JP2001321810A - Method for predicting power consumption in rolling plant - Google Patents
Method for predicting power consumption in rolling plantInfo
- Publication number
- JP2001321810A JP2001321810A JP2000137133A JP2000137133A JP2001321810A JP 2001321810 A JP2001321810 A JP 2001321810A JP 2000137133 A JP2000137133 A JP 2000137133A JP 2000137133 A JP2000137133 A JP 2000137133A JP 2001321810 A JP2001321810 A JP 2001321810A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- power consumption
- power
- rolled material
- rolling mill
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Control Of Metal Rolling (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、製鉄プロセスに
おける中間生産物及び製品である鋼板を加工する圧延工
場の使用電力を事前に予測するための方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting in advance the power consumption of a rolling mill for processing a steel sheet which is an intermediate product and a product in an iron making process.
【0002】[0002]
【従来の技術】製鉄所においては、電力会社より購入す
る電力と自らの製鉄所に備える自家発電設備の発電する
電力を用いて、電力を必要とする製鉄所内の様々な設備
に供給している。このうち電力会社より購入する電力に
対しては所定時間、例えば1時間ごとの最大電力購入量
が契約として規定されており、これを超えると違約金を
払わなければならない。また一般に購入する電力の単価
は自家発電設備の発電する電力の単価に比べ高価である
ため、自家発電設備の発電する電力を最大限使用した方
が製造コストは削減されるが、自家発電設備の発電量が
過大となり過ぎると電力会社に向かって逆に電力を送る
という状態が発生し、これは電力会社の送配電系統に悪
影響を与えるため避けなければならない。このことか
ら、製鉄所内で使用する電力を数時間先までに渡って精
度良く予測して、それに見合うだけの自家発電設備の発
電計画を立てることが重要である。特に製鉄所の中で
も、使用する電力の規模が大きくかつ変動が大きいのは
圧延工場であり、この工場の使用電力を正確に予測する
方法の検討が行われてきた。従来の予測方法として、例
えば特開平10−216813号公報に示す方法が提案
されている。これは、圧延材1本当たりの使用電力量を
圧延材の製造命令(サイズ、重量、鋼種等)を基に層別
してデータベースに蓄積しておき、予測対象材の製造命
令を基にデータベースから全く同じ製造命令の圧延材を
検索して、これに相当する電力量を求める方法である。
この方法は全く同じ製造命令の圧延材が大量に圧延され
るような場合においては確かに有効である。しかしなが
ら、製造命令の一部の値がわずかでも異なればデータベ
ースから検索できないという欠点があり、多くの品種を
小量ずつ圧延するような場合においては製造命令が全く
同じということは少ないためほとんどデータベースから
検索できないことになり実用的ではない。近年はユーザ
ーのニーズが多様化しており、このような多品種小ロッ
ト生産が主流であり、将来的にもいっそうこの傾向が顕
著になると考えられる。2. Description of the Related Art In a steel mill, power purchased from a power company and power generated by a private power generation facility provided in the steel mill are used to supply power to various facilities in the steel mill that require power. . Of these, the maximum amount of power purchased for a predetermined period of time, for example, every hour, is stipulated as a contract for the power purchased from the power company, and if it exceeds this, a penalty must be paid. Also, since the unit price of purchased power is generally higher than the unit price of power generated by private power generation equipment, manufacturing costs can be reduced by maximizing the use of power generated by private power generation equipment. If the amount of power generation becomes too large, a situation occurs in which power is transmitted in reverse to the power company, which adversely affects the power transmission and distribution system of the power company and must be avoided. For this reason, it is important to accurately predict the power to be used in the steelworks over several hours ahead and to make a power generation plan for the private power generation facility that matches the prediction. In particular, among steelworks, a rolling mill has a large scale and large fluctuations in electric power to be used, and a method of accurately predicting electric power used in this mill has been studied. As a conventional prediction method, for example, a method disclosed in JP-A-10-216813 has been proposed. In this method, the amount of power used per rolled material is stored in a database in a stratified manner based on a rolled material manufacturing instruction (size, weight, steel type, etc.), and is completely stored in the database based on the predicted material manufacturing instruction. This is a method of searching for a rolled material having the same manufacturing instruction and finding an amount of electric power corresponding thereto.
