye was prepared in the same manner as in Example 1 except that the dye was adsorbed on the particle film without performing the step of forming a titanium oxide thin film by the liquid phase deposition method. A sensitized solar cell was manufactured. The release voltage and the short-circuit current of this dye-sensitized solar cell were measured in the same manner as in Example 1. As a result, the release voltage was 0.684 V, and the short-circuit current was 3.
It was 60 mA.
【0042】(比較例2)実施例1と同様にして粒子膜
を形成した後に、この粒子膜を形成した基材に四塩化チ
タン処理を以下のようにして行った。氷冷した水に2.
0モル/リットルとなるように四塩化チタンを溶解し
て、四塩化チタン保存液を作製した。この四塩化チタン
保存液を水で0.2モル/リットルに希釈して、直ちに
粒子膜を形成した基材を浸漬した。3時間後に粒子膜を
形成した基材を取り出し、水で洗浄し、乾燥した後に、
500℃で1時間焼成を行って、塩化チタン処理した電
極とした。Comparative Example 2 After forming a particle film in the same manner as in Example 1, the substrate on which the particle film was formed was treated with titanium tetrachloride as follows. 1. In ice-cold water
Titanium tetrachloride was dissolved so as to be 0 mol / liter to prepare a titanium tetrachloride stock solution. The titanium tetrachloride stock solution was diluted with water to 0.2 mol / liter, and the substrate on which the particle film was formed was immediately immersed. After 3 hours, the substrate on which the particle film was formed was taken out, washed with water, and dried.
Baking was performed at 500 ° C. for 1 hour to obtain a titanium chloride-treated electrode.
【0043】この塩化チタン処理した電極を用いた以外
は、実施例1と同様の方法で色素増感型太陽電池を作製
した。この色素増感型太陽電池を実施例1と同様にして
解放電圧と短絡電流を測定した。結果は、解放電圧が
0.691V、短絡電流が3.84mAであった。A dye-sensitized solar cell was manufactured in the same manner as in Example 1 except that this electrode treated with titanium chloride was used. The release voltage and the short-circuit current of this dye-sensitized solar cell were measured in the same manner as in Example 1. As a result, the release voltage was 0.691 V, and the short-circuit current was 3.84 mA.
【0044】[0044]
【表1】 [Table 1]
【0045】実施例1は、比較例1,2に比較して解放
電圧と短絡電流が良好であることから、光電変換効率が
優れていることが確認された。Example 1 has better open-circuit voltage and short-circuit current than Comparative Examples 1 and 2, thus confirming that the photoelectric conversion efficiency is excellent.
【0046】(実施例2)導電性及び透明性を有する基
材として、縦、横の長さがそれぞれ40mm、35m
m、厚さが1.1mmのITO膜付のガラスを十分に洗
浄、乾燥したものを用いた。ゾルとしてフッ素ドープ酸
化スズ(多木化学株式会社製、品名セラメースS−8)
を用い、ゾルを1000rpm、10秒の条件でスピン
コートし、500℃の温度で10分間焼成した。このス
ピンコートを5回繰り返して基材の表面に酸化スズの粒
子からなる膜厚が2.5μmの粒子膜を形成した。(Example 2) As a substrate having conductivity and transparency, the vertical and horizontal lengths were 40 mm and 35 m, respectively.
A glass with an ITO film having a thickness of 1.1 mm and a thickness of 1.1 mm was sufficiently washed and dried. Fluorine-doped tin oxide as a sol (Tama Chemical Co., Ltd., product name Ceramate S-8)
The sol was spin-coated at 1000 rpm for 10 seconds and baked at a temperature of 500 ° C. for 10 minutes. This spin coating was repeated five times to form a 2.5 μm-thick particle film made of tin oxide particles on the surface of the substrate.
【0047】次に、実施例1と同様の方法で、粒子膜を
形成した基材に液相析出法で酸化チタンの薄膜を形成
し、基材の表面に粒子膜と金属酸化物膜からなる被膜を
有する電極を作製した。Next, in the same manner as in Example 1, a titanium oxide thin film is formed on the substrate on which the particle film has been formed by a liquid phase deposition method, and the particle surface and the metal oxide film are formed on the surface of the substrate. An electrode having a coating was produced.
