JP2001324431A - Method for detecting crack in plate-shaped member - Google Patents

Method for detecting crack in plate-shaped member

Info

Publication number
JP2001324431A
JP2001324431A JP2000143942A JP2000143942A JP2001324431A JP 2001324431 A JP2001324431 A JP 2001324431A JP 2000143942 A JP2000143942 A JP 2000143942A JP 2000143942 A JP2000143942 A JP 2000143942A JP 2001324431 A JP2001324431 A JP 2001324431A
Authority
JP
Japan
Prior art keywords
plate
crack
stress
notch
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000143942A
Other languages
Japanese (ja)
Inventor
Toyomitsu Harada
豊満 原田
Hiroshi Noguchi
博司 野口
Hidenori Fujiwara
秀徳 藤原
Toru Aramaki
徹 荒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefecture
Original Assignee
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefecture filed Critical Fukuoka Prefecture
Priority to JP2000143942A priority Critical patent/JP2001324431A/en
Publication of JP2001324431A publication Critical patent/JP2001324431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting cracks in a plate-shaped member for continuously, easily and correctly detect cracks which occur in the periphery of the notch of the plate-shaped member by a minimum number of distortion gauges. SOLUTION: Distortion values in the radial direction, vertical distortion values in the circumferential direction which intersects the radial direction at right angles, shearing distortion values are each obtained by the distortion gauges 12, which is mounted at a plurality of locations on the periphery of the notch 16 of the plate-shaped member 11. A stress value corresponding to each measured distortion value is substituted into a stress state expression, which expresses a stress state obtained from the stress function of the periphery of the notch 16 of the plate-shaped member 11, in which the edge part of the notch 16 is a free boundary to determine the coefficient values of each expression. The occurrence of cracks in the plate-shaped member 11 is detected from the stress distribution as expressed by the coefficient values or stress state expressions obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は円弧を含む切欠きを
有する板状機械部品又は板状構造物に荷重が掛かった場
合に、切欠き部から発生するき裂を検知する板状部材の
き裂検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate-like member for detecting a crack generated from a notch when a load is applied to a plate-like mechanical part or a plate-like structure having a notch including an arc. It relates to a crack detection method.

【0002】[0002]

【従来の技術】板状機械部品又は板状構造物に、構造上
避けられない円弧を含む切欠き(例えば、円孔、半円状
の切欠き)がある場合に、過大な荷重がかかるとその部
分に応力が集中してき裂が発生することが知られてい
る。しかし、材料の強度評価手法は未完成であり、また
設計時の人的ミスも完全には防げないので、このような
状況下で破壊事故を予防するには、機械や構造物を稼動
させた状態で連続的に検査を行い、発生しているき裂を
できるだけ早期に検知して対策を講じる必要がある。き
裂の検知方法としては、応力や歪みの測定手段として普
及している歪ゲージによる方法が従来から行われてい
る。その方法としては、図7(a)に示すように、一個
又は複数の歪ゲージ又はそれを一体化した歪ゲージ30
を部材31の切欠き32の周辺に貼り付けて、歪みの変
化による微小抵抗の変化、又はき裂発生による歪ゲージ
の断線をブリッジボックス33によって検出し、この出
力を増幅器34によって増幅し、その結果をグラフ35
に表示するなどの方法がとられていた。
2. Description of the Related Art When an excessive load is applied to a plate-shaped machine part or a plate-shaped structure having a notch (for example, a circular hole or a semi-circular notch) including an arc which is unavoidable in structure. It is known that stress concentrates on that portion and cracks occur. However, the method of evaluating the strength of the material is incomplete, and human error during design cannot be completely prevented. It is necessary to carry out continuous inspections in this state, detect cracks that have occurred as soon as possible, and take countermeasures. As a method for detecting a crack, a method using a strain gauge, which is widely used as a means for measuring stress and strain, has been conventionally used. As a method, as shown in FIG. 7A, one or a plurality of strain gauges or a strain gauge 30 integrating the strain gauges is used.
Is attached to the periphery of the notch 32 of the member 31, a change in minute resistance due to a change in strain, or a disconnection of a strain gauge due to the occurrence of a crack is detected by a bridge box 33, and this output is amplified by an amplifier 34. Graph 35
Such as displaying it on the display.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、事前に
き裂の発生箇所が限定できない場合には、切欠き部など
のき裂が発生する可能性が高い領域(危険領域)全体
に、例えば図7(b)に示すように、非常に多くの歪ゲ
ージ30を配置する必要があり、作業が煩雑化し、しか
も多数の測定チャンネルをもつ計測器を必要とするた
め、現実的ではなかった。特に、大型構造物では非常に
多くの歪ゲージを必要とするため、実施は事実上不可能
である。一方、歪ゲージの枚数を減らすと、発生してい
るき裂を見落とす可能性が高くなりき裂検知方法として
は使用できない。本発明はかかる事情に鑑みてなされた
もので、板状部材の切欠きの周辺に発生するき裂を最少
限の歪ゲージで、連続的に簡便かつ正確に検知する板状
部材のき裂検知方法を提供することを目的とする。
However, if it is not possible to limit the location of the crack in advance, the entire area (dangerous area) where a crack is likely to occur, such as a notch, is shown in FIG. As shown in (b), it is necessary to arrange a very large number of strain gauges 30, the operation becomes complicated, and a measuring instrument having a large number of measurement channels is required, which is not practical. In particular, large structures require so many strain gauges that implementation is virtually impossible. On the other hand, if the number of strain gauges is reduced, the possibility of overlooking a crack that has occurred is increased, and it cannot be used as a crack detection method. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and detects a crack generated around a notch of a plate-like member continuously and easily and accurately with a minimum strain gauge. The aim is to provide a method.

【0004】[0004]

【課題を解決するするための手段】前記目的に沿う本発
明に係る板状部材のき裂検知方法は、円弧を含む切欠き
が形成された板状部材におけるき裂検知方法であって、
前記板状部材の切欠き周辺の複数箇所に取付けられた歪
ゲージによって、それぞれの半径方向の歪み値及びこれ
に直交する円周方向の垂直歪み値並びに剪断歪み値(す
なわち、それぞれの半径方向及びこれに直交する円周方
向の歪み値並びに剪断歪み値)を求め、次に、前記測定
した各歪み値に対応する応力値を、前記切欠きの縁部が
自由境界である前記板状部材の切欠き周辺の応力関数か
ら得られる応力状態を表す応力状態式に代入して、それ
ぞれの式の係数値を決定し、求めた前記係数値又は応力
状態式が表す応力分布から、前記板状部材のき裂の発生
を検知する構成となっている。ここで、それぞれの歪ゲ
ージは、ロゼット型歪ゲージであることが好ましい。
According to the present invention, there is provided a method of detecting a crack in a plate-like member having a notch including an arc, the method comprising the steps of:
The strain gauges attached at a plurality of locations around the notch of the plate-like member allow the respective strain values in the radial direction and the vertical strain values in the circumferential direction orthogonal to the respective strain values and the shear strain values (that is, the respective radial and Then, a stress value corresponding to each of the measured strain values is determined by calculating a stress value corresponding to each of the measured strain values of the plate-like member in which the edge of the notch is a free boundary. Substituting into a stress state equation representing a stress state obtained from a stress function around the notch, determining coefficient values of the respective equations, and determining the coefficient value or stress distribution represented by the stress state equation from the stress distribution represented by the stress state equation. It is configured to detect the occurrence of cracks. Here, each strain gauge is preferably a rosette-type strain gauge.

【0005】切欠き底付近に物体力がなく、しかも切欠
きの縁部が自由境界の場合を対象とする。極座標系の一
般応力関数から応力成分を求め、半径r0 の円孔縁に自
由境界条件を適用すると、変位の多価性を含む任意の自
由円孔板の応力状態の式として、(1)式に示すような
応力状態式が得られる。ここで、極座標系の原点は円孔
の中心とする。
[0005] It is assumed that there is no object force near the bottom of the notch and the edge of the notch is a free boundary. When the stress component is obtained from the general stress function of the polar coordinate system and the free boundary condition is applied to the edge of the hole of radius r 0 , the expression of the stress state of an arbitrary free hole plate including the multivalency of the displacement is given by (1) The stress state equation as shown in the equation is obtained. Here, the origin of the polar coordinate system is the center of the circular hole.

【0006】[0006]

【数1】 (Equation 1)

【0007】また、θ=αでの変位の多価性は、(2)
式のようになる。ここで、νはポアソン比である。
The multivalency of displacement at θ = α is expressed by (2)
It looks like an expression. Here, ν is Poisson's ratio.

【0008】[0008]

【数2】 (Equation 2)

【0009】変位の多価性は、固有応力以外にき裂面の
食い違いを表現すると考えられるので、境界条件の決定
において変位の多価性を含む(1)式では、領域内にき
裂が存在する場合には、き裂が存在しない場合に較べて
多価性の係数が大きく変化する。従って、(1)式の未
知係数を切欠き底付近の歪ゲージによる離散的な応力値
から決定し、得られる多価性の係数の値の変化に基づい
てき裂の検知を行なうことができる。なお、荷重の大き
さが変動すると、多価性の係数も荷重の大きさに比例し
て変化するので、き裂の発生による変化なのか、荷重の
変動による変化なのか区別ができない。そのため、
(1)式の全ての係数の平方和の平方根の値を切欠き底
付近の応力場の強さの指標と考え、この値で多価性の各
係数を割って得られる(3)式に示すCω、Cν、Cu
の各パラメータを用いて発生したき裂の検知を行なう。
[0009] Since the multivalency of the displacement is considered to represent a difference between the crack surfaces in addition to the intrinsic stress, in the equation (1) including the multivalency of the displacement in the determination of the boundary condition, the crack is found within the region. When present, the coefficient of multivalency changes significantly compared to when no crack is present. Therefore, the unknown coefficient of the equation (1) can be determined from the discrete stress value by the strain gauge near the notch bottom, and the crack can be detected based on the change of the obtained multivalent coefficient value. When the magnitude of the load changes, the coefficient of multivalency also changes in proportion to the magnitude of the load, so it is not possible to distinguish between a change due to the occurrence of a crack and a change due to a change in the load. for that reason,
The value of the square root of the sum of the squares of all the coefficients in Equation (1) is considered as an index of the strength of the stress field near the notch bottom, and this value is used to divide each multivalent coefficient into Equation (3). Cω, Cν, Cu shown
The crack that has occurred is detected using each of the above parameters.

【0010】[0010]

【数3】 (Equation 3)

【0011】[0011]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の第1及び第
2の実施の形態に係る板状部材のき裂検知方法に適用さ
れる装置の説明図、図2〜図4は切欠きが形成された板
状部材のき裂検知の説明図、図5は多価性のCωパラメ
ータとき裂長さの関係を示す説明図、図6は応力分布か
ら板状部材に発生したき裂の検知の説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is an explanatory view of an apparatus applied to a crack detecting method for a plate-like member according to the first and second embodiments of the present invention, and FIGS. FIG. 5 is an explanatory diagram showing a relationship between a multivalent Cω parameter and a crack length, and FIG. 6 is an explanatory diagram showing detection of a crack generated in a plate-like member from a stress distribution. .

【0012】図1に示すように、本発明の第1及び第2
の実施の形態に係る板状部材のき裂検知方法に用いた装
置10は、き裂を形成した円孔縁を有する板状部材11
の所定位置に貼着した複数のロゼット型の歪ゲージ12
と、歪ゲージ12の信号を処理するブリッジボックス1
3と、ブリッジボックス13によって検出された歪み量
を電気信号に変換して増幅する増幅器14と、増幅器1
4によって増幅された信号をAD変換して信号処理をす
るコンピュータ15とを有している。以下、これらにつ
いて詳しく説明する。
As shown in FIG. 1, the first and second embodiments of the present invention
The apparatus 10 used in the method for detecting a crack in a plate-like member according to the embodiment of the present invention comprises a plate-like member 11 having a crack-formed circular edge.
A plurality of rosette-type strain gauges 12 attached to predetermined positions
And a bridge box 1 for processing the signal of the strain gauge 12
3, an amplifier 14 that converts the amount of distortion detected by the bridge box 13 into an electric signal and amplifies it, and an amplifier 1
And a computer 15 that performs A / D conversion on the signal amplified by the A / D converter 4 and performs signal processing. Hereinafter, these will be described in detail.

【0013】板状部材11は、例えばカム、ストッパ
ー、及び大型の歯車等の板状機械部品や機械のハウジン
グ更には橋梁等の板状構造物が該当し、これに図1に示
すような円弧状の切欠き16が形成されている。この切
欠き16は、演算処理に極座標を用いた応力関数を使用
しているので、円弧を含めば十分であり、例えば図1に
示すように半円の場合もあり、更にはU字状や円孔全体
さらには円弧を含む開孔等の場合にも適用できる。
The plate-like member 11 is, for example, a plate-like mechanical part such as a cam, a stopper, and a large gear, a housing of the machine, and a plate-like structure such as a bridge. An arc-shaped notch 16 is formed. Since the notch 16 uses a stress function using polar coordinates in the calculation processing, it is sufficient to include a circular arc. For example, the notch 16 may be a semicircle as shown in FIG. The present invention can be applied to the case of an opening including an entire circular hole or an arc.

【0014】歪ゲージ12は、半径方向の歪み値、半径
方向に直交する円周方向の垂直歪み値及び剪断歪み値が
同時に測定できるロゼット型の歪ゲージを用いたが、場
合によっては直交型の歪ゲージであってもよい。この歪
ゲージ12は図1に示すように、所定間隔で扇型形状に
貼着すれば、歪ゲージ12を取付けた極座標位置が簡便
に測定できるという利点があるが、極座標位置(r、
θ)が明確な任意の位置に歪ゲージ12を貼着してもよ
い。
As the strain gauge 12, a rosette-type strain gauge capable of simultaneously measuring a strain value in a radial direction, a vertical strain value in a circumferential direction orthogonal to a radial direction, and a shear strain value is used. It may be a strain gauge. As shown in FIG. 1, if this strain gauge 12 is adhered in a fan shape at predetermined intervals, there is an advantage that the polar coordinate position where the strain gauge 12 is attached can be easily measured, but the polar coordinate position (r,
The strain gauge 12 may be attached to any position where θ) is clear.

【0015】ブリッジボックス13は、周知の構造とな
って歪ゲージ12の微小な抵抗変化を検出して、電流又
は電圧出力とするものである。増幅器14はこの信号を
微小信号を処理しやすい所定の大きさの電圧信号まで増
幅するもので、内部にAD変換器を含み、デジタル信号
として出力している。
The bridge box 13 has a well-known structure and detects a minute change in resistance of the strain gauge 12 and outputs a current or a voltage. The amplifier 14 amplifies this signal up to a voltage signal of a predetermined size that can easily process a small signal, includes an AD converter therein, and outputs it as a digital signal.

【0016】コンピュータ15はパソコンからなって、
入力された信号を処理する第1の演算手段及び第2の演
算手段とを有している。第1の演算手段は、前述のよう
に応力関数の係数を求めるためのもので、第2の演算手
段は決められた応力関数から応力分布を求めるものであ
る。
The computer 15 comprises a personal computer,
It has a first calculating means and a second calculating means for processing the input signal. The first calculating means is for obtaining the coefficient of the stress function as described above, and the second calculating means is for obtaining the stress distribution from the determined stress function.

【0017】次に、装置10を用いた本発明の第1の実
施の形態に係る板状部材のき裂検知方法について説明す
る。本発明の第1の実施の形態に係る板状部材のき裂検
知方法は、応力状態式の係数値の変化から発生している
き裂を検知するものである。板状部材17に形成した半
径1の円孔18の中心を原点として左右方向をx軸、x
軸に垂直な方向をy軸として、円孔18の縁からx軸に
沿って右側にき裂19を導入した場合を図2に、左右対
称にき裂19を導入した場合を図3にそれぞれ示す。き
裂19の長さは、いずれも円孔18の半径1に対して
0.512とした。また、荷重は、x−y平面に対して
45°の角度をなすξ−η平面において、き裂面に垂直
な方向の引張応力(σξ=1、ση=1)、き裂面に4
5°の方向の引張応力(σξ=1、ση=0)、及びき
裂面に沿う面に剪断応力(σξ=1、ση=−1)がそ
れぞれ発生するように与えた。き裂18の検知は、
(1)式の無限級数のnを6まで採った式と、円孔18
中心から半径1.5の円周上をほぼ均等に分ける10箇
所の応力値を用いて行なった。この際、歪みの実測デー
タの代わりに有限要素解析の積分点での応力値を用い
た。なお、比較のために、き裂19が存在しない場合に
も同様に未知係数の決定を行なった。得られた各係数を
用いて(3)式に示す多価性の各パラメータCω、C
u、Cνを求めた。得られた結果を表1に示す。
Next, a method for detecting a crack in a plate-like member according to the first embodiment of the present invention using the apparatus 10 will be described. The crack detection method for a plate-like member according to the first embodiment of the present invention detects a crack generated from a change in a coefficient value of a stress state equation. With the center of the circular hole 18 having a radius of 1 formed in the plate-like member 17 as the origin, the horizontal direction is x-axis, x
FIG. 2 shows a case where a crack 19 is introduced rightward along the x-axis from the edge of the circular hole 18 with the direction perpendicular to the axis as the y-axis, and FIG. 3 shows a case where the crack 19 is introduced symmetrically. Show. The length of each of the cracks 19 was 0.512 with respect to the radius 1 of the circular hole 18. In addition, the load is a tensile stress (σξ = 1, ση = 1) in a direction perpendicular to the crack plane in the ξ-η plane which forms an angle of 45 ° with the xy plane,
Tensile stress in the direction of 5 ° (σ == 1, ση = 0) and shear stress (σξ = 1, ση = -1) were applied to the surface along the crack surface, respectively. Detection of crack 18
(1) An equation in which n of the infinite series of the equation is taken up to 6, and a circular hole 18
The test was carried out using ten stress values at which the circumference of a circle having a radius of 1.5 from the center was almost equally divided. At this time, the stress value at the integration point of the finite element analysis was used instead of the measured data of the strain. For comparison, an unknown coefficient was determined in the same manner even when no crack 19 was present. Using the obtained coefficients, each of the multivalent parameters Cω, C
u and Cν were determined. Table 1 shows the obtained results.

【0018】[0018]

【表1】 [Table 1]

【0019】き裂19が存在しない場合には、多価性の
各係数の各パラメータはすべて10-4〜10-3程度の値
である。一方、図2に示すき裂19が右側のみの場合、
表1に示すようにき裂面に垂直方向の引張では回転型の
多価性パラメータCωとy方向の並進型多価性パラメー
タCνが、き裂面に沿う面に剪断ではx方向の並進型多
価性パラメータCuが、き裂面に45°の方向の引張で
はCω、Cu、及びCνのすべてが大きな値となってい
る。しかし、図3に示すき裂19が左右対称の場合に
は、表1に示すように垂直の方向の引張と45°の方向
の引張における回転型の多価性パラメータCωのみが大
きな値になっている。これは、破壊モードIにおけるy
方向の並進型多価性パラメータCνと破壊モードIIにお
けるx方向の並進型多価性パラメータCuが、左右のき
裂で絶対値が同じで符号が異なる値となるため、相殺し
て0になるためである。以上の結果より、円孔18縁の
き裂19は、変位の多価性の係数の変化から、荷重条件
がある程度変化しても検知できると考えられる。しか
し、剪断荷重下の対称な位置に発生したき裂19に対し
ては、多価性の係数によるき裂19の検知はできない。
しかしながら、荷重が剪断型に移行した場合、き裂の進
行方向が最大主応力方向に垂直な方向、すなわち剪断荷
重がかかる面と45°をなす方向に変化するため、き裂
19の進展方向に純粋な剪断荷重がかかる状態は、長時
間には及ばないと考えられる。従って、純粋な剪断荷重
の状態が発生してもその状態はモードIに移行し、多価
性の係数の増加が現れると考えられる。
When the crack 19 does not exist, each parameter of each multivalent coefficient has a value of about 10 -4 to 10 -3 . On the other hand, when the crack 19 shown in FIG.
As shown in Table 1, the rotational multi-value parameter Cω and the translational multi-value parameter Cv in the y-direction are applied to the tension in the direction perpendicular to the crack surface, while the translation-type multi-value parameter Cν is applied to the surface along the crack surface in the x-direction. When the multivalent parameter Cu is pulled in the direction of 45 ° to the crack surface, Cω, Cu, and Cν all have large values. However, when the crack 19 shown in FIG. 3 is bilaterally symmetric, only the rotation type multivalency parameter Cω in the vertical direction and the 45 ° direction tension becomes a large value as shown in Table 1. ing. This is because y in destruction mode I
The translational multivalence parameter Cν in the direction and the translational multivalence parameter Cu in the x direction in the fracture mode II have the same absolute value but different signs in the left and right cracks, and thus cancel each other out to zero. That's why. From the above results, it is considered that the crack 19 at the edge of the circular hole 18 can be detected even if the load condition changes to some extent from the change in the coefficient of multivalency of displacement. However, for a crack 19 generated at a symmetrical position under a shear load, the crack 19 cannot be detected by the multivalency coefficient.
However, when the load shifts to the shearing type, the direction of propagation of the crack changes in a direction perpendicular to the direction of the maximum principal stress, that is, in a direction forming 45 ° with the surface on which the shear load is applied. It is considered that a state in which a pure shear load is applied does not last for a long time. Therefore, it is considered that even when a pure shear load state occurs, the state shifts to the mode I, and an increase in the multivalency coefficient appears.

【0020】続いて、この方法で検知できるき裂長さに
ついて、図4の実施例を例として説明する。図4に示す
ように、幅6の板状部材20に形成した半径1の中央円
孔21の中心を原点として左右方向をx軸、x軸に垂直
な方向をy軸として、中央円孔21縁にx軸に沿って左
右対称に種々の長さのき裂22を導入し、中央円孔21
の中心から半径1.5の円周上をほぼ均等に分ける10
箇所に歪ゲージ23を貼着して、一様な引張荷重をかけ
た場合のき裂22長さと回転型の多価性パラメータCω
の関係を調べた。得られた結果を図5に示す。図5から
回転型の多価性パラメータCωは、き裂22長さに対し
て急激に増加しており、き裂長さが0.1程度になれば
き裂を検知できることが判る。
Next, the crack length which can be detected by this method will be described with reference to the embodiment of FIG. 4 as an example. As shown in FIG. 4, the center circular hole 21 having a radius of 1 formed in the plate member 20 having a width of 6 and having the origin as the origin, the horizontal direction is defined as the x-axis, and the direction perpendicular to the x-axis is defined as the y-axis. Cracks 22 of various lengths are introduced into the edge symmetrically along the x-axis, and a central circular hole 21 is formed.
Divide the circumference of the circle with a radius of 1.5 from the center of
The length of the crack 22 and the rotational multi-value parameter Cω when a uniform tensile load is applied by attaching a strain gauge 23 to a location
The relationship was investigated. The results obtained are shown in FIG. From FIG. 5, it can be seen that the rotation type multivalency parameter Cω rapidly increases with respect to the length of the crack 22, and the crack can be detected when the crack length becomes about 0.1.

【0021】続いて、装置10を用いた本発明の第2の
実施の形態に係る板状部材のき裂検知方法について説明
する。本発明の第2の実施の形態に係る板状部材のき裂
検知方法は、応力状態式が表す応力分布の変化を検知す
るものである。図1、図6(a)に示すように、片側に
半円の切欠き16を有する板状部材11で、半円の中心
から左右方向にx軸、x軸に垂直な方向をy軸として、
y軸方向に引張荷重をかける。このとき発生している歪
を歪ゲージ12で求めて、測定した半径方向の歪み値、
半径方向に直交する円周方向の垂直歪み値、剪断歪み値
の各歪み値に対応する応力値を切欠き16の縁部が自由
境界である板状部材11の切欠き16周辺の応力関数か
ら得られる応力状態を表す応力状態式に代入してそれぞ
れの式の係数値を決定する。各係数が決定されると、応
力状態式を用いて任意の位置の応力が計算できる。x軸
と切欠き16の縁との交点を原点にとると、切欠き底か
らx軸方向の距離と発生している応力との関係、すなわ
ち応力分布は、き裂24が発生する以前では図6(b)
に示すように、切欠き16による応力集中による応力分
布となり、切欠き底で応力が最大となる。これに対し
て、例えばx軸に沿って切欠き底にき裂24が発生した
場合、図6(c)に示すようにき裂24が発生すると、
き裂24部分で応力の伝達がされないため、き裂24先
端に非常に大きな応力が発生する分布に変化する。この
ように、き裂24の発生前後の応力分布の最大の違い
は、切欠き16の縁での応力が最大になるかならないか
である。従って、発生している応力分布の特徴的な変化
をとらえることで、き裂の検知を行なうことができる。
Next, a method for detecting a crack in a plate-like member according to a second embodiment of the present invention using the apparatus 10 will be described. The crack detection method for a plate-like member according to the second embodiment of the present invention detects a change in stress distribution represented by a stress state equation. As shown in FIG. 1 and FIG. 6A, a plate-like member 11 having a semicircular notch 16 on one side is defined by an x-axis in the left-right direction from the center of the semicircle, and a y-axis is a direction perpendicular to the x-axis. ,
Apply a tensile load in the y-axis direction. The strain generated at this time is obtained by the strain gauge 12, and the measured strain value in the radial direction is obtained.
A stress value corresponding to each of the vertical strain value and the shear strain value in the circumferential direction orthogonal to the radial direction is calculated from the stress function around the notch 16 of the plate-shaped member 11 in which the edge of the notch 16 is a free boundary. The coefficient value of each equation is determined by substituting into the stress state equation representing the obtained stress state. When each coefficient is determined, the stress at an arbitrary position can be calculated using the stress state equation. Taking the intersection of the x-axis and the edge of the notch 16 as the origin, the relationship between the distance in the x-axis direction from the bottom of the notch and the generated stress, that is, the stress distribution, is a graph before the crack 24 occurs. 6 (b)
As shown in FIG. 7, the stress distribution is caused by the stress concentration due to the notch 16, and the stress becomes maximum at the notch bottom. On the other hand, for example, when the crack 24 occurs at the notch bottom along the x-axis, as shown in FIG.
Since no stress is transmitted at the crack 24, the distribution changes to a distribution in which a very large stress is generated at the tip of the crack 24. As described above, the largest difference in the stress distribution before and after the occurrence of the crack 24 is whether or not the stress at the edge of the notch 16 becomes maximum. Therefore, cracks can be detected by capturing characteristic changes in the generated stress distribution.

【0022】以上、本発明の実施の形態を説明したが、
本発明は、この実施の形態に限定されるものではなく、
例えば、各々の歪ゲージは独立に貼着されていたが、複
数個の、例えば4〜12又はそれ以上の歪ゲージを一体
化して、使用することも可能である。また、前記実施の
形態では円孔の場合について説明したが、開孔、円弧を
その一部に含むような形状の場合も本発明は適用でき
る。更に、応力分布の特徴的な変化をとらえてき裂の検
知を行なう場合、切欠き底に発生したき裂を例とした
が、本発明では切欠き部付近の領域を対象としてき裂の
検知を行なうので、切欠き底以外の切欠き縁に最大応力
が発生し、その位置にき裂が発生する場合においても、
全く同様にき裂の検知を行なうことができる。
The embodiment of the present invention has been described above.
The present invention is not limited to this embodiment,
For example, although each strain gauge is independently adhered, a plurality of strain gauges, for example, 4 to 12 or more strain gauges may be integrated and used. In the above-described embodiment, the case of a circular hole has been described. Further, when detecting a crack by capturing a characteristic change in stress distribution, a crack generated at the notch bottom is taken as an example, but in the present invention, crack detection is performed in a region near the notch. Therefore, even if the maximum stress occurs at the notch edge other than the notch bottom and a crack occurs at that position,
Crack detection can be performed in exactly the same manner.

【0023】[0023]

【発明の効果】請求項1及び2記載の板状部材のき裂検
知方法においては、板状部材の切欠き周辺の複数箇所に
取付けられた歪ゲージによって、それぞれの半径方向の
歪み値及びこれに直交する円周方向の垂直歪み値並びに
剪断歪み値を求め、次に、測定した各歪み値に対応する
応力値を、切欠きの縁部が自由境界である板状部材の切
欠き周辺の応力関数から得られる応力状態を表す応力状
態式に代入して、それぞれの式の係数値を決定し、求め
た係数値又は応力状態式が表す応力分布から、板状部材
のき裂の発生を検知するので、歪ゲージを危険領域の境
界のみに配置し歪ゲージの枚数を少なくして、広い領域
を検知対象として連続的に測定でき、しかも発生してい
るき裂を検知することができる。特に、請求項2記載の
板状部材のき裂検知方法においては、それぞれの歪ゲー
ジは、ロゼット型歪ゲージであるので、歪ゲージを貼着
した位置の歪み値の測定誤差が少なく、発生したき裂を
精度良く検知できる。
In the method for detecting a crack in a plate-like member according to the first and second aspects of the present invention, the strain values in the radial direction and the strain values in the respective radial directions are measured by strain gauges attached to a plurality of locations around the notch in the plate-like member. The vertical strain value and the shear strain value in the circumferential direction orthogonal to are determined, and then the stress values corresponding to the measured strain values are calculated by calculating the stress values around the notch of the plate-like member where the edge of the notch is a free boundary. By substituting into the stress state equations representing the stress state obtained from the stress function, the coefficient values of each equation are determined, and from the obtained coefficient values or the stress distribution represented by the stress state equation, the occurrence of cracks in the plate-like member is determined. Since the detection is performed, the strain gauges are arranged only at the boundary of the dangerous area and the number of strain gauges is reduced, so that a wide area can be continuously measured and the crack that has occurred can be detected. In particular, in the method for detecting a crack in a plate-like member according to claim 2, since each strain gauge is a rosette-type strain gauge, a measurement error of a strain value at a position where the strain gauge is stuck is small and the strain gauge is generated. Cracks can be accurately detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1及び第2の実施の形態に係る板状
部材のき裂検知方法に適用される装置の説明図である。
FIG. 1 is an explanatory diagram of an apparatus applied to a crack detecting method for a plate-like member according to first and second embodiments of the present invention.

【図2】切欠きが形成された板状部材のき裂検知の説明
図である。
FIG. 2 is an explanatory diagram of crack detection of a plate-like member having a notch formed therein.

【図3】切欠きが形成された板状部材のき裂検知の説明
図である。
FIG. 3 is an explanatory diagram of crack detection of a plate member having a notch formed therein.

【図4】切欠きが形成された板状部材のき裂検知の説明
図である。
FIG. 4 is an explanatory diagram of crack detection of a plate-like member having a notch formed therein.

【図5】多価性パラメータCωとき裂長さの関係を示す
説明図である。
FIG. 5 is an explanatory diagram showing a relationship between a multivalency parameter Cω and a crack length.

【図6】応力分布から板状部材に発生したき裂の検知の
説明図である。
FIG. 6 is an explanatory diagram of detection of a crack generated in a plate member from a stress distribution.

【図7】従来例に係る切欠き部材のき裂検知の説明図で
ある。
FIG. 7 is an explanatory diagram of crack detection of a notch member according to a conventional example.

【符号の説明】[Explanation of symbols]

10:装置、11:板状部材、12:歪ゲージ、13:
ブリッジボックス、14:増幅器、15:コンピュー
タ、16:切欠き、17:板状部材、18:円孔、1
9:き裂、20:板状部材、21:中央円孔、22:き
裂、23:歪ゲージ、24:き裂
10: device, 11: plate member, 12: strain gauge, 13:
Bridge box, 14: amplifier, 15: computer, 16: notch, 17: plate member, 18: circular hole, 1
9: crack, 20: plate member, 21: central hole, 22: crack, 23: strain gauge, 24: crack

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒巻 徹 福岡県福岡市東区貝塚団地4号棟308号室 Fターム(参考) 2G061 BA03 CB01 EA04 EC02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toru Aramaki Room 308, Building 4, Kaizuka Danchi, Higashi-ku, Fukuoka City F-term (reference) 2G061 BA03 CB01 EA04 EC02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円弧を含む切欠きが形成された板状部材
におけるき裂検知方法であって、前記板状部材の切欠き
周辺の複数箇所に取付けられた歪ゲージによって、それ
ぞれの半径方向の歪み値及びこれに直交する円周方向の
垂直歪み値並びに剪断歪み値を求め、次に、前記測定し
た各歪み値に対応する応力値を、前記切欠きの縁部が自
由境界である前記板状部材の切欠き周辺の応力関数から
得られる応力状態を表す応力状態式に代入して、それぞ
れの式の係数値を決定し、求めた前記係数値又は応力状
態式が表す応力分布から、前記板状部材のき裂の発生を
検知することを特徴とする板状部材のき裂検知方法。
1. A method for detecting a crack in a plate-like member having a notch including a circular arc, wherein the strain gauges are attached to a plurality of locations around the notch of the plate-like member to detect the radial direction of the plate. A strain value and a vertical strain value and a shear strain value in a circumferential direction perpendicular to the strain value are determined.Then, a stress value corresponding to each of the measured strain values is calculated by using the plate whose edge of the notch is a free boundary. Substituting into a stress state equation representing the stress state obtained from the stress function around the notch of the shape member, determine the coefficient value of each equation, from the obtained coefficient value or the stress distribution represented by the stress state equation, A method for detecting a crack in a plate-like member, comprising detecting occurrence of a crack in the plate-like member.
【請求項2】 請求項1記載の板状部材のき裂検知方法
において、それぞれの前記歪ゲージは、ロゼット型歪ゲ
ージであることを特徴とする板状部材のき裂検知方法。
2. The method for detecting cracks in a plate-like member according to claim 1, wherein each of the strain gauges is a rosette-type strain gauge.
JP2000143942A 2000-05-16 2000-05-16 Method for detecting crack in plate-shaped member Pending JP2001324431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143942A JP2001324431A (en) 2000-05-16 2000-05-16 Method for detecting crack in plate-shaped member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143942A JP2001324431A (en) 2000-05-16 2000-05-16 Method for detecting crack in plate-shaped member

Publications (1)

Publication Number Publication Date
JP2001324431A true JP2001324431A (en) 2001-11-22

Family

ID=18650684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143942A Pending JP2001324431A (en) 2000-05-16 2000-05-16 Method for detecting crack in plate-shaped member

Country Status (1)

Country Link
JP (1) JP2001324431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164515A (en) * 2006-12-28 2008-07-17 Kawasaki Heavy Ind Ltd Crack length detection method and crack length detection device
CN114820493A (en) * 2022-04-15 2022-07-29 西南交通大学 Composite material orifice splitting detection method caused by hole making

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164515A (en) * 2006-12-28 2008-07-17 Kawasaki Heavy Ind Ltd Crack length detection method and crack length detection device
CN114820493A (en) * 2022-04-15 2022-07-29 西南交通大学 Composite material orifice splitting detection method caused by hole making
CN114820493B (en) * 2022-04-15 2023-08-22 西南交通大学 Method for detecting split of composite material orifice caused by hole making

Similar Documents

Publication Publication Date Title
JP4275173B2 (en) Two-dimensional eddy current probe and associated inspection method
US10190992B2 (en) Structure status determination device, status determination system, and status determination method
JP6393442B2 (en) Ultrasonic source orientation locating device and overlay image analysis method
US20170307360A1 (en) Status determination device and status determination method
JPWO2016152076A1 (en) Structure state determination apparatus, state determination system, and state determination method
JP2008003043A (en) Method, apparatus, and system for detecting damages
CN106596100B (en) A kind of four-step machine tool chief axis elasticity modulus lossless detection method and device
JP3785577B1 (en) Crack detection system and crack detection method
JP4533621B2 (en) Residual stress measurement method and apparatus
JP2008002986A (en) Method, apparatus, and system for detection of damages
KR20100090912A (en) Method for structural health monitoring using ultrasonic guided wave
CN106934114B (en) Dynamic detection and evaluation method for connection state of pile-beam structure node
JP2001324431A (en) Method for detecting crack in plate-shaped member
JP5507050B2 (en) 3D sensor
JP3312298B2 (en) How to measure stress intensity factor
KR20200141768A (en) Apparatus and method for measuring crack of building using an electrically conductive paint
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
WO2009093070A1 (en) Eddy current inspection system and method of eddy current flaw detection
CN112001098B (en) Method and system for monitoring internal force of component section based on interpolation inversion mode
CN113533531A (en) Material damage positioning device, positioning method and verification method
KR101748582B1 (en) Straight degree inspection apparatus and method for probe pin
JP3042246B2 (en) Square member shape measuring device
JP6996642B2 (en) Information processing equipment, control methods, and programs
JPS5850457A (en) Detection of crack
JPH05164667A (en) Surface crack progress measuring method