This method is certainly effective in the case where a rolled material having exactly the same production order is rolled in large quantities. However, there is a disadvantage that it is not possible to retrieve from the database if a part of the value of the manufacturing instruction is slightly different. It is not practical because it cannot be searched. In recent years, the needs of users have been diversified, and such multi-product small-lot production has become mainstream, and it is thought that this tendency will become even more pronounced in the future.
【0003】[0003]
【発明が解決しようとする課題】本発明は前記課題を解
決するために、使用電力量に関係の深い圧延材の特徴を
抽出し、それらの特徴を用いて特に多品種小ロット生産
における圧延材に対しても使用電力量を正確かつ迅速に
予測すると共に、圧延機の状態や操業方法が変化したと
しても、それに追従して予測式を変化させることで予測
精度を維持する圧延工場の使用電力予測方法を提供する
ことを目的とするものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention extracts the characteristics of a rolled material closely related to the amount of electric power used and uses those characteristics to improve the rolled material particularly in the production of various kinds of small lots. In addition to accurately and quickly predicting the amount of power used, even if the state of the rolling mill or the operating method changes, the power consumption of the rolling mill maintains the prediction accuracy by changing the prediction formula accordingly. It is intended to provide a prediction method.
【0004】[0004]
【課題を解決するための手段】前記目的に沿う本発明に
係る圧延工場の使用電力予測方法は、鋼材を圧延機で圧
延するに際して、その圧延機が使用する電力を圧延材1
本ごとに予測する方法において、圧延材の圧延前の予定
平均表面温度T、予定重量W、圧延前の予定長さL、圧
延前後の予定厚み比Rにより下記式にて前記圧延機の使
用電力を予測する圧延工場の使用電力予測方法である。 圧延材1本の使用電力量=a1・T+a2・W+a3・
L+a4・R 但し、a1、a2、a3、a4は圧延機によって決まる
係数である。本発明に係る圧延工場の使用電力予測方法
において、前記圧延材1本ごとの予測使用電力を予め設
定した所定時間当たりで積算して所定時間当の使用電力
としてもよい。また、本発明に係る圧延工場の使用電力
予測方法において、前記予測した使用電力とその圧延材
の圧延で使用した実績電力の差を圧延材一本ごとに計算
し、その差の積算値を用いて前記予測式の係数a1、a
2、a3、a4を修正することが好ましい。According to the present invention, there is provided a method for estimating power consumption of a rolling mill according to the present invention, comprising:
In the method of estimating for each book, the power consumption of the rolling mill by the following formula based on the planned average surface temperature T before rolling of the rolled material, the planned weight W, the planned length L before rolling, and the planned thickness ratio R before and after rolling. Is a method for estimating power consumption of a rolling mill for estimating the power consumption. Power consumption per rolled material = a1 · T + a2 · W + a3 ·
L + a4 · R where a1, a2, a3, and a4 are coefficients determined by the rolling mill. In the method for predicting power consumption of a rolling mill according to the present invention, the predicted power consumption of each rolled material may be integrated per predetermined time to obtain power consumption for a predetermined time. Further, in the method for predicting power consumption of a rolling mill according to the present invention, a difference between the predicted power consumption and the actual power used in rolling the rolled material is calculated for each rolled material, and an integrated value of the difference is used. The coefficients a1, a of the prediction equation
It is preferable to modify 2, a3 and a4.
