JP2001323314A - Method for desulfurizing stainless steel - Google Patents

Method for desulfurizing stainless steel

Info

Publication number
JP2001323314A
JP2001323314A JP2000140595A JP2000140595A JP2001323314A JP 2001323314 A JP2001323314 A JP 2001323314A JP 2000140595 A JP2000140595 A JP 2000140595A JP 2000140595 A JP2000140595 A JP 2000140595A JP 2001323314 A JP2001323314 A JP 2001323314A
Authority
JP
Japan
Prior art keywords
desulfurization
concentration
slag
mno
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000140595A
Other languages
Japanese (ja)
Inventor
Ryuji Nakao
隆二 中尾
Masaru Kanekawa
賢 兼川
Masao Igarashi
昌夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000140595A priority Critical patent/JP2001323314A/en
Publication of JP2001323314A publication Critical patent/JP2001323314A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently perform desulfurizing-refining by surely confirming the progressing state and the desulfurizing ability in the melting or the refining processes of a stainless steel. SOLUTION: In the processes for melting the stainless steel in an electric furnace and for refining in a refining furnace, (MnO) concentration in the slag is analyzed to grasp the progressing state and the desulfurizing capacity from this (MnO) concentration. Based on this grasped progressing state and desulfurizing capacity of the desulfurizing reaction, the stirring of the molten steel is performed and/or flux for desulfurizing is added.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ステンレス鋼の溶
解および/または精錬工程において、脱硫進行状況を把
握し、それに応じて脱硫反応を進行させることにより、
脱硫処理を効率良く行う方法に関する。
[0001] The present invention relates to a process for grasping the progress of desulfurization in the melting and / or refining process of stainless steel, and for allowing the desulfurization reaction to proceed accordingly.
The present invention relates to a method for efficiently performing a desulfurization treatment.

【0002】[0002]

【従来の技術】11mass%以上のCrを含むステンレス鋼の
製造工程では、スクラップ、合金鉄などの原料を電気炉
で溶解し、粗溶鋼を製造した後に、上底吹き転炉、AO
D炉およびVOD炉等の精錬炉で精錬を行い、その後、
取鍋での温度および成分等の調整を行って、次いで、連
続鋳造を行い、スラブやブルーム等の中間製品が製造さ
れる。
2. Description of the Related Art In the manufacturing process of stainless steel containing Cr of 11 mass% or more, raw materials such as scrap and ferromagnetic iron are melted in an electric furnace to produce a coarse molten steel, and then a top and bottom blown converter, an AO
Refining is performed in refining furnaces such as D furnace and VOD furnace.
After adjusting the temperature and components in the ladle, continuous casting is performed, and intermediate products such as slabs and blooms are manufactured.

【0003】ステンレス鋼中に含まれる [S] は、積極
的に [S] を添加して切削性を確保する快削ステンレス
鋼を除き、不純物として取り扱われ、熱間加工性、耐食
性あるいは機械的性質を確保するために、一般的には、
100ppm以下、高純鋼では40ppm 以下に脱硫されており、
最近では、10ppm 以下のステンレス鋼も製造されてい
る。
[S] contained in stainless steel is treated as an impurity, except for free-cutting stainless steel, which actively adds [S] to ensure machinability, and is treated as hot workability, corrosion resistance or mechanical properties. In general, to ensure the nature,
It is desulfurized to 100 ppm or less and 40 ppm or less for high-purity steel.
Recently, less than 10 ppm of stainless steel has also been produced.

【0004】ステンレス鋼中の [S] はスクラップ、合
金鉄などの原料より不可避的に持ち込まれるものであ
り、目標とする製品の [S] 濃度に低下させるために
は、溶解工程および精錬工程での脱硫が必須であり、電
気炉および精錬炉だけでは脱硫能が不足する場合には、
電気炉での溶解後、あるいは、精錬炉での精錬後、取鍋
内にて脱硫処理を行う方法が取られている。近年、製品
の品質を向上させるために、目標の [S] 濃度を下げる
要求が強くなり、一方では、原料コストの削減のために
[S] 濃度の高い安価な原料の使用比率が高くなり、益
々脱硫処理の重要性が高くなってきている。
[S] in stainless steel is inevitably brought in from raw materials such as scrap and ferromagnetic iron. In order to reduce the [S] concentration of the target product, it is necessary to use a melting step and a refining step. If the desulfurization capacity is insufficient with only an electric furnace and a refining furnace,
After melting in an electric furnace or refining in a refining furnace, a method of performing desulfurization treatment in a ladle has been adopted. In recent years, there has been a strong demand for lowering the target [S] concentration in order to improve product quality, while reducing raw material costs.
[S] The use ratio of inexpensive raw materials having a high concentration is increasing, and the importance of desulfurization treatment is increasing.

【0005】脱硫方法は、溶鋼中の [S] を溶融したス
ラグと接触させ、反応させて、スラグ中に移行させる方
法が主体であり、そのため、脱硫能を向上させる手段に
は、ガス撹拌により溶鋼とスラグ間の接触を強化する方
法や、CaO −CaF2系、CaO −Al2O3 系などの脱硫用フラ
ックスを添加して、生成スラグの塩基度[(CaO)/(SiO2)]
を上げて、スラグ自体の脱硫能を向上させる方法が取り
入れられている。
[0005] Desulfurization is mainly carried out by bringing [S] in molten steel into contact with molten slag, reacting it, and transferring it into the slag. Therefore, the means for improving the desulfurization ability is gas stirring. a method of enhancing the contact between the molten steel and slag, CaO -CaF 2 system, with the addition of desulfurizing flux such as CaO -Al 2 O 3 system, basicity of the product slag [(CaO) / (SiO 2 )]
To increase the desulfurization ability of the slag itself.