【0048】この電極を用いた以外は、実施例1と同様
の方法で色素増感型太陽電池を作製した。この色素増感
型太陽電池を実施例1と同様にして解放電圧と短絡電流
を測定した。結果は、解放電圧が0.485V、短絡電
流が1.56mAであった。A dye-sensitized solar cell was manufactured in the same manner as in Example 1 except that this electrode was used. The release voltage and the short-circuit current of this dye-sensitized solar cell were measured in the same manner as in Example 1. As a result, the release voltage was 0.485 V, and the short-circuit current was 1.56 mA.
【0049】(比較例3)実施例2において、液相析出
法で酸化チタンの薄膜を形成する工程を行わずに、粒子
膜に色素を吸着した以外は、実施例2と同様の方法で色
素増感型太陽電池を作製した。この色素増感型太陽電池
を実施例2と同様にして解放電圧と短絡電流を測定し
た。結果は、解放電圧が0.162V、短絡電流が0.
25mAであった。Comparative Example 3 A dye was prepared in the same manner as in Example 2 except that the dye was adsorbed on the particle film without performing the step of forming a titanium oxide thin film by the liquid phase deposition method. A sensitized solar cell was manufactured. The release voltage and short circuit current of this dye-sensitized solar cell were measured in the same manner as in Example 2. The result is that the release voltage is 0.162V and the short-circuit current is 0.1V.
It was 25 mA.
【0050】[0050]
【表2】 [Table 2]
【0051】実施例2は、比較例3に比較して解放電圧
と短絡電流が良好であることから、光電変換効率が優れ
ていることが確認された。The open voltage and the short circuit current of Example 2 were better than that of Comparative Example 3, confirming that the photoelectric conversion efficiency was excellent.
【0052】(実施例3)導電性及び透明性を有する基
材として、縦、横の長さがそれぞれ40mm、35m
m、厚さが1.1mmのITO膜付のガラスを十分に洗
浄、乾燥したものを用いた。ゾルとして酸化ケイ素ゾル
(日産化学株式会社製、品名MT−ST)を用い、ゾル
をグラビアコート法でこの基材の表面に20×20mm
の範囲内に膜厚が5μmとなるようにコートした。次
に、これを室温で乾燥した後、空気中で500℃の温度
で1時間焼成して基材の表面に酸化ケイ素の粒子からな
る粒子膜を形成した。(Example 3) As a substrate having conductivity and transparency, the vertical and horizontal lengths were 40 mm and 35 m, respectively.
A glass with an ITO film having a thickness of 1.1 mm and a thickness of 1.1 mm was sufficiently washed and dried. A silicon oxide sol (manufactured by Nissan Chemical Industries, Ltd., product name MT-ST) was used as the sol, and the sol was gravure coated on the surface of the substrate by 20 × 20 mm.
Was coated so as to have a thickness of 5 μm. Next, this was dried at room temperature, and then fired in air at a temperature of 500 ° C. for 1 hour to form a particle film made of silicon oxide particles on the surface of the substrate.
【0053】次に、実施例1と同様の方法で、粒子膜を
形成した基材に液相析出法で酸化チタンの薄膜を形成
し、基材の表面に粒子膜と金属酸化物膜からなる被膜を
有する電極を作製した。Next, in the same manner as in Example 1, a thin film of titanium oxide was formed on the substrate on which the particle film was formed by a liquid phase deposition method, and the surface of the substrate was composed of the particle film and the metal oxide film. An electrode having a coating was produced.
【0054】この電極を用いた以外は、実施例1と同様
の方法で色素増感型太陽電池を作製した。この色素増感
型太陽電池を実施例1と同様にして解放電圧と短絡電流
を測定した。結果は、解放電圧が0.264V、短絡電
流が0.38mAであった。A dye-sensitized solar cell was manufactured in the same manner as in Example 1 except that this electrode was used. The release voltage and the short-circuit current of this dye-sensitized solar cell were measured in the same manner as in Example 1. As a result, the release voltage was 0.264 V, and the short-circuit current was 0.38 mA.