【0005】[0005]
【発明の実施の形態】図1〜図4を参照して本発明の一
実施の形態に係る圧延工場の使用電力予測方法について
説明する。図1は圧延機Aとそれを駆動する電動機1及
び圧延の様子を示す模式図である。一方側(図1では左
側)から圧延材(鋼材)2が圧延機Aに装入され、電動
機1によって回転している圧延ロール3によって厚みを
減じられ他方側(図1では右側)へ排出される。この圧
延機Aを1台、もしくは圧延材2の長さ方向に複数台を
連続して並べて圧延するのが通常用いられる圧延方法で
ある。この際の圧延材2に加わる圧延ロール3からの力
を図2に模式的に示した。電動機1によって発生した回
転トルクが圧延ロール3を通じて圧延材2との間で摩擦
力μを発生させ、この力が圧下力Pと推進力Fに分解さ
れて圧延材2に作用する。圧下力Pは厚みを減らすため
に必要な力であり、圧延材2の硬さと圧延前後の厚み差
(t1−t2)つまり圧下量に関係し、推進力Fは厚み
が減らされた分の体積を前方に押し出す力であり、圧下
量と圧延材2の重量に関係する。圧延材2ごとの使用電
力量つまり圧延する際に電動機1が使用する電力量は、
摩擦力μの大きさとそれを発生させた時間に依存するの
で、一般には圧延材2が加工された量と圧延材2の重量
及び圧延材2の加工し易さ、圧延材2の加工に要した時
間に依存すると言える。これらを示す値として、それぞ
れ1日の単位で高い精度で計画されている下記の情報及
び予測式を用いて圧延材1本ごとの使用電力量を予測す
る。 加工された量(すなわち、圧延前後の予定厚み)R=圧
延前の圧延材の平均厚みt1/圧延後の圧延材の目標厚
みt2 加工し易さ=圧延前の圧延材の予定平均表面温度T 加工された時間=圧延材の圧延前の予定長さL 圧延材一本の使用電力量=a1・T+a2・W+a3・
L+a4・R ここで、W=圧延材の予定重量、a1、a2、a3、a
4はそれぞれ圧延機に依存する係数である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for estimating the power consumption of a rolling mill according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view showing a rolling mill A, an electric motor 1 for driving the rolling mill A, and rolling. A rolled material (steel material) 2 is loaded into a rolling mill A from one side (left side in FIG. 1), reduced in thickness by a rolling roll 3 rotating by an electric motor 1, and discharged to the other side (right side in FIG. 1). You. It is a commonly used rolling method to roll one rolling mill A or a plurality of rolling mills continuously in the longitudinal direction of the rolled material 2. The force from the rolling roll 3 applied to the rolled material 2 at this time is schematically shown in FIG. The rotation torque generated by the electric motor 1 generates a frictional force μ between the rolling material 2 through the rolling roll 3, and this force is decomposed into a rolling force P and a propulsive force F and acts on the rolling material 2. The rolling force P is a force required to reduce the thickness, and is related to the hardness of the rolled material 2 and the thickness difference before and after rolling (t1−t2), that is, the rolling reduction. The propulsion force F is the volume of the reduced thickness. Is pushed forward, and is related to the amount of reduction and the weight of the rolled material 2. The amount of power used for each rolled material 2, that is, the amount of power used by the electric motor 1 when rolling is performed is
Since it depends on the magnitude of the friction force μ and the time when the friction force μ is generated, generally, the amount of the rolled material 2 processed, the weight of the rolled material 2, the ease with which the rolled material 2 can be processed, and It can be said that it depends on the time taken. As the values indicating these, the power consumption for each rolled material is predicted using the following information and prediction formulas that are planned with high accuracy on a daily basis. Amount processed (that is, planned thickness before and after rolling) R = average thickness of rolled material before rolling t1 / target thickness t2 of rolled material after rolling Ease of processing = planned average surface temperature T of rolled material before rolling Working time = Scheduled length of rolled material before rolling L Power consumption per rolled material = a1 · T + a2 · W + a3 ·
L + a4 · R where W = planned weight of rolled material, a1, a2, a3, a
4 is a coefficient depending on the rolling mill.