【0006】これらの方法では、脱硫能を向上させるこ
とはできるが、脱硫反応が未だ進み得るのか、あるい
は、限界なのか等の脱硫反応の進行状態を把握できな
い。その結果、過剰にガス撹拌の時間を長くしたり、過
剰にスラグ塩基度を上げることを行ったりすることにな
るため、製造コストが増大する。
With these methods, the desulfurization ability can be improved, but the progress of the desulfurization reaction, such as whether the desulfurization reaction can still proceed or is at a limit, cannot be grasped. As a result, the gas stirring time is excessively increased or the slag basicity is excessively increased, so that the production cost is increased.

【0007】普通鋼の精錬で安定して高脱硫能を得る手
段として、例えば、特開平9−217110号公報、あ
るいは、特開昭63−100122号公報などに、その
手段が示されている。これらの方法は、スラグの還元反
応を進行させ、スラグ中(FeO) および(MnO) 濃度を低減
させることで高脱硫能を得るものであり、特開平9−2
17110号公報では、スラグ中の(FeO) +(MnO) 濃度
を0.6 %以下とすることで、安定して高脱硫能を得るこ
とが示されている。
As means for obtaining a high desulfurization ability stably by refining ordinary steel, for example, Japanese Patent Application Laid-Open No. 9-217110 and Japanese Patent Application Laid-Open No. 63-100122 disclose such means. In these methods, a high desulfurization ability is obtained by promoting the reduction reaction of slag and reducing the (FeO) and (MnO) concentrations in slag.
Japanese Patent No. 17110 discloses that a high desulfurization ability can be stably obtained by controlling the (FeO) + (MnO) concentration in the slag to 0.6% or less.

【0008】一方、ステンレス鋼については、フラック
スを添加したり、撹拌を強化することで脱硫能を向上さ
せる方法が数多く開示されているが、脱硫能を把握し、
高脱硫能を得る手段については示されていない。また、
前記特開平9−217110号公報による高脱硫能を得
る方法をステンレス鋼に適用した場合、スラグ中の(Fe
O) +(MnO) 濃度と脱硫能の相関は認められず、かつ、
精錬炉での脱硫処理および精錬炉での処理後の取鍋内脱
硫処理では、殆どの場合で、スラグ中の(FeO) +(MnO)
濃度が0.6 %以下を満足するために、脱硫能を把握する
手段としては使えないことが確認された。
On the other hand, with respect to stainless steel, many methods have been disclosed for improving the desulfurization ability by adding a flux or strengthening the stirring.
No means for obtaining high desulfurization capacity is disclosed. Also,
When the method for obtaining a high desulfurization ability according to JP-A-9-217110 is applied to stainless steel, (Fe
No correlation between O) + (MnO) concentration and desulfurization ability was observed, and
In the desulfurization treatment in the smelting furnace and the desulfurization treatment in the ladle after the treatment in the smelting furnace, (FeO) + (MnO)
It has been confirmed that since the concentration satisfies 0.6% or less, it cannot be used as a means for determining the desulfurization ability.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
課題を解決すべく見い出された発明であり、脱硫処理中
のスラグ中の(MnO) 濃度を分析し、その値より脱硫反応
の進行状態を把握すると共に、高脱硫能を得るための
“しきい値”を設けて管理することで、効率的に脱硫処
理を行い、製造コストの低減を図るものである。
DISCLOSURE OF THE INVENTION The present invention has been found to solve such a problem. The present invention analyzes the (MnO) concentration in slag during desulfurization treatment, and determines the progress of the desulfurization reaction from the value. By grasping the state and providing and managing a "threshold" for obtaining a high desulfurization ability, the desulfurization treatment is performed efficiently and the production cost is reduced.

【0010】[0010]

【課題を解決するための手段】上記目的を達成する本発
明のステンレス鋼の脱硫方法は、次の(1)〜(5)を
要旨とするものである。 (1)ステンレス鋼を電気炉で溶解し、精錬炉で精錬を
行う方法において、スラグ中(MnO) 濃度に応じて脱硫能
を調整することを特徴とする。
A method for desulfurizing stainless steel according to the present invention which achieves the above objects has the following features (1) to (5). (1) A method of melting stainless steel in an electric furnace and performing refining in a refining furnace, wherein the desulfurization ability is adjusted according to the (MnO) concentration in the slag.

【0011】(2)ステンレス鋼を電気炉で溶解する方
法において、スラグ中(MnO) 濃度が1.00mass%以下とな
るように、溶鋼の撹拌を行うか、および/または、脱硫
用フラックスを添加することを特徴とする。 (3)ステンレス鋼を電気炉で溶解し、取鍋で脱硫処理
を行う方法において、スラグ中(MnO) 濃度が0.50mass%
以下となるように、溶鋼の撹拌を行うか、および/また
は、脱硫用フラックスを添加することを特徴とする。 (4)ステンレス鋼を電気炉で溶解し、精錬炉で脱炭精
錬および還元精錬を行う方法において、スラグ中(MnO)
濃度が0.30mass%以下となるように、溶鋼の撹拌を行う
か、および/または、脱硫用フラックスを添加すること
を特徴とする。 (5)ステンレス鋼を電気炉で溶解し、精錬炉で脱炭精
錬および還元精錬を行い、取鍋で脱硫処理を行う方法に
おいて、スラグ中(MnO) 濃度が0.15mass%以下となるよ
うに、溶鋼の撹拌を行うか、および/または、脱硫用フ
ラックスを添加することを特徴とする。
(2) In the method of melting stainless steel in an electric furnace, the molten steel is stirred and / or a desulfurizing flux is added so that the (MnO) concentration in the slag is 1.00 mass% or less. It is characterized by the following. (3) In a method in which stainless steel is melted in an electric furnace and desulfurized in a ladle, the (MnO) concentration in the slag is 0.50 mass%.
It is characterized in that the molten steel is stirred and / or a desulfurizing flux is added as described below. (4) In a method of melting stainless steel in an electric furnace and performing decarburization refining and reduction smelting in a smelting furnace, the slag (MnO)
It is characterized in that the molten steel is stirred and / or a desulfurizing flux is added so that the concentration becomes 0.30 mass% or less. (5) In a method in which stainless steel is melted in an electric furnace, decarburization refining and reduction smelting are performed in a refining furnace, and desulfurization treatment is performed in a ladle, the concentration of (MnO) in slag is set to 0.15 mass% or less. It is characterized in that the molten steel is stirred and / or a desulfurizing flux is added.

【0012】[0012]

【発明の実施の形態】本発明者らは、ステンレス鋼を電
気炉で溶解し精錬炉で精錬を行う工程において、電気炉
で粗溶鋼に溶解する工程(以下、溶解工程という)、該
粗溶鋼をスラグと共に取鍋に出鋼し取鍋内にて脱硫処理
を行う工程(以下、粗溶鋼脱硫工程という)、精錬炉に
て脱炭精錬を行った後の最終の還元期での脱硫工程(以
下、精錬工程という)、および、精錬炉で精錬を行った
後の溶鋼を取鍋に出鋼して取鍋内にて脱硫処理を行う工
程(以下、溶鋼脱硫工程という)のいずれの工程におい
ても、スラグ中(MnO) 濃度と脱硫能の指標であるスラグ
中 (S) 濃度と溶鋼中 [S] 濃度の比、いわゆる、脱硫
分配比 (S) / [S] が非常に相関性が良いことを見い
出した。
BEST MODE FOR CARRYING OUT THE INVENTION In the process of melting stainless steel in an electric furnace and refining in a refining furnace, the present inventors dissolve the stainless steel in a crude molten steel in an electric furnace (hereinafter referred to as a melting step). In the ladle with slag and desulfurization in the ladle (hereinafter referred to as crude molten steel desulfurization step), and desulfurization step in the final reduction period after decarburization and refining in the refining furnace ( Hereinafter, referred to as a refining process), and a process in which molten steel after refining in a refining furnace is tapped into a ladle and desulfurized in the ladle (hereinafter, referred to as a molten steel desulfurization process). Also, the ratio of (S) concentration in slag and [S] concentration in molten steel, which is an index of desulfurization ability, and the so-called desulfurization distribution ratio (S) / [S] have very good correlation. I found something.

【0013】図1に、前記の溶解工程と粗溶鋼脱硫工程
でのスラグ中(MnO) 濃度と脱硫分配比 (S) / [S] の
関係を示し、図2に、精錬炉にAOD炉を用いて処理し
た時の前記の精錬工程と溶鋼脱硫工程でのスラグ中(Mn
O) 濃度と脱硫分配比の関係を示す。図中の白丸印は溶
解工程での値、黒丸印は粗溶鋼脱硫工程での値、白四角
印は精錬工程での値、および、黒四角印は溶鋼脱硫工程
での値を示す。
FIG. 1 shows the relationship between the (MnO) concentration in slag and the desulfurization distribution ratio (S) / [S] in the above-mentioned melting step and crude molten steel desulfurization step. FIG. 2 shows an AOD furnace as a refining furnace. In the slag (Mn
O) The relationship between the concentration and the desulfurization distribution ratio is shown. In the figure, white circles indicate values in the melting step, black circles indicate values in the coarse molten steel desulfurization step, white squares indicate values in the refining step, and black squares indicate values in the molten steel desulfurization step.

【0014】図1および図2において、各工程での(Mn
O) 濃度と脱硫分配比 (S) / [S]の値は異なるが、全
体的に、(MnO) 濃度の低下に従い、脱硫分配比 (S) /
[S] が向上する顕著な傾向が認められる。この関係を
使えば、スラグ中の(MnO) 濃度のみを分析することで、
脱硫分配比が容易に求まることになる。
In FIG. 1 and FIG. 2, (Mn
Although the O) concentration and the value of the desulfurization partition ratio (S) / [S] are different, overall, as the (MnO) concentration decreases, the desulfurization partition ratio (S) /
There is a remarkable tendency to improve [S]. Using this relationship, by analyzing only the (MnO) concentration in the slag,
The desulfurization distribution ratio will be easily determined.

【0015】また、溶解工程 (白丸) 、粗溶鋼脱硫工程
(黒丸) 、精錬工程 (白四角) 、溶鋼脱硫工程 (黒四
角) の順で、(MnO) 濃度が低下し、脱硫分配比が向上す
ることがわかる。
The melting step (open circles) and the crude molten steel desulfurization step
It can be seen that the (MnO) concentration decreases and the desulfurization distribution ratio improves in the order of (black circles), the refining process (white squares), and the molten steel desulfurization process (black squares).

【0016】一般に、脱硫反応は下記(1)式で表さ
れ、反応平衡定数Kは下記(2)式で表される。 (CaO) + [S] =(CaS) + [O] …(1) K=aCaS O /aCaO S …(2) ここで、aCaS はスラグ中(CaS) の活量、aO は溶鋼中
[O] の活量、aCaOはスラグ中(CaO) の活量、aS
溶鋼中 [S] の活量を示す。
Generally, the desulfurization reaction is represented by the following equation (1), and the reaction equilibrium constant K is represented by the following equation (2). (CaO) + [S] = (CaS) + [O] ... (1) K = a CaS a O / a CaO a S ... (2) where, a CaS during slag activity of the (CaS), a O is in molten steel
The activity of [O], a CaO indicates the activity of (CaO) in slag, and a S indicates the activity of [S] in molten steel.

【0017】上記(2)式を変形すると下記(3)式が
導出される。 (S) / [S] ∝aCaS /aS =K・aCaO /aO …(3) 上記(3)式の右辺について、Kは溶鋼温度が一定であ
れば一定値であり、a CaO /aO はスラグと溶鋼間の酸
素分配比、つまり、酸素ポテンシャルに相当する。図1
および図2の関係より、ステンレス鋼の溶解および精錬
工程においては、(MnO) 濃度が酸素ポテンシャルに相当
する指標となっていることが確認された。
When the above equation (2) is modified, the following equation (3) is obtained.
Derived. (S) / [S] ∝aCaS/ AS= KaCaO/ AO ... (3) Regarding the right side of the above equation (3), K indicates that the molten steel temperature is constant.
Is a constant value if CaO/ AOIs the acid between the slag and the molten steel
Element distribution ratio, that is, the oxygen potential. FIG.
Melting and refining of stainless steel from the relationship between Fig. 2 and Fig. 2.
In the process, the (MnO) concentration corresponds to the oxygen potential
It was confirmed that it was an index to be performed.

【0018】一般に、ステンレス鋼の製造工程では溶解
工程に比べ、精錬工程の方が溶鋼の撹拌力が強く、か
つ、溶鋼温度も高いために、スラグ塩基度も高くして精
錬が行われる結果、酸素ポテンシャルが低下する。ま
た、粗溶鋼脱硫工程および溶鋼脱硫工程とも、前の工程
の影響を強く受けることから、溶解工程、粗溶鋼脱硫工
程、精錬工程、溶鋼脱硫工程の順に酸素ポテンシャルが
低下するため、この順で(MnO) 濃度が低下し、脱硫分配
比 (S) / [S] が向上することになる。
Generally, in the stainless steel production process, the refining process has a higher stirring power of the molten steel and the molten steel temperature is higher than the melting process, so that the refining is performed with a higher slag basicity. Oxygen potential decreases. In addition, since both the crude molten steel desulfurization step and the molten steel desulfurization step are strongly affected by the previous step, the oxygen potential decreases in the order of the melting step, the crude molten steel desulfurization step, the refining step, and the molten steel desulfurization step. MnO) concentration is reduced, and the desulfurization partition ratio (S) / [S] is improved.

【0019】脱硫分配比 (S) / [S] をLS とする
と、下記(4)式および(5)式を導出することができ
る。 LS = (S) / [S] =α(MnO) …(4) [S] = [S] i / (Wm +Ws ・LS ) = [S] i / (Wm +Ws ・α(MnO)) …(5) ここで、αはスラグ中(MnO) 濃度に依存する定数、(Mn
O) はスラグ中(MnO) 濃度、 [S] i は脱硫前の全 [S]
量、Wm は脱硫処理での溶鋼量、Ws は脱硫処理での
スラグ量を示す。
Assuming that the desulfurization distribution ratio (S) / [S] is L S , the following equations (4) and (5) can be derived. L S = (S) / [S] = α (MnO) (4) [S] = [S] i / (W m + W s · L S ) = [S] i / (W m + W s · α) (MnO)) (5) where α is a constant depending on the (MnO) concentration in the slag, (MnO)
O) is the (MnO) concentration in the slag, [S] i is the total [S] before desulfurization
The amount, W m is the molten steel amount in the desulfurization process, W s denotes the amount of slag in the desulfurization treatment.

【0020】上記(4)式および(5)式において、
[S] i 、Wm 、Ws は脱硫処理時に容易に把握できる
値であり、LS がわかれば、その時の溶鋼中 [S] 濃度
がわかる。さらに、図1および図2の関係より、スラグ
の分析によりスラグ中(MnO) 濃度がわかれば、その時の
溶鋼中 [S] 濃度がわかることになる。蛍光X線を用い
たその場分析にて、スラグの分析を行えば、最短で約1
分で(MnO) 濃度の分析値が出せることから、(MnO) 濃度
を把握することにより、逐次、脱硫状況が把握できるこ
とになる。
In the above equations (4) and (5),
[S] i , W m , and W s are values that can be easily grasped during desulfurization treatment, and if L S is known, the [S] concentration in the molten steel at that time can be known. Further, from the relationship between FIG. 1 and FIG. 2, if the (MnO) concentration in the slag is known from the analysis of the slag, the [S] concentration in the molten steel at that time can be known. If slag is analyzed by in-situ analysis using fluorescent X-rays, the shortest is about 1
Since the analytical value of the (MnO) concentration can be obtained in minutes, the desulfurization status can be grasped sequentially by grasping the (MnO) concentration.

【0021】図3に、電気炉での溶解工程および粗溶鋼
脱硫工程の各2チャージについて、ガス撹拌を付加する
ことで脱硫処理を行った場合の脱硫処理開始時からの撹
拌時間と、スラグ中(MnO) 濃度の関係を示す。図中の白
丸印は溶解工程での値、黒丸印は粗溶鋼脱硫工程での値
を示す。なお、スラグ中(MnO) 濃度と脱硫分配比 (S)
/ [S] の関係は図1での関係に一致していることが確
認されている。
FIG. 3 shows the stirring time from the start of the desulfurization treatment in the case where the desulfurization treatment was performed by adding gas stirring for each of the two charges of the melting step and the crude steel desulfurization step in the electric furnace, The relationship between (MnO) concentration is shown. In the figure, white circles indicate values in the melting step, and black circles indicate values in the crude molten steel desulfurization step. The (MnO) concentration in slag and the desulfurization distribution ratio (S)
It has been confirmed that the relationship of / [S] matches the relationship in FIG.

【0022】図3より、溶解工程と粗溶鋼脱硫工程での
(MnO) 濃度の低下速度には差があるが、溶解工程では1.
00mass%を切るまで、粗溶鋼脱硫工程では0.50mass%を
切るまでは(MnO) 濃度は時間の経過と共に急激に低下す
る。しかし、その後は長時間の撹拌を行っても、(MnO)
濃度の低下代は小さく、却って、ガス・コストの上昇、
耐火物の溶損の進行等を招くために有効な脱硫処理とは
ならない。したがって、効率的に脱硫処理を行うには、
スラグ中(MnO) 濃度を、溶解工程では1.00mass%以下、
粗溶鋼脱硫工程では0.50mass%以下とすることが有効で
ある。
FIG. 3 shows that the melting step and the crude molten steel desulfurization step
There is a difference in the rate of decrease of the (MnO) concentration, but in the dissolution process, 1.
The concentration of (MnO) decreases rapidly with the passage of time until the mass falls below 00 mass% and in the crude molten steel desulfurization step until the mass falls below 0.50 mass%. However, even after long stirring, (MnO)
Concentration reduction is small, and instead gas costs increase,
This is not an effective desulfurization treatment because it causes the progress of erosion of the refractory. Therefore, to perform desulfurization efficiently,
(MnO) concentration in the slag, 1.00 mass% or less in the melting process,
In the crude molten steel desulfurization process, it is effective to make the content 0.50 mass% or less.

【0023】図4に、電気炉での溶解工程の後に、精錬
炉にAOD炉を用いて精錬を行った場合の精錬工程およ
び溶鋼脱硫工程の各2チャージについて、CaO −20%Ca
F2のフラックスを添加することで脱硫処理を行った場合
のフラックスの溶鋼トン当りの添加量と、スラグ中(Mn
O) 濃度の関係を示す。図中の白四角印は精錬工程での
値、黒四角印は溶鋼脱硫工程での値を示す。なお、スラ
グ中(MnO) 濃度と脱硫分配比 (S) / [S] の関係は図
2での関係に一致していることが確認されている。
FIG. 4 shows that, after the melting step in the electric furnace, two recharges in the refining step and the molten steel desulfurization step when refining is performed using an AOD furnace as the refining furnace, CaO-20% Ca
And added per ton of the molten steel flux in the case of performing desulfurization treatment by adding flux F 2, in the slag (Mn
O) Shows the relationship between concentrations. In the figure, white squares indicate values in the refining process, and black squares indicate values in the molten steel desulfurization process. It has been confirmed that the relationship between the (MnO) concentration in the slag and the desulfurization distribution ratio (S) / [S] matches the relationship in FIG.

【0024】図4より、精錬工程と溶鋼脱硫工程ではフ
ラックス添加量に対する(MnO) 濃度の低下代には差があ
るが、精錬工程では0.30mass%を切るまで、溶鋼脱硫工
程では0.15mass%を切るまでは、(MnO) 濃度はフラック
スの添加量の増大と共に急激に低下する。しかし、その
後は多量のフラックスの添加を行っても、(MnO) 濃度の
低下代は小さく、却って、フラックス・コストの上昇、
撹拌用ガスのコストの上昇、耐火物の溶損の進行等を招
くために有効な脱硫処理とはならない。したがって、効
率的に脱硫処理を行うには、スラグ中(MnO) 濃度を、精
錬工程では0.30mass%以下、溶鋼脱硫工程では0.15mass
%以下とすることが有効である。
FIG. 4 shows that there is a difference in the reduction amount of the (MnO) concentration with respect to the added amount of flux between the refining process and the molten steel desulfurization process. Until turning off, the (MnO) concentration drops sharply with increasing flux addition. However, after that, even if a large amount of flux is added, the decrease in the (MnO) concentration is small, and on the contrary, the flux cost increases,
This is not an effective desulfurization treatment because it causes an increase in the cost of the stirring gas and the progress of melting of the refractory. Therefore, in order to perform desulfurization efficiently, the concentration of (MnO) in the slag should be 0.30 mass% or less in the refining process and 0.15 mass% in the molten steel desulfurization process.
% Is effective.

【0025】[0025]

【実施例】製品 [S] 濃度20ppm 以下が要求されるSU
S304(18mass%Cr−8mass %Ni)ステンレス鋼の製
造に関して、電気炉、AOD炉、連続鋳造からなる製造
工程において、電気炉とAOD炉間での粗溶鋼脱硫工
程、および/または、AOD炉での精錬後の溶鋼脱硫工
程を入れることで脱硫処理を実施した。電気炉ではスク
ラップ、合金鉄を主原料とし、ダスト、スケール等も加
えて、溶鋼量58〜60ton 、 [S] 濃度320 〜380ppmの範
囲になるように配合し、合わせて、CaO 、CaF2等の造滓
剤を加えて溶解を行った。
[Example] Product [S] SU requiring a concentration of 20 ppm or less
Regarding the production of S304 (18 mass% Cr-8mass% Ni) stainless steel, in a production process consisting of an electric furnace, an AOD furnace and a continuous casting, in a crude molten steel desulfurization step between the electric furnace and the AOD furnace, and / or in an AOD furnace. The desulfurization treatment was carried out by including a molten steel desulfurization step after the refining of. Scrap in an electric furnace, an alloy of iron as a main raw material, dust, scale, etc. be added, amount of molten steel 58~60Ton, formulated to be in the range of [S] concentration 320 ~380Ppm, together, CaO, CaF 2, etc. Was dissolved by adding a slag-making agent.

【0026】溶解後、スラグ中(MnO) 濃度のチェックを
行い、1.00mass%以下を達成していない場合には、1.00
mass%以下を達成するまで3〜15min 程度のガス撹拌を
行い、その後に、粗溶鋼を、スラグと共に取鍋に出鋼し
た。粗溶鋼の脱硫処理を行う場合には、取鍋で所定のス
ラグ量になるまで取鍋を傾けて排滓を行い、その後、Ca
O −CaF2系フラックスを窒素ガスと共に吹き込んだ。処
理中、逐次スラグ中(MnO) 濃度の分析を行い、0.50mass
%以下を達成した時点で処理を終了した。
After dissolution, the concentration of (MnO) in the slag is checked.
Gas agitation was performed for about 3 to 15 minutes until mass% or less was achieved, and then the crude molten steel was discharged to a ladle together with slag. When performing desulfurization treatment of crude molten steel, the ladle is tilted and drained until the amount of slag reaches a predetermined value, and then Ca
The O -CaF 2-based flux was blown together with the nitrogen gas. During the treatment, the analysis of the (MnO) concentration in the slag was performed sequentially, and 0.50 mass
%, The process was terminated.

【0027】その後、取鍋内のスラグを排滓機を用いて
強制的に排滓した後に、粗溶鋼をAOD炉に装入した。
AOD炉では、所定の [C] 濃度になるまで脱炭精錬を
行い、脱炭終了後、還元剤およびCaO 、CaF2、MgO 等の
造滓剤を加え、還元処理を行った。還元途中より、スラ
グ中(MnO) 濃度の分析を行い、0.30mass%以下を達成し
た時点で処理を終了し、溶鋼をスラグと共に取鍋に出鋼
した。
Thereafter, the slag in the ladle was forcibly discharged using a discharger, and then the crude molten steel was charged into an AOD furnace.
The AOD furnace, subjected to decarburization refining until a predetermined [C] concentration after decarburization completion, a reducing agent and CaO, a slag agent CaF 2, MgO, etc. were added thereto to carry out a reduction treatment. During the reduction, the (MnO) concentration in the slag was analyzed. When the slag reached 0.30 mass% or less, the treatment was terminated, and the molten steel was discharged to a ladle together with the slag.

【0028】取鍋に出鋼時点で溶鋼の [S] 濃度の分析
を行い、10ppm 以下を達成している場合には、そのまま
連続鋳造を行ったが、達成していない場合には、取鍋で
の溶鋼脱硫処理を実施した。脱硫処理ではスラグ量を所
定量に調整した後に、CaO −CaF2系フラックスをアルゴ
ンガスと共に吹き込んだ。処理中、逐次、スラグ中(Mn
O) 濃度の分析を行い、0.15mass%以下を達成した時点
で処理を終了し、その後、連続鋳造を実施した。なお、
溶鋼脱硫処理を行ったチャージは全て、 [S] 濃度10pp
m 以下を達成した。
The ladle was analyzed for the [S] concentration of the molten steel at the time of tapping, and when it reached 10 ppm or less, continuous casting was carried out as it was. For desulfurization of molten steel. After adjusting the amount of slag in a predetermined amount in the desulfurization process, it was blown CaO -CaF 2 based flux with argon gas. During processing, sequentially, during slag (Mn
O) The concentration was analyzed, and when the concentration reached 0.15 mass% or less, the treatment was terminated, and thereafter, continuous casting was performed. In addition,
All of the charges subjected to molten steel desulfurization treatment have [S] concentration of 10pp
m was achieved.

【0029】表1に脱硫処理の実施例を示す。発明例お
よび比較例のいずれも50チャージに適用した。発明例で
は、粗溶鋼脱硫工程、溶鋼脱硫工程のいずれか一方、ま
たは、双方を実施し、かつ溶解工程、粗溶鋼脱硫工程、
精錬工程および溶鋼脱硫工程において、スラグ中(MnO)
濃度がそれぞれ所定の濃度以下を達成したことを確認し
た後に、次工程に移行した。
Table 1 shows examples of the desulfurization treatment. Both the invention example and the comparative example were applied to 50 charges. In the invention example, one of the crude molten steel desulfurization step, the molten steel desulfurization step, or both are performed, and the melting step, the crude molten steel desulfurization step,
In slag (MnO) in refining process and molten steel desulfurization process
After confirming that the concentrations reached the respective predetermined concentrations or less, the process was shifted to the next step.

【0030】比較例は、スラグ中(MnO) 濃度により脱硫
能を調整することのない方法であり、粗溶鋼脱硫工程、
溶鋼脱硫工程のいずれか一方、または、双方を実施した
が、各工程でスラグ中(MnO) 濃度がそれぞれ所定の濃度
を達成したことを確認せず、処理を行った場合の例であ
る。その結果、各工程において、所定の(MnO) 濃度を達
成しなかったチャージが存在した。
The comparative example is a method in which the desulfurization ability is not adjusted by the (MnO) concentration in the slag.
This is an example of a case where either one or both of the molten steel desulfurization steps were performed, but the treatment was performed without confirming that the (MnO) concentration in the slag reached a predetermined concentration in each step. As a result, in each step, there was a charge that did not achieve the predetermined (MnO) concentration.

【0031】[0031]

【表1】 [Table 1]

【0032】実施結果を表2に示す。耐火物溶損指数お
よび脱硫コスト指数は、発明例を100として、比例換
算した値である。発明例では、いずれも鋳片 [S] 濃度
20ppm 以下を達成すると共に、過剰な耐火物の溶損、脱
硫コストの増大はなかったが、比較例では、粗溶鋼脱硫
処理を行わなかったチャージにおいて、鋳片 [S] 濃度
が20ppm を超えるチャージが発生し、かつ、過剰な脱硫
処理により、耐火物溶損が進行し、脱硫コストの増大を
招いた。
The results are shown in Table 2. The refractory erosion index and the desulfurization cost index are values obtained by proportionally converting the invention example to 100. In the invention examples, the slab [S] concentration
In addition to achieving 20 ppm or less, there was no excessive refractory erosion and increase in desulfurization cost. However, in the comparative example, in the charge without the desulfurization treatment of crude molten steel, the charge with the slab [S] concentration exceeding 20 ppm was used. And excessive desulfurization treatment caused refractory erosion and increased desulfurization cost.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明法によると、ステンレス鋼の溶解
および精錬工程において、脱硫進行状況を把握すること
ができるので、脱硫処理を過不足なく行うことができ
る。また、高脱硫能を得るための“しきい値”を設ける
ことができるので、脱硫処理を効率よく行うことができ
る。その結果、低コストで極低硫鋼の製造が行えるよう
になる。
According to the method of the present invention, the progress of desulfurization can be grasped in the steps of melting and refining stainless steel, so that desulfurization can be carried out without excess or deficiency. Further, since a "threshold" for obtaining high desulfurization ability can be provided, desulfurization treatment can be performed efficiently. As a result, extremely low sulfur steel can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶解工程および粗溶鋼脱硫工程におけるスラグ
中(MnO) 濃度と脱硫分配比 (S)/ [S] の関係を示す図
である。
FIG. 1 is a diagram showing the relationship between (MnO) concentration in slag and desulfurization distribution ratio (S) / [S] in a melting step and a crude molten steel desulfurization step.

【図2】精錬工程および溶鋼脱硫工程におけるスラグ中
(MnO) 濃度と脱硫分配比 (S)/[S] の関係を示す図で
ある。
FIG. 2 Slag in smelting process and molten steel desulfurization process
It is a figure which shows the relationship between (MnO) density | concentration and a desulfurization distribution ratio (S) / [S].

【図3】溶解工程および粗溶鋼脱硫工程における撹拌時
間とスラグ中(MnO) 濃度の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a stirring time and a (MnO) concentration in slag in a melting step and a crude molten steel desulfurization step.

【図4】精錬工程および溶鋼脱硫工程におけるフラック
ス添加量とスラグ中(MnO) 濃度の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of flux added and the (MnO) concentration in slag in the refining process and the molten steel desulfurization process.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五十嵐 昌夫 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 Fターム(参考) 4K013 AA02 BA05 CA01 CA02 CA09 CB04 CC01 CF12 CF13 DA03 DA05 DA10 DA13 EA03 EA09 FA05 4K014 CA04 CB01 CB03 CC07  ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Masao Igarashi 3434 Shimada, Hikari-shi, Yamaguchi Prefecture Nippon Steel Corporation Hikari Works F-term (reference) 4K013 AA02 BA05 CA01 CA02 CA09 CB04 CC01 CF12 CF13 DA03 DA05 DA10 DA13 EA03 EA09 FA05 4K014 CA04 CB01 CB03 CC07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼を電気炉で溶解し、精錬炉
で精錬を行う方法において、スラグ中(MnO) 濃度に応じ
て脱硫能を調整することを特徴とするステンレス鋼の脱
硫方法。
1. A method for dissolving stainless steel in an electric furnace and refining in a refining furnace, wherein the desulfurization ability is adjusted according to the (MnO) concentration in the slag.
【請求項2】 ステンレス鋼を電気炉で溶解する方法に
おいて、スラグ中(MnO) 濃度が1.00mass%以下となるよ
うに、溶鋼の撹拌を行うか、および/または、脱硫用フ
ラックスを添加することを特徴とするステンレス鋼の脱
硫方法。
2. A method for melting stainless steel in an electric furnace, wherein the molten steel is stirred and / or a desulfurization flux is added so that the (MnO) concentration in the slag is 1.00 mass% or less. A method for desulfurizing stainless steel, comprising:
【請求項3】 ステンレス鋼を電気炉で溶解し、取鍋で
脱硫処理を行う方法において、スラグ中(MnO) 濃度が0.
50mass%以下となるように、溶鋼の撹拌を行うか、およ
び/または、脱硫用フラックスを添加することを特徴と
するステンレス鋼の脱硫方法。
3. A method in which stainless steel is melted in an electric furnace and desulfurized in a ladle, wherein the concentration of (MnO) in the slag is set at 0.
A method of desulfurizing stainless steel, comprising stirring molten steel and / or adding a desulfurization flux so as to be 50 mass% or less.
【請求項4】 ステンレス鋼を電気炉で溶解し、精錬炉
で脱炭精錬および還元精錬を行う方法において、スラグ
中(MnO) 濃度が0.30mass%以下となるように、溶鋼の撹
拌を行うか、および/または、脱硫用フラックスを添加
することを特徴とするステンレス鋼の脱硫方法。
4. A method for melting stainless steel in an electric furnace and performing decarburization refining and reduction smelting in a refining furnace, wherein the molten steel is stirred so that the (MnO) concentration in the slag becomes 0.30 mass% or less. And / or a desulfurizing flux is added.
【請求項5】 ステンレス鋼を電気炉で溶解し、精錬炉
で脱炭精錬および還元精錬を行い、取鍋で脱硫処理を行
う方法において、スラグ中(MnO) 濃度が0.15mass%以下
となるように、溶鋼の撹拌を行うか、および/または、
脱硫用フラックスを添加することを特徴とするステンレ
ス鋼の脱硫方法。
5. A method in which stainless steel is melted in an electric furnace, decarburization refining and reduction refining are performed in a refining furnace, and desulfurization treatment is performed in a ladle, so that the (MnO) concentration in the slag is 0.15 mass% or less. Stirring the molten steel and / or
A desulfurization method for stainless steel, comprising adding a desulfurization flux.
JP2000140595A 2000-05-12 2000-05-12 Method for desulfurizing stainless steel Withdrawn JP2001323314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000140595A JP2001323314A (en) 2000-05-12 2000-05-12 Method for desulfurizing stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000140595A JP2001323314A (en) 2000-05-12 2000-05-12 Method for desulfurizing stainless steel

Publications (1)

Publication Number Publication Date
JP2001323314A true JP2001323314A (en) 2001-11-22

Family

ID=18647856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000140595A Withdrawn JP2001323314A (en) 2000-05-12 2000-05-12 Method for desulfurizing stainless steel

Country Status (1)

Country Link
JP (1) JP2001323314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024765A1 (en) * 2011-08-12 2013-02-21 Jfeスチール株式会社 Molten iron desulfurization method
US10287644B2 (en) 2011-08-12 2019-05-14 Jfe Steel Corporation Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024765A1 (en) * 2011-08-12 2013-02-21 Jfeスチール株式会社 Molten iron desulfurization method
JP2013040807A (en) * 2011-08-12 2013-02-28 Jfe Steel Corp Desulfurization method for molten iron
KR101382076B1 (en) 2011-08-12 2014-04-04 제이에프이 스틸 가부시키가이샤 Molten iron desulfurization method
US9068237B2 (en) 2011-08-12 2015-06-30 Jfe Steel Corporation Method for desulfurizing hot metal
US10287644B2 (en) 2011-08-12 2019-05-14 Jfe Steel Corporation Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
US11035014B2 (en) 2011-08-12 2021-06-15 Jfe Steel Corporation Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method

Similar Documents

Publication Publication Date Title
JPH07216434A (en) Production of very low carbon and very low sulfur steel
CZ2005483A3 (en) Process for producing extremely clean steels
JP4057942B2 (en) Method for producing ultra-low Ti molten steel
JPH08337810A (en) Production of iron or steel alloyed with nickel
JP6410311B2 (en) Stainless steel refining method
JP2003155516A (en) Method for desulfurizing molten steel with ladle- refining
JP2001323314A (en) Method for desulfurizing stainless steel
JPH10237533A (en) Production of hic resistant steel
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
RU2566230C2 (en) Method of processing in oxygen converter of low-siliceous vanadium-bearing molten metal
JP2002241829A (en) Desiliconizing method for molten iron
KR101786931B1 (en) Method for refining of molten stainless steel
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JPH10245620A (en) Method for refining titanium and sulfur containing stainless steel
JP2008063600A (en) Method for desulfurizing molten iron containing chromium
JP2855334B2 (en) Modification method of molten steel slag
JP5454313B2 (en) Blowing acid decarburization method for chromium-containing steel
JPH06108137A (en) Method for melting low sulfur steel
JPH0762419A (en) Method for refining stainless steel
RU2075520C1 (en) Charge preparation for steel making
RU2157858C2 (en) Process of production of alloying composition by method of aluminothermy
JP2001040408A (en) Method for desulfurizing stainless steel
JPH11343514A (en) Method for melting high carbon steel using bottom-blown converter
Dishwar Preparation and Characterization of weather resistant fluxed dri for steel making
SU1497230A1 (en) Method of producing ball-bearing steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050228

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807