【0055】(比較例4)実施例3において、液相析出
法で酸化チタンの薄膜を形成する工程を行わずに、粒子
膜に色素を吸着した以外は、実施例3と同様の方法で色
素増感型太陽電池を作製した。この色素増感型太陽電池
を実施例3と同様にして解放電圧と短絡電流を測定し
た。結果は、解放電圧が0V、短絡電流が0mAであっ
た。Comparative Example 4 The procedure of Example 3 was repeated, except that the dye was adsorbed on the particle film without performing the step of forming a titanium oxide thin film by the liquid phase deposition method. A sensitized solar cell was manufactured. The release voltage and short-circuit current of this dye-sensitized solar cell were measured in the same manner as in Example 3. As a result, the release voltage was 0 V and the short-circuit current was 0 mA.
【0056】[0056]
【表3】 [Table 3]
【0057】実施例3は、比較例4に比較して解放電圧
と短絡電流が良好であることから、光電変換効率が優れ
ていることが確認された。Example 3 has better open-circuit voltage and short-circuit current than Comparative Example 4, confirming that the photoelectric conversion efficiency is excellent.
【0058】[0058]
【発明の効果】請求項1記載の色素増感型太陽電池の製
造方法は、電極が粒子膜の粒子の表面に微細構造を有す
る金属酸化物膜を析出させて被膜を形成するので、高い
光電変換効率を発揮する色素増感型太陽電池を得ること
ができる。According to the method for manufacturing a dye-sensitized solar cell according to the first aspect of the present invention, since the electrode forms a coating by depositing a metal oxide film having a fine structure on the surface of the particles of the particle film, high photoelectricity is obtained. A dye-sensitized solar cell exhibiting conversion efficiency can be obtained.
【0059】さらに、請求項2記載の色素増感型太陽電
池の製造方法は、特に、粒子が酸化チタンの場合は、粒
子膜の表面に金属酸化膜が十分に覆っていない部分が生
じたとしてもその部分への色素からの電子注入の速度が
大きくなるので、光電変換効率のより良好な色素増感型
太陽電池を得ることができ、また、粒子が酸化スズの場
合は、耐熱性が高く、内部電気抵抗が小さくなるので、
光電変換効率のより良好な色素増感型太陽電池を得るこ
とができる。Further, in the method for manufacturing a dye-sensitized solar cell according to the present invention, in particular, when the particles are titanium oxide, a portion where the metal oxide film is not sufficiently covered occurs on the surface of the particle film. Since the speed of electron injection from the dye into that part also increases, it is possible to obtain a dye-sensitized solar cell with better photoelectric conversion efficiency, and when the particles are tin oxide, the heat resistance is high. , Because the internal electrical resistance becomes smaller,
A dye-sensitized solar cell with better photoelectric conversion efficiency can be obtained.
【0060】さらに、請求項3記載の色素増感型太陽電
池の製造方法は、特に、色素からの電子注入速度が大き
くなるので、光電変換効率のより良好な色素増感型太陽
電池を得ることができる。Furthermore, in the method for manufacturing a dye-sensitized solar cell according to the third aspect, a dye-sensitized solar cell having better photoelectric conversion efficiency can be obtained because the electron injection speed from the dye is particularly high. Can be.
【0061】さらに、請求項4記載の色素増感型太陽電
池の製造方法は、特に、より均一な酸化チタン膜を短時
間で得られるので、光電変換効率のより良好な色素増感
型太陽電池を短時間で作製することができる。Further, in the method for manufacturing a dye-sensitized solar cell according to the fourth aspect, a more uniform titanium oxide film can be obtained in a short time, so that the dye-sensitized solar cell having better photoelectric conversion efficiency can be obtained. Can be manufactured in a short time.