【0006】また、図3は前記予測式で予測した使用量
の予測値とその圧延材が実際に使用した電力量に差があ
った場合に、係数a1、a2、a3、a4を逐次修正す
る手順を示したフローチャートである。一本の圧延材2
の圧延が開始する前にその予測の使用電力量Pを計算し
(S31)、その圧延材2の圧延が終了すれば、その圧
延で使用した実際の消費電力量Q(実績消費電力)を算
定する(S32)(S33)。次に、それら予測使用電
力量Pと実績消費電力Qの差δを計算し(S34)、そ
の差の積算値Iを保存しているファイルを読み込んで今
回計算した差を積算(S35)して結果をファイルに保
存する。また積算した結果Iと予め設定したゲイン(0
より大きく1より小さい値)αの積をとり、その結果を
各々の係数a1、a2、a3、a4に加えて係数の値を
更新する(S36)。次の圧延材2の予測使用電力は更
新された係数を用いて行う。FIG. 3 shows that coefficients a1, a2, a3, and a4 are sequentially corrected when there is a difference between the predicted value of the amount of use predicted by the above-mentioned prediction formula and the amount of power actually used by the rolled material. 6 is a flowchart showing a procedure. One rolled material 2
Before the start of rolling, the predicted power consumption P is calculated (S31), and when the rolling of the rolled material 2 is completed, the actual power consumption Q (actual power consumption) used in the rolling is calculated. (S32) (S33). Next, the difference δ between the predicted power consumption P and the actual power consumption Q is calculated (S34), the file storing the integrated value I of the difference is read, and the difference calculated this time is integrated (S35). Save the results to a file. In addition, the result I of integration and a preset gain (0
The product of α, which is larger and smaller than 1, is calculated, and the result is added to each of the coefficients a1, a2, a3, and a4 to update the value of the coefficient (S36). The predicted power consumption of the next rolled material 2 is performed using the updated coefficient.
【0007】また図4は長期間の予測において係数a
1、a2、a3、a4を修正する手順を示したフローチ
ャートである。一本ごとの予測の電力量と実際の電力量
を常時保存しておき、長期間の予測を行うタイミングで
過去1時間に圧延された材料のそれらのデータを読み込
んで(S41)、一本ごとの予測使用電力量と実績電力
量の差を積算する(S42)。次に積算した値Iと前記
ゲインαの積をとり、その結果を各々の係数a1、a
2、a3、a4に加えて係数の値を更新する(S4
3)。そして更新された係数を用いて次の期間の予測を
行う(S44)。FIG. 4 shows a coefficient a in a long-term prediction.
6 is a flowchart showing a procedure for correcting 1, a2, a3, and a4. The predicted electric energy and the actual electric energy of each piece are always stored, and the data of the material rolled in the past hour is read at the timing of performing the long-term prediction (S41). The difference between the predicted power consumption and the actual power consumption is integrated (S42). Next, the product of the integrated value I and the gain α is calculated, and the result is referred to as the respective coefficients a1, a
The value of the coefficient is updated in addition to 2, a3, and a4 (S4
3). Then, the next period is predicted using the updated coefficient (S44).
【0008】[0008]
【実施例】以下の表1に示すように、数時間分の圧延材
のそれぞれの予測電力を計算し実績電力と比較した。ま
た1時間ごとの積算値を予測と実績で比較した。EXAMPLES As shown in Table 1 below, the predicted power of each rolled material for several hours was calculated and compared with the actual power. The hourly integrated value was compared between the predicted value and the actual value.
【0009】[0009]
【表1】 [Table 1]
【0010】1時間ごとの予測使用電力量と実績電力量
の関係を図5に示す。この図から解る様に、予測使用電
力量と実績電力量の相関が取れ、しかも、バラツキも小
さい。このことから精度良く圧延工場において圧延時に
おける使用電力を予測する事が出来る。FIG. 5 shows the relationship between the predicted power consumption and the actual power consumption every hour. As can be seen from this figure, there is a correlation between the predicted power consumption and the actual power consumption, and the dispersion is small. From this, it is possible to accurately predict the power consumption at the time of rolling in the rolling mill.
【0011】[0011]
【発明の効果】請求項1〜3記載の圧延工場の使用電力
予測方法においては、製造命令が様々に異なる多品種小
ロット生産における圧延材に対しても使用電力量を精度
良く迅速に予測することができる。特に、請求項2記載
の圧延工場の使用電力予測方法においては、所定時間で
積算することにより、所定時間単位での予測が可能とな
り、自家発電設備の発電する電力を最大限使用でき、製
造コストを大幅に削減出来る等の効果を奏するものであ
る。請求項3記載の圧延工場の使用電力予測方法におい
ては、圧延機の状態や操業方法が変化したとしても、予
測精度を良好に維持することができる。According to the method for predicting the power consumption of a rolling mill according to the first to third aspects, the power consumption can be accurately and quickly predicted even for rolled materials in the production of various kinds of small lots having various manufacturing instructions. be able to. In particular, in the method for predicting power consumption of a rolling mill according to the second aspect, by integrating over a predetermined time, it is possible to predict in a predetermined time unit. This has the effect of significantly reducing According to the method for predicting power consumption of a rolling mill according to the third aspect, it is possible to maintain good prediction accuracy even if the state of the rolling mill or the operating method changes.
【図1】本発明の一実施の形態に係る圧延工場の使用電
力予測方法に適用される圧延機及び圧延の様子を示した
説明図である。FIG. 1 is an explanatory diagram showing a rolling mill and a rolling state applied to a method for estimating power consumption of a rolling mill according to an embodiment of the present invention.
【図2】同圧延機による圧延の際にある断面で圧延材に
かかる力を示した模式図である。FIG. 2 is a schematic view showing a force applied to a rolled material in a cross section during rolling by the rolling mill.
【図3】圧延材1本ごとに予測式の係数を逐次修正する
手順を示したフローチャートである。FIG. 3 is a flowchart showing a procedure for sequentially correcting coefficients of a prediction formula for each rolled material.
【図4】長期間の予測において予測式の係数を修正する
手順を示したフローチャートである。FIG. 4 is a flowchart showing a procedure for correcting coefficients of a prediction equation in long-term prediction.
【図5】圧延材1本ごとの予測値を1時間を単位として
積算した値と1時間の電力使用実績値の関係を示したグ
ラフである。FIG. 5 is a graph showing a relationship between a value obtained by integrating a predicted value for each rolled material in units of one hour and an actual power use value for one hour.
A:圧延機、1:電動機、2:圧延材、3:圧延ロール A: rolling mill, 1: electric motor, 2: rolled material, 3: rolling roll
Claims (3)
圧延機が使用する電力を圧延材1本ごとに予測する方法
において、圧延材の圧延前の予定平均表面温度T、予定
重量W、圧延前の予定長さL、圧延前後の予定厚み比R
により下記式にて前記圧延機の使用電力を予測すること
を特徴とする圧延工場の使用電力予測方法。 圧延材1本の使用電力量=a1・T+a2・W+a3・
L+a4・R 但し、a1、a2、a3、a4は圧延機によって決まる
係数である。1. A method for predicting the electric power used by a rolling mill for each rolled material when rolling a steel material with a rolling mill, the method comprising the steps of: Planned length L before and planned thickness ratio R before and after rolling
And estimating the power consumption of the rolling mill by the following equation: Power consumption per rolled material = a1 · T + a2 · W + a3 ·
L + a4 · R where a1, a2, a3, and a4 are coefficients determined by the rolling mill.
予め設定した所定時間当たりで積算して所定時間当の使
用電力とすることを特徴とする請求項1記載の圧延工場
の使用電力予測方法。2. The predicted power consumption for each rolled material is
2. The method according to claim 1, wherein the power consumption is calculated for a predetermined time by integrating the power consumption per predetermined time.
延で使用した実績電力の差を圧延材一本ごとに計算し、
その差の積算値を用いて前記予測式の係数を修正するこ
とを特徴とする請求項1記載の圧延工場の使用電力予測
方法。3. The difference between the predicted power consumption and the actual power used in rolling the rolled material is calculated for each rolled material,
2. The method according to claim 1, wherein the coefficient of the prediction formula is corrected using an integrated value of the difference.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000137133A JP2001321810A (en) | 2000-05-10 | 2000-05-10 | Method for predicting power consumption in rolling plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000137133A JP2001321810A (en) | 2000-05-10 | 2000-05-10 | Method for predicting power consumption in rolling plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001321810A true JP2001321810A (en) | 2001-11-20 |
Family
ID=18644959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000137133A Withdrawn JP2001321810A (en) | 2000-05-10 | 2000-05-10 | Method for predicting power consumption in rolling plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001321810A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012170962A (en) * | 2011-02-18 | 2012-09-10 | Toshiba Mitsubishi-Electric Industrial System Corp | Energy-consumption predicting apparatus |
CN102847720A (en) * | 2011-06-29 | 2013-01-02 | 宝山钢铁股份有限公司 | Hot-rolling production line power consumption classification acquisition and analysis system |
US9092832B2 (en) | 2011-03-18 | 2015-07-28 | International Business Machines Corporation | Resource cost optimization system, method, and program |
-
2000
- 2000-05-10 JP JP2000137133A patent/JP2001321810A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012170962A (en) * | 2011-02-18 | 2012-09-10 | Toshiba Mitsubishi-Electric Industrial System Corp | Energy-consumption predicting apparatus |
US9092832B2 (en) | 2011-03-18 | 2015-07-28 | International Business Machines Corporation | Resource cost optimization system, method, and program |
US9196010B2 (en) | 2011-03-18 | 2015-11-24 | International Business Machines Corporation | Resource cost optimization system, method, and program |
CN102847720A (en) * | 2011-06-29 | 2013-01-02 | 宝山钢铁股份有限公司 | Hot-rolling production line power consumption classification acquisition and analysis system |
CN102847720B (en) * | 2011-06-29 | 2015-04-22 | 宝山钢铁股份有限公司 | Hot-rolling production line power consumption classification acquisition and analysis system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20130033921A (en) | Optimization device, optimization method, and optimization program | |
JP5929151B2 (en) | Rolling load estimation method and apparatus for temper rolling of steel strip | |
JP2001321810A (en) | Method for predicting power consumption in rolling plant | |
JP3320665B2 (en) | Method and apparatus for determining rolling order in hot rolling | |
JP3467677B2 (en) | Learning control method of rolling load in rolling mill | |
JP2003113739A (en) | Operation planning system for energy supply equipment | |
CN113198842A (en) | Working roll and rolling control method | |
JP2004237346A (en) | Method for controlling width of rolling stock in hot rolling | |
JP4330134B2 (en) | Shape control method in cold rolling | |
JP2001252709A (en) | Method for temperature on outlet side of finishing mill for hot rolling | |
JP4079098B2 (en) | Manufacturing method and manufacturing apparatus for hot-rolled steel sheet | |
Watanabe et al. | A new mill-setup system for hot strip rolling mill that integrates a process model and expertise | |
JP2018134659A (en) | Control device of rolling machine, control method of rolling machine and control program of rolling machine | |
JP2006255727A (en) | Method for rolling hot-rolled steel sheet | |
JPH06262223A (en) | Method for estimating quantity of working electric power in rolling shop | |
JP3591194B2 (en) | Operating method of double cold rolling mill for manufacturing ultra-thin steel sheet | |
JP2001269702A (en) | Method for estimating temperature of hot steel | |
JP3514106B2 (en) | Work roll shift setting method for continuous rolling mill | |
JP2001241969A (en) | Accounting method, unit-price calculation apparatus and recording medium | |
JPH08192212A (en) | Method for controlling sheet crown and shape | |
JP2005111546A (en) | Method for controlling plate thickness and crown | |
Shalaevskii et al. | Computer-Aided Design (CAD) of Energy-Efficient Cold Rolling Technology | |
JP4102267B2 (en) | Sheet width control method in cold tandem rolling | |
De Ladurantaye et al. | Scheduling a hot rolling mill | |
JPH10216813A (en) | Method for controlling amount of working power of rolling equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070807 |