【0062】さらに、請求項5記載の色素増感型太陽電
池の製造方法は、特に、金属酸化物膜の形成後の乾燥や
焼成による金属酸化物膜の体積収縮で粒子膜が破壊され
ることがなく、且つ、光電変換効率のより良好な色素増
感型太陽電池を得ることができる。Furthermore, in the method of manufacturing a dye-sensitized solar cell according to the fifth aspect, the particle film is particularly broken by volume shrinkage of the metal oxide film due to drying or firing after the formation of the metal oxide film. And a dye-sensitized solar cell with better photoelectric conversion efficiency can be obtained.
【図1】本発明の実施の形態の一例を摸式的に示した概
略断面図である。FIG. 1 is a schematic sectional view schematically showing an example of an embodiment of the present invention.
【図2】(a)、(b)は被膜の作製工程をステップ毎
に示した概略断面図である。FIGS. 2A and 2B are schematic cross-sectional views showing steps of forming a coating film for each step.
1 基材 2 粒子膜 3 粒子 4 金属酸化物膜 5 被膜 6 色素の層 7 電解質層 8 対極 DESCRIPTION OF SYMBOLS 1 Base material 2 Particle film 3 Particle 4 Metal oxide film 5 Coating 6 Dye layer 7 Electrolyte layer 8 Counter electrode
Claims (5)
金属酸化物の被膜を形成して一方の電極とし、この被膜
の表面に色素を吸着した後に、電解質層を介して対極を
形成する色素増感型太陽電池の製造方法において、上記
基材の表面に粒子を分散したゾルをコートして粒子膜を
形成した後に、金属のフッ化物溶液又はフッ化錯体溶液
と粒子膜を接触させて上記粒子の表面に微細構造を有す
る金属酸化物膜を析出させて被膜を形成して一方の電極
とし、次いでこの電極の被膜の表面に色素を吸着するこ
とを特徴とする色素増感型太陽電池の製造方法。1. A metal oxide film is formed on the surface of a conductive and transparent substrate to form one electrode, and a dye is adsorbed on the surface of the film, and a counter electrode is formed via an electrolyte layer. In the method for producing a dye-sensitized solar cell, the surface of the base material is coated with a sol in which particles are dispersed to form a particle film, and then a metal fluoride solution or a fluoride complex solution is brought into contact with the particle film. A metal oxide film having a fine structure is deposited on the surface of the particles to form a film to form one electrode, and then a dye is sensitized to the surface of the film of the electrode to absorb a dye. Battery manufacturing method.
なくともいずれか一つであることを特徴とする請求項1
記載の色素増感型太陽電池の製造方法。2. The method according to claim 1, wherein the particles are at least one of tin oxide and titanium oxide.
A method for producing the dye-sensitized solar cell as described above.
あることを特徴とする請求項1又は請求項2記載の色素
増感型太陽電池の製造方法。3. The method for producing a dye-sensitized solar cell according to claim 1, wherein the metal oxide film is a film of titanium oxide.
で表されるチタンフッ化アンモニウムの加水分解平衡反
応を右に進める添加剤を添加して酸化チタン膜を形成す
ることを特徴とする請求項3記載の色素増感型太陽電池
の製造方法。 (NH4)2 TiF6 +2H2 O ⇔ TiO2 +4HF+2NH4 F (1)4. The method according to claim 1, wherein the deposition of the metal oxide film is performed as follows:
4. A method for producing a dye-sensitized solar cell according to claim 3, wherein an additive for promoting the hydrolysis equilibrium reaction of ammonium titanium fluoride represented by the formula (1) is added to the right to form a titanium oxide film. (NH 4 ) 2 TiF 6 + 2H 2 O⇔TiO 2 + 4HF + 2NH 4 F (1)
mに形成してなることを特徴とする請求項1乃至請求項
4いずれか記載の色素増感型太陽電池の製造方法。5. The metal oxide film has a thickness of 1 to 100 n.
The method for producing a dye-sensitized solar cell according to any one of claims 1 to 4, characterized in that it is formed as m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000145896A JP3988353B2 (en) | 2000-05-18 | 2000-05-18 | Method for producing dye-sensitized solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000145896A JP3988353B2 (en) | 2000-05-18 | 2000-05-18 | Method for producing dye-sensitized solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001325998A true JP2001325998A (en) | 2001-11-22 |
JP3988353B2 JP3988353B2 (en) | 2007-10-10 |
Family
ID=18652337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000145896A Expired - Fee Related JP3988353B2 (en) | 2000-05-18 | 2000-05-18 | Method for producing dye-sensitized solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3988353B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003273381A (en) * | 2002-03-12 | 2003-09-26 | Japan Science & Technology Corp | Totally solid dye sensitizing solar cell |
JP2005259514A (en) * | 2004-03-11 | 2005-09-22 | Bridgestone Corp | Dye-sensitized solar cell |
JP2005315873A (en) * | 2004-04-02 | 2005-11-10 | Nippon Sheet Glass Co Ltd | Method of manufacturing gas sensor |
-
2000
- 2000-05-18 JP JP2000145896A patent/JP3988353B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003273381A (en) * | 2002-03-12 | 2003-09-26 | Japan Science & Technology Corp | Totally solid dye sensitizing solar cell |
JP2005259514A (en) * | 2004-03-11 | 2005-09-22 | Bridgestone Corp | Dye-sensitized solar cell |
JP2005315873A (en) * | 2004-04-02 | 2005-11-10 | Nippon Sheet Glass Co Ltd | Method of manufacturing gas sensor |
JP4734517B2 (en) * | 2004-04-02 | 2011-07-27 | 新コスモス電機株式会社 | Manufacturing method of gas sensor |
Also Published As
Publication number | Publication date |
---|---|
JP3988353B2 (en) | 2007-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7799989B2 (en) | Photo-electric for a dye-sensitized solar cell comprising a meso-porous metal oxide thin film and a process for preparation thereof | |
EP1357566A2 (en) | Photovoltaic cell | |
JP2003163359A (en) | Photoelectric converter device | |
JP2002298936A (en) | Photoelectric conversion element and its manufacturing method | |
JP4461657B2 (en) | Photoelectric conversion element | |
DE10249246B4 (en) | Dye-sensitized photovoltaic cell, a process for producing these photovoltaic cells and their use | |
KR20090080205A (en) | Syntesis of titanium dioxide by aging and peptization methods for photo-electrode of dye-sensitized solar cells | |
JP2006313656A (en) | Photoelectric conversion device and photovoltaic generator using the same | |
JP2002319439A (en) | Photoelectric cell | |
WO2009048267A2 (en) | Photoelectrode of dye-sensitized solar cell containing glass powder | |
TW201336785A (en) | Titanium oxide laminated film, titanium oxide film, manufacturing method for same, precursor liquid for titanium oxide, and dye-sensitized agent type photoelectric conversion element | |
JP2002314108A (en) | Solar cell | |
JP2001307786A (en) | Photoelectric transfer element, its production method and photoelectric transfer module | |
JP2005174695A (en) | Method of manufacturing dye-sensitized solar cell | |
KR20130098232A (en) | Preparing method of photoelectrode using chemical bath deposition, photoelectrode by the same, and dye-sensitized solar cell having the photoelectrode | |
JP2004311354A (en) | Manufacturing method of substrate for electrode | |
JP4226837B2 (en) | Dye-sensitive solar cell | |
JP2006073488A (en) | Dye-sensitized solar cell and manufacturing method thereof | |
JP2001325998A (en) | Manufacturing method of pigment sensitization type solar battery | |
JP2002075476A (en) | Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element | |
KR101160929B1 (en) | Preparing method of photoelectrode using chemical bath deposition, photoelectrode by the same, and dye-sensitized solar cell having the photoelectrode | |
JP2003234485A (en) | Photoelectric transducer | |
JP2003317815A (en) | Dye sensitized solar cell, and manufacturing method of the same | |
JP2009218218A (en) | Photoelectric cell | |
JP5332739B2 (en) | Photoelectric conversion element and solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070626 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070709 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100727 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100727 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100727 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120727 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120727 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130727 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |