JP2001320109A - Structure of magneto resistance(mr) element and its manufacturing method - Google Patents

Structure of magneto resistance(mr) element and its manufacturing method

Info

Publication number
JP2001320109A
JP2001320109A JP2001051464A JP2001051464A JP2001320109A JP 2001320109 A JP2001320109 A JP 2001320109A JP 2001051464 A JP2001051464 A JP 2001051464A JP 2001051464 A JP2001051464 A JP 2001051464A JP 2001320109 A JP2001320109 A JP 2001320109A
Authority
JP
Japan
Prior art keywords
layer
component
phase transformation
thickness
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001051464A
Other languages
Japanese (ja)
Inventor
Takeshi Kawabata
武 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001051464A priority Critical patent/JP2001320109A/en
Publication of JP2001320109A publication Critical patent/JP2001320109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an element wherein magnetic induction phase (PMR) effect or tunnel magneto resistance(TMR) effect are largely exhibited by precisely controlling thickness of a phase transformation layer or a cluster electrode and selecting materials properly. SOLUTION: An element constituted of the phase transformation layer (H component), a perpendicularly magnetized layer or a perpendicularly magnetized electrode and a strain-applied layer (J component) or an element constituted of a cluster layer (K component) is formed on an upper surface of an insulating substrate (B component) constituted of a nonmagnetic member by combining an MBE method, a lithography method, an intensive external magnetic field and heat treatment. As a result, a magneto resistance element or a spin- dependent tunnel magneto resistance element wherein magneto resistance(MR) is greatly reduced by applying a small external magnetic field is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は,MBE法(また
は、スパッター法、あるいは、その他の成膜方法)、リ
ソグラフィ法、強力な外部磁場の印加及び熱処理の組合
せにより、ひずみ付与層−ひずみ付与層間、すなわち、
相変態層、垂直磁化層、垂直磁化電極、または、クラス
タ層の厚さを、精密に制御して作成し、磁気媒体等の弱
い磁場を加えないときには、大きなトンネル抵抗値を持
つ状態であるが、磁気媒体等の弱い磁場が加わると、絶
縁体−金属相変態効果の発現により、電気抵抗値の大き
な低下を発生させる、相変態磁気抵抗(PMR)素子形
態、あるいは、スピン依存トンネル磁気抵抗(TMR)
素子形態、及び、それらの作製方法に関する。
[0001] The present invention relates to a method for forming a strain-applying layer by applying a combination of an MBE method (or a sputtering method or another film forming method), a lithography method, a strong external magnetic field application and a heat treatment. That is,
When the thickness of the phase transformation layer, the perpendicular magnetization layer, the perpendicular magnetization electrode, or the cluster layer is precisely controlled and created, and a weak magnetic field such as a magnetic medium is not applied, the state has a large tunnel resistance. When a weak magnetic field such as a magnetic medium is applied, a large reduction in electric resistance occurs due to the manifestation of an insulator-metal phase transformation effect. A phase transformation magnetoresistance (PMR) element form or a spin-dependent tunneling magnetoresistance ( TMR)
The present invention relates to device configurations and manufacturing methods thereof.

【0002】[0002]

【従来の技術】 従来は、Cu-Fe、Cu-Co、Ag
-CoあるいはAg-Fe等の組み合わせでモレキュラー
・ビーム・エピタキシ(MBE)法により多層薄膜を作
成(例えば、M.N. Baibish et al., Phys. Rev. Lett.
61, 2472(1988))したり、あるいは、イオン化クラスタ
・ビーム(ICB)法により、Cu、あるいは、Agの
マトリックス中に、FeあるいはCo等の強磁性クラス
タが埋め込まれた形態、または、酸化物絶縁体マトリッ
クス中に、FeあるいはCo等の強磁性クラスタが埋め
込まれた形態を、自然形成していた(例えば、J.I. Git
tleman et al., Phys. Rev. B5, 3609(1972))。このよ
うな方法によっては、強磁性体と非磁性良導体の多層薄
膜界面における電子のスピン依存散乱の効果、強磁性体
のクラスタと非磁性良導体のマトリックスとの界面にお
ける電子のスピン依存散乱の効果、あるいは、非磁性絶
縁体マトリックス中の、強磁性体のクラスタ間のスピン
依存トンネル効果が、磁気抵抗(英語では、Magnetores
istance)効果の生成原因であった。また、強磁性体
(例えば、CoあるいはFe)と非磁性特性をもつ半導
体あるいは絶縁体(例えば、Ge、Al23)の薄膜を
交互に積層した素子は、トンネル磁気抵抗効果を発現す
ることが知られていた(例えば、S. Maekawa et al, IE
EE Trans. Magn. MAG-18, No.2, 707 (1982))。
Conventionally, Cu-Fe, Cu-Co, Ag
-Co or Ag-Fe etc. to create multilayer thin film by molecular beam epitaxy (MBE) method (for example, MN Baibish et al., Phys. Rev. Lett.
61, 2472 (1988)) or a form in which a ferromagnetic cluster such as Fe or Co is embedded in a Cu or Ag matrix by an ionized cluster beam (ICB) method, or an oxide. A form in which a ferromagnetic cluster such as Fe or Co was embedded in an insulator matrix was naturally formed (for example, JI Git
tleman et al., Phys. Rev. B5, 3609 (1972)). According to such a method, the effect of spin-dependent scattering of electrons at the interface between the ferromagnetic material and the nonmagnetic good conductor at the multilayer thin film, the effect of spin-dependent scattering of electrons at the interface between the ferromagnetic material cluster and the matrix of the nonmagnetic good conductor, Alternatively, spin-dependent tunneling between ferromagnetic clusters in a nonmagnetic insulator matrix can be attributed to magnetoresistance (Magnetores in English).
istance) was the cause of the effect. Also, an element in which thin films of a ferromagnetic material (eg, Co or Fe) and a semiconductor or an insulator (eg, Ge, Al 2 O 3 ) having non-magnetic properties are alternately stacked, exhibits a tunnel magnetoresistance effect. (Eg, S. Maekawa et al, IE
EE Trans. Magn. MAG-18, No. 2, 707 (1982)).

【0003】このような磁気抵抗素子を用いて、読取り
用の磁気ヘッドを作製し、これに、常時電流を流して、
磁性媒体に近接して置くとき、磁性媒体の弱い磁場の変
化として記録された情報は、磁気ヘッドの電圧変化とし
て、読み出すことが可能となる。
A magnetic head for reading is manufactured by using such a magnetoresistive element, and a current is constantly applied to the magnetic head for reading.
When placed close to the magnetic medium, information recorded as a change in the weak magnetic field of the magnetic medium can be read out as a change in voltage of the magnetic head.

【0004】[0004]

【発明が解決しようとする課題】 従来の磁気抵抗効果
は、磁性体と良導体の異相界面における電子の散乱現
象、あるいは、強磁性体と絶縁体の積層薄膜におけるス
ピン依存トンネル効果の発現が、外部磁場によって変化
する効果を利用していたために、制御が困難で、抵抗変
化を大きくすることが出来ないという欠点があった。
The conventional magnetoresistive effect is caused by the scattering phenomenon of electrons at a hetero-phase interface between a magnetic material and a good conductor, or the appearance of a spin-dependent tunneling effect in a laminated thin film of a ferromagnetic material and an insulator. Since the effect of changing by the magnetic field was used, there was a drawback that control was difficult and the resistance change could not be increased.

【0005】本発明は、ひずみ付与層−ひずみ付与層間
の距離を、精密に制御することと、相変態層を組み込む
こと、あるいは、クラスタ層の厚さを、精密に制御する
ことにより、磁性媒体等の弱い磁場の存在下で、磁気誘
起相変態の効果、あるいは、スピン依存トンネル効果の
発現を、有用的に制御できる素子を製作すること、すな
わち、相変態磁気抵抗値、あるいは、スピン依存トンネ
ル磁気抵抗値の変化が大きい素子を作製することを目的
としている。
[0005] The present invention provides a magnetic medium by precisely controlling the distance between strain applying layers and incorporating a phase transformation layer, or by precisely controlling the thickness of a cluster layer. To produce an element that can effectively control the effect of the magnetically induced phase transformation or the manifestation of the spin-dependent tunneling effect in the presence of a weak magnetic field, such as the phase transformation magnetoresistance or the spin-dependent tunneling It is intended to manufacture an element having a large change in magnetoresistance.

【0006】[0006]

【課題を解決するための手段】 上記の目的を達成する
ために、本発明では、非磁性特性を持つ絶縁基板の上
に、第1、第2、第3及び第4ひずみ付与層、第1相変
態層、第1、第2垂直磁化電極、並びに、第1クラスタ
層を、MBE法、リソグラフィ法、強力な外部磁場及び
熱処理を用いて作成することにより、最終的に、相変態
磁気抵抗値、あるいは、トンネル磁気抵抗値の増減を、
弱い磁場により制御できる形態の、相変態磁気抵抗(P
MR)単素子、スピン依存トンネル磁気抵抗(TMR)
単素子を作製する。
Means for Solving the Problems In order to achieve the above object, according to the present invention, a first, a second, a third, and a fourth strain imparting layer, a first By forming the phase transformation layer, the first and second perpendicularly magnetized electrodes, and the first cluster layer using the MBE method, the lithography method, a strong external magnetic field and a heat treatment, finally, the phase transformation magnetoresistance value is obtained. Or increase or decrease the tunnel magnetoresistance
Phase transformation magnetoresistance (P
MR) Single element, spin-dependent tunnel magnetoresistance (TMR)
A single element is manufactured.

【0007】[0007]

【発明の実施の形態】 上記のように、第1に、ひずみ
付与層・ひずみ付与層間の距離、すなわち、相変態層の
厚さを精密に制御すること(請求項1、2、3、4及び
5)、第2に、ひずみ付与層の材料選択と厚さを精密に
制御すること(請求項1、2、3、4、5及び6)、あ
るいは、クラスタ層の厚さを精密に制御すること(請求
項6)が、相変態磁気抵抗値、あるいは、スピン依存ト
ンネル磁気抵抗値の増減を制御するために、それぞれ、
重要である。これにより、小さな外部磁場の変化を、大
きな電気抵抗変化に変換する、いわゆる相変態磁気抵抗
(PMR)素子、あるいは、スピン依存トンネル磁気抵
抗(TMR)素子を作製できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, first, the distance between the strain applying layers and the strain applying layer, that is, the thickness of the phase transformation layer is precisely controlled (claims 1, 2, 3, and 4). And 5) secondly, precisely controlling the material selection and thickness of the strain applying layer (claims 1, 2, 3, 4, 5 and 6), or precisely controlling the thickness of the cluster layer. In order to control the increase or decrease of the phase transformation magnetoresistance or the spin-dependent tunnel magnetoresistance,
is important. Thus, a so-called phase-change magnetoresistance (PMR) element or a spin-dependent tunneling magnetoresistance (TMR) element that converts a small change in an external magnetic field into a large change in electric resistance can be manufactured.

【0008】図1、図2、図3、図4、及び、図5に示
す構造において、磁気媒体等の弱い外部磁場が存在しな
いとき、第1相変態層は絶縁体(あるいは、半導体)で
あり、抵抗が高い状態である。弱い外部磁場が加わる
と、第1相変態層が、絶縁体−金属変態(あるいは、半
導体−金属変態)を起こすことにより、磁気誘起相変態
に基づく電気抵抗値の大きな低下が生じる。図6に示す
構造において、CoあるいはFe等のクラスタが、絶縁
体中に埋め込まれた形態のクラスタ層を挟んだ、第1及
び第2垂直磁化電極間に、一定の電流を流しておくと、
この回路は、弱い外部磁場の印加により、大きな電圧低
下を発生させる。
In the structures shown in FIGS. 1, 2, 3, 4 and 5, when a weak external magnetic field such as a magnetic medium does not exist, the first phase transformation layer is made of an insulator (or a semiconductor). And high resistance. When a weak external magnetic field is applied, the first phase transformation layer undergoes an insulator-metal transformation (or a semiconductor-metal transformation), thereby causing a large decrease in electric resistance based on the magnetically induced phase transformation. In the structure shown in FIG. 6, when a constant current is passed between the first and second perpendicularly magnetized electrodes with the cluster layer in which the cluster of Co or Fe is embedded in the insulator interposed therebetween,
This circuit causes a large voltage drop when a weak external magnetic field is applied.

【0009】相変態層を形成するF成分が、バルク状単
体で存在する場合には、相変態温度が、例えば、200
K程度の低温であったとしても、薄膜にして、他の材料
(他の成分)で挟んで、大きな非等方的格子ひずみを加
えることにより、相変態温度を、250〜400Kに変
化させることが可能である。その他、微量な元素(例え
ば、Ag)を加えることにより、相変態温度を、変化さ
せることが可能である。このように、薄膜にすることの
効果に加えて、他の材料でサンドイッチにして、外部か
ら加えた非等方格子ひずみと、微量元素添加の単独ある
いは相乗効果により、相変態発現温度を変化させ、望み
の使用温度で、弱い外部磁場の印加により相変態を発現
させることができる。
When the F component forming the phase transformation layer exists as a bulk single substance, the phase transformation temperature is, for example, 200
Even if the temperature is as low as K, change the phase transformation temperature to 250 to 400K by forming a thin film, sandwiching it with other materials (other components), and applying a large anisotropic lattice strain. Is possible. In addition, the phase transformation temperature can be changed by adding a trace element (for example, Ag). Thus, in addition to the effect of forming a thin film, the phase transformation onset temperature is changed by the anisotropic lattice strain applied from the outside and the addition of trace elements alone or in synergy by sandwiching with other materials. At a desired use temperature, a phase transformation can be developed by applying a weak external magnetic field.

【0010】絶縁基板91の厚さt0の上限及び下限
は、機械的強度が十分でしかも出来るだけ軽量になるよ
うに設定した。SiO2の場合には、バルクに近い厚さ
のSi上に、SiO2及び他の絶縁薄膜、例えば、Zn
Oを積層して絶縁基板を構成する等、多層薄膜にするこ
とにより適切なひずみを付与できる構造とする。薄膜の
第1相変態層71の厚さt1の下限は、金属あるいは化
合物の特性及び膜厚が均一になること、上限は、弱い外
部磁場Hの変化により、十分相変態が生じる厚さとし
た。第1及び第2ひずみ付与層61及び62の厚さt
2、並びに、第3及び第4ひずみ付与層63及び64の
厚さt4の下限は、相変態層にひずみを加えるに十分な
厚さであり、上限は、外部磁場Hの変化が、相変態層に
効果を及ぼしうる厚さとした。第1及び第2垂直磁化増
感層6及び7の厚さt3の下限は、垂直磁化が均一に生
じ得る厚さとし、上限は、外部磁場Hの効果が顕著に出
現する厚さとした。外形サイズのw1及びw2は、10
0GB/in2(ギガビット/平方インチ)以上の特性
を出現させるサイズである、0.01μm≦w1及びw
2≦0.3μmとした。外形サイズw3は、電極の接続
回路の作成と関係するが、軽量である必要性から、小さ
いことが望ましい。
The upper and lower limits of the thickness t0 of the insulating substrate 91 are set so that the mechanical strength is sufficient and the weight is as small as possible. In the case of SiO 2 is the thickness of the Si close to the bulk, SiO 2 and other insulating films, for example, Zn
A structure capable of imparting appropriate strain by forming a multilayer thin film, such as forming an insulating substrate by laminating Os. The lower limit of the thickness t1 of the first phase transformation layer 71 of the thin film is such that the properties and film thickness of the metal or compound are uniform, and the upper limit is a thickness at which sufficient phase transformation occurs due to a weak change in the external magnetic field H. Thickness t of first and second strain applying layers 61 and 62
The lower limit of the thickness t4 of the second and third and fourth strain applying layers 63 and 64 is a thickness sufficient to apply a strain to the phase transformation layer, and the upper limit is that the change of the external magnetic field H is caused by the phase transformation. The thickness was such that it could affect the layer. The lower limit of the thickness t3 of each of the first and second perpendicular magnetization sensitizing layers 6 and 7 is set to a thickness at which the perpendicular magnetization can uniformly occur, and the upper limit is set to a thickness at which the effect of the external magnetic field H appears remarkably. The external sizes w1 and w2 are 10
0.01 μm ≦ w1 and w, which are sizes that exhibit characteristics of 0 GB / in 2 (gigabit / square inch) or more
2 ≦ 0.3 μm. The outer size w3 is related to the formation of the electrode connection circuit, but is preferably small because it needs to be lightweight.

【0011】[0011]

【実施例】 表1に、実施例番号、素子構造、A、B、
G、H、J1、J2及びK成分の材料、並びに、結果を
示す。結果に記載されている、「良好」は233K〜3
83Kで5〜10%、「優良」は233K〜383Kで
10〜20%、及び、「最良」は233K〜383Kで
20〜30%の磁気抵抗変化率を表わす。
Examples Table 1 shows Example numbers, element structures, A, B,
The materials of G, H, J1, J2 and K components and the results are shown. "Good" described in the results is 233K to 3
"Excellent" represents 10 to 20% at 233K to 383K, and "best" represents 20 to 30% at 233K to 383K.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明は,以上に説明したように、電極
の働きをするひずみ付与層の厚さ、ひずみ付与層・ひず
み付与層間の距離、すなわち、相変態層の厚さ、及び、
クラスタ層の厚さを、精密に制御して磁気抵抗素子を作
製したので、磁気媒体に相当する極めて小さな磁場をか
けることにより、磁気誘起相変態あるいは、トンネル現
象を容易に生じさせ、磁気誘起相変態効果、あるいは、
スピン依存トンネル効果を原理とする大きな抵抗減少を
観測した。
As described above, according to the present invention, the thickness of the strain applying layer acting as an electrode, the distance between the strain applying layers and the strain applying layers, that is, the thickness of the phase transformation layer, and
Since the thickness of the cluster layer was precisely controlled to fabricate the magnetoresistive element, a very small magnetic field corresponding to the magnetic medium was applied to easily cause magnetically induced phase transformation or tunnel phenomenon, and the magnetically induced phase Pervert effect, or
A large resistance decrease based on the spin-dependent tunneling effect was observed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1及び第2ひずみ付与層の間に第1相変態層
を有する、相変態磁気抵抗素子構造を示す。(a)は平
面図、(b)は正面図、及び、(c)側面図である。外
部磁場は、側面図の右から左方向へ、加えるように設定
する。
FIG. 1 shows a phase transformation magnetoresistive element structure having a first phase transformation layer between first and second strain applying layers. (A) is a plan view, (b) is a front view, and (c) is a side view. The external magnetic field is set so as to be applied from right to left in the side view.

【図2】絶縁基板及び第1ひずみ付与層の間に、第1相
変態層を、並びに、第1ひずみ付与層及び第2ひずみ付
与層の間に第1垂直磁化増感層を、それぞれ有する、相
変態磁気抵抗素子構造を示す。(a)は平面図、(b)
は正面図、及び、(c)側面図である。外部磁場は、側
面図の右から左方向へ、加えるように設定する。
FIG. 2 has a first phase transformation layer between the insulating substrate and the first strain imparting layer, and a first perpendicular magnetization sensitizing layer between the first strain imparting layer and the second strain imparting layer. Shows a phase transformation magnetoresistive element structure. (A) is a plan view, (b)
3 is a front view and (c) a side view. The external magnetic field is set so as to be applied from right to left in the side view.

【図3】第1及び第2ひずみ付与層の間に第1相変態層
を有し、第3及び第4ひずみ付与層の間に、垂直磁化増
感層を有する、相変態磁気抵抗素子構造を示す。(a)
は平面図、(b)は正面図、及び、(c)側面図であ
る。外部磁場は、側面図の右から左方向へ、加えるよう
に設定する。
FIG. 3 shows a phase transformation magnetoresistive element structure having a first phase transformation layer between first and second strain applying layers and a perpendicular magnetization sensitizing layer between third and fourth strain applying layers. Is shown. (A)
Is a plan view, (b) is a front view, and (c) is a side view. The external magnetic field is set so as to be applied from right to left in the side view.

【図4】第1及び第2ひずみ付与層、並びに、第2及び
第3ひずみ付与層の間に第1相変態層、並びに、第1垂
直磁化増感層をそれぞれ有する、相変態磁気抵抗素子構
造を示す。(a)は平面図、(b)は正面図、及び、
(c)側面図である。外部磁場は、側面図の右から左方
向へ、加えるように設定する。電流は、第1ひずみ付与
層と第2ひずみ付与層との間に流す。
FIG. 4 is a phase transformation magnetoresistive element having a first and second strain applying layers, and a first phase transformation layer and a first perpendicular magnetization sensitizing layer between the second and third strain applying layers, respectively. The structure is shown. (A) is a plan view, (b) is a front view, and
(C) It is a side view. The external magnetic field is set so as to be applied from right to left in the side view. An electric current flows between the first strain applying layer and the second strain applying layer.

【図5】第1及び第2ひずみ付与層、並びに、第3及び
第4ひずみ付与層の間に第1相変態層、並びに、第1垂
直磁化増感層をそれぞれ有する、相変態磁気抵抗素子構
造を示す。(a)は平面図、(b)は正面図、及び、
(c)側面図である。外部磁場は、側面図の右から左方
向へ、加えるように設定する。電流は、第1ひずみ付与
層と第2ひずみ付与層との間に流す。
FIG. 5 is a phase transformation magnetoresistive element having a first phase transformation layer and a first perpendicular magnetization sensitizing layer between the first and second strain imparting layers and the third and fourth strain imparting layers, respectively. The structure is shown. (A) is a plan view, (b) is a front view, and
(C) It is a side view. The external magnetic field is set so as to be applied from right to left in the side view. An electric current flows between the first strain applying layer and the second strain applying layer.

【図6】第1及び第2ひずみ付与層の間に第1垂直磁化
増感層を有し、及び、第3及び第4ひずみ付与層の間に
第2垂直磁化増感層を有し、並びに、第2及び第3ひず
み付与層の間に、第1クラスタ層をそれぞれ有する、相
変態磁気抵抗素子構造を示す。(a)は平面図、(b)
は正面図、及び、(c)側面図である。外部磁場は、側
面図の右から左方向へ、加えるように設定する。電流
は、第2ひずみ付与層と第3ひずみ付与層との間に流
す。
FIG. 6 has a first perpendicular magnetization sensitizing layer between the first and second strain applying layers, and has a second perpendicular magnetization sensitizing layer between the third and fourth strain applying layers; Also, a phase transformation magnetoresistive element structure having a first cluster layer between the second and third strain applying layers is shown. (A) is a plan view, (b)
3 is a front view and (c) a side view. The external magnetic field is set so as to be applied from right to left in the side view. An electric current flows between the second strain applying layer and the third strain applying layer.

【符号の説明】 31:第1垂直磁化増感層 32:第2垂直磁化増感層 61:第1ひずみ付与層 62:第2ひずみ付与層 63:第3ひずみ付与層 64:第4ひずみ付与層 71:第1相変態層 81:第1電極 82:第2電極 91:絶縁基板 111:第1クラスタ層[Description of Signs] 31: First perpendicular magnetization sensitizing layer 32: Second perpendicular magnetization sensitizing layer 61: First strain applying layer 62: Second strain applying layer 63: Third strain applying layer 64: Fourth strain applying Layer 71: First phase transformation layer 81: First electrode 82: Second electrode 91: Insulating substrate 111: First cluster layer

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 41/18 H01L 43/12 H01L 43/12 G01R 33/06 R Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H01F 41/18 H01L 43/12 H01L 43/12 G01R 33/06 R

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 図1に示すように、絶縁基板91(B成
分;厚さt0;0.1mm≦t0≦1mm)の上に、第
1ひずみ付与層61(J1成分)、同一水準で、第1相
変態層71(H成分)、第1電極81(G成分)、及
び、第2電極82(G成分)、並びに、それらの上の最
上層に第2ひずみ付与層62(J1成分)を設けた、積
層構造を持ち、第1及び第2ひずみ付与層間の第1相変
態層の厚さt1(0.8nm≦t1≦10nm)は、磁
気媒体等の弱い磁場が存在しないときは、大きい電気抵
抗値をもち、弱い外部磁場の作用により、絶縁体→金属
あるいは半導体→金属の相変態が生じ、電気抵抗値の大
きな低下が生じる厚さであり、第1及び第2ひずみ付与
層は、第1相変態層に、素子の使用温度付近で、適切な
ひずみを付与できる厚さt2(1nm≦t2≦100n
m)の、請求項7に記載した、金属及び合金であり、モ
レキュラー・ビーム・エピタキシ(Molecular-Beam Epi
taxy :MBE)法(または、スパッター法、あるいは、
その他の成膜方法)、リソグラフィ法、強力な外部磁場
の印加及び熱処理により作製することを特徴とする、磁
気誘起相変態効果の原理に基づく、相変態磁気抵抗(ph
ase transformation magneto-resistance:PMR)素子
の形態及びその作製方法。
As shown in FIG. 1, a first strain imparting layer 61 (J1 component) is provided on an insulating substrate 91 (component B; thickness t0; 0.1 mm ≦ t0 ≦ 1 mm) at the same level. The first phase transformation layer 71 (H component), the first electrode 81 (G component), the second electrode 82 (G component), and the second strain imparting layer 62 (J1 component) on the uppermost layer thereon. The thickness t1 (0.8 nm ≦ t1 ≦ 10 nm) of the first phase transformation layer between the first and second strain imparting layers is provided when there is no weak magnetic field such as a magnetic medium. It has a large electric resistance value, and is a thickness at which a phase transformation from an insulator to a metal or a semiconductor to a metal occurs due to the action of a weak external magnetic field and a large decrease in electric resistance occurs. , A thickness capable of imparting an appropriate strain to the first phase transformation layer near the operating temperature of the device. T2 (1 nm ≦ t2 ≦ 100 n
m) the metal and alloy according to claim 7, wherein the metal and alloy are molecular-beam epitaxy.
taxy: MBE) method (or sputter method, or
Phase transformation magnetoresistance (ph) based on the principle of the magnetically induced phase transformation effect, which is characterized by being manufactured by lithography, application of a strong external magnetic field and heat treatment.
Form of ase transformation magneto-resistance (PMR) element and manufacturing method thereof.
【請求項2】 図2に示すように、絶縁基板91(B成
分;厚さt0;0.1mm≦t0≦1mm)の上に、同
一水準で、第1相変態層71(H成分)、第1電極81
(G成分)、及び、第2電極82(G成分)、それらの
上に、第1ひずみ付与層61(J1成分)、第1垂直磁
化増感層31(A成分)、並びに、最上層に第2ひずみ
付与層62(J2成分)を設けた、積層構造を持ち、絶
縁基板及び第1ひずみ付与層間の第1相変態層の厚さ
(t1;0.8nm≦t1≦10nm)は、磁気媒体等
の弱い磁場が存在しないとき、トンネル現象により大き
い電気抵抗値をもち、外部磁場が存在するときは、弱い
磁場の作用により、絶縁体→金属あるいは半導体→金属
の相変態が生じ、電気抵抗値の大きな低下が発現する厚
さであり、絶縁基板、並びに、第1、及び、第2ひずみ
付与層(それぞれ厚さt2及びt4;1nm≦t2及び
t4≦100nm)は、第1相変態層及び第1垂直磁化
増感層(厚さt3;1nm≦t3≦100nm)に、素
子の使用温度付近で、適切なひずみを付与できる、請求
項7に記載した、金属及び合金であり、MBE法(また
は、スパッター法、あるいは、その他の成膜方法)、リ
ソグラフィ法、強力な外部磁場の印加及び熱処理により
作製することを特徴とする、磁気誘起相変態効果の原理
に基づく、相変態磁気抵抗(PMR)素子の形態及び作
製方法。
2. As shown in FIG. 2, on an insulating substrate 91 (B component; thickness t0; 0.1 mm ≦ t0 ≦ 1 mm), at the same level, a first phase transformation layer 71 (H component), First electrode 81
(The G component), the second electrode 82 (the G component), the first strain imparting layer 61 (the J1 component), the first perpendicular magnetization sensitizing layer 31 (the A component), and the uppermost layer. The second strain imparting layer 62 (J2 component) has a laminated structure, and the thickness (t1; 0.8 nm ≦ t1 ≦ 10 nm) of the first phase transformation layer between the insulating substrate and the first strain imparting layer is magnetic. When a weak magnetic field such as a medium does not exist, the tunneling phenomenon has a larger electric resistance value.When an external magnetic field exists, a weak magnetic field causes a phase transformation from an insulator to a metal or a semiconductor to a metal, thereby causing an electric resistance. The insulating substrate and the first and second strain imparting layers (thicknesses t2 and t4; 1 nm ≦ t2 and t4 ≦ 100 nm, respectively) are the first phase transformation layer. And a first perpendicular magnetization sensitizing layer (thickness t3; The metal and the alloy according to claim 7, wherein the metal and the alloy can be appropriately strained at about nm ≦ t3 ≦ 100 nm near the operating temperature of the element. ), A morphology and a manufacturing method of a phase transformation magnetoresistive (PMR) element based on the principle of a magnetically induced phase transformation effect, characterized by being produced by a lithography method, application of a strong external magnetic field and heat treatment.
【請求項3】 図3に示すように、絶縁基板91(B成
分;厚さt0;0.1mm≦t0≦1mm)の上に、第
1ひずみ付与層61(J1成分)、同一水準で第1相変
態層71(H成分)、第1電極81(G成分)、及び、
第2電極82(G成分)、それらの上に、第2ひずみ付
与層62(J1成分)、第3ひずみ付与層63(J2成
分)、第1垂直磁化増感層31(A成分)、並びに、最
上層に第4ひずみ付与層64(J2成分)を設けた、積
層構造を持ち、第1相変態層の厚さ(t1;0.8nm
≦t1≦10nm)は、磁気媒体等の弱い磁場が存在し
ないときは、第1相変態層が、絶縁体であるために、大
きい電気抵抗値をもつが、弱い外部磁場が作用すると、
絶縁体→金属の相変態が生じ、電気抵抗値が大きく低下
する厚さであり、第1及び第2ひずみ付与層(厚さt
2;1nm≦t2≦100nm)は、第1相変態層に、
素子の使用温度付近で、適切なひずみを付与して、変態
温度を調整し、第3及び第4ひずみ付与層(厚さt4;
1nm≦t4≦100nm)は、第1垂直磁化増感層
(厚さt3;1nm≦t3≦100nm)に垂直磁化を
生じるひずみを付与する、請求項7に記載した、金属及
び合金であり、MBE法(または、スパッター法、ある
いは、その他の成膜方法)、リソグラフィ法、強力な外
部磁場の印加及び熱処理により作製することを特徴とす
る、磁気誘起相変態効果の原理に基づく、相変態磁気抵
抗(PMR)素子の形態及びその作製方法。
3. As shown in FIG. 3, on an insulating substrate 91 (B component; thickness t0; 0.1 mm ≦ t0 ≦ 1 mm), a first strain imparting layer 61 (J1 component) is formed at the same level. A one-phase transformation layer 71 (H component), a first electrode 81 (G component), and
The second electrode 82 (G component), the second strain applying layer 62 (J1 component), the third strain applying layer 63 (J2 component), the first perpendicular magnetization sensitizing layer 31 (A component), and , Having a laminated structure in which a fourth strain imparting layer 64 (J2 component) is provided on the uppermost layer, and having a thickness (t1; 0.8 nm) of the first phase transformation layer.
≦ t1 ≦ 10 nm), when a weak magnetic field such as a magnetic medium does not exist, the first phase transformation layer has a large electric resistance value because it is an insulator, but when a weak external magnetic field acts,
It is a thickness at which the phase transformation from the insulator to the metal occurs and the electric resistance value is greatly reduced, and the first and second strain applying layers (thickness t)
2; 1 nm ≦ t2 ≦ 100 nm), the first phase transformation layer
Near the operating temperature of the element, an appropriate strain is applied to adjust the transformation temperature, and the third and fourth strain applying layers (thickness t4;
8. The metal and alloy according to claim 7, wherein the first perpendicular magnetization sensitizing layer (thickness t3; 1 nm≤t3≤100 nm) imparts a strain that causes perpendicular magnetization to the first perpendicular magnetization sensitizing layer (1 nm≤t4≤100 nm). Phase transformation magnetoresistance based on the principle of the magnetically induced phase transformation effect, characterized by being produced by a method (or sputtering method or other film forming method), lithography method, application of a strong external magnetic field and heat treatment. (PMR) Form of element and manufacturing method thereof.
【請求項4】 図4に示すように、絶縁基板91(B成
分;厚さt0;0.1mm≦t0≦1mm)の上に、正
電極である第1ひずみ付与層61(J1成分)、第1相
変態層71(H成分)、負電極である第2ひずみ付与層
62(J1成分)、第1垂直磁化増感層31(A成
分)、及び、最上層に第3ひずみ付与層63(J2成
分)を設けた、積層構造を持ち、第1相変態層71の厚
さ(t1;0.8nm≦t1≦10nm)は、磁気媒体
等の弱い磁場が存在しないときは、第1相変態層が、絶
縁体であるために、トンネル抵抗による大きい電気抵抗
値をもつが、弱い外部磁場が作用すると、絶縁体→金属
の相変態が生じ、電気抵抗値が大きく低下する厚さであ
り、第1、第2及び第3ひずみ付与層(それぞれの厚さ
t2、t4及びt5;1nm≦t2、t4及びt5≦1
00nm)は、第1相変態層及び第1垂直磁化電極(厚
さt3;1nm≦t3≦100nm)に、素子の使用温
度付近で、適切なひずみを付与できる、請求項7に記載
した、金属及び合金であり、MBE法、リソグラフィ
法、強力な外部磁場の印加及び熱処理により作製するこ
とを特徴とする、磁気誘起相変態効果の原理に基づく、
相変態磁気抵抗(PMR)素子の形態及びその作製方
法。
4. As shown in FIG. 4, a first strain imparting layer 61 (J1 component) as a positive electrode is provided on an insulating substrate 91 (B component; thickness t0; 0.1 mm ≦ t0 ≦ 1 mm). The first phase transformation layer 71 (H component), the second strain imparting layer 62 (J1 component) as a negative electrode, the first perpendicular magnetization sensitizing layer 31 (A component), and the third strain imparting layer 63 on the uppermost layer (J2 component), the first phase transformation layer 71 has a laminated structure, and the thickness (t1; 0.8 nm ≦ t1 ≦ 10 nm) of the first phase transformation layer 71 is the first phase transformation layer when a weak magnetic field such as a magnetic medium does not exist. Since the transformation layer is an insulator, it has a large electric resistance value due to tunnel resistance, but when a weak external magnetic field acts, a phase transformation from insulator to metal occurs, and the electric resistance value is greatly reduced. , First, second and third strain imparting layers (thicknesses t2, t4 and t5; 1n m ≦ t2, t4 and t5 ≦ 1
The metal according to claim 7, which is capable of imparting an appropriate strain to the first phase transformation layer and the first perpendicular magnetization electrode (thickness t3; 1 nm ≦ t3 ≦ 100 nm) near the operating temperature of the element. Based on the principle of the magnetically induced phase transformation effect, characterized by being produced by MBE, lithography, application of a strong external magnetic field and heat treatment.
A form of a phase transformation magnetoresistive (PMR) element and a manufacturing method thereof.
【請求項5】 図5に示すように、絶縁基板91(B成
分;厚さt0;0.1mm≦t0≦1mm)の上に、正
電極である第1ひずみ付与層61(J1成分)、第1相
変態層71(H成分)、負電極である第2ひずみ付与層
62(J1成分)、第3ひずみ付与層63(J2成
分)、第1垂直磁化増感層31(A成分;厚さt3;1
nm≦t3≦100nm)、及び、最上層に第4ひずみ
付与層64(J2成分)を設けた、積層構造を持ち、第
1相変態層71の厚さ(t1;0.8nm≦t1≦10
nm)は、磁気媒体等の弱い磁場が存在しないときは、
第1相変態層が、絶縁体であるために、トンネル抵抗に
よる大きい電気抵抗値をもつが、弱い外部磁場が作用す
ると、絶縁体→金属の相変態が生じ、電気抵抗値が大き
く低下する厚さであり、第1及び第2(厚さt2;1n
m≦t2≦100nm)、並びに、第3及び第4ひずみ
付与層(厚さt4;1nm≦t4≦100nm)は、第
1相変態層及び第1垂直磁化電極に、素子の使用温度付
近で、適切なひずみを付与できる、請求項7に記載し
た、金属及び合金であり、MBE法、リソグラフィ法、
強力な外部磁場の印加及び熱処理により作製することを
特徴とする、磁気誘起相変態効果の原理に基づく、相変
態磁気抵抗(PMR)素子の形態及びその作製方法。
5. As shown in FIG. 5, a first strain imparting layer 61 (J1 component) as a positive electrode is provided on an insulating substrate 91 (B component; thickness t0; 0.1 mm ≦ t0 ≦ 1 mm). First phase transformation layer 71 (H component), second strain imparting layer 62 (J1 component) as a negative electrode, third strain imparting layer 63 (J2 component), first perpendicular magnetization sensitizing layer 31 (A component; thickness) T3; 1
nm ≦ t3 ≦ 100 nm) and a layered structure in which a fourth strain imparting layer 64 (J2 component) is provided on the uppermost layer, and the thickness (t1; 0.8 nm ≦ t1 ≦ 10) of the first phase transformation layer 71
nm), when there is no weak magnetic field such as a magnetic medium,
Since the first phase transformation layer is an insulator, the first phase transformation layer has a large electric resistance value due to tunnel resistance. However, when a weak external magnetic field acts, a phase transformation from an insulator to a metal occurs, and the electric resistance value is greatly reduced. And the first and second (thickness t2; 1n
m ≦ t2 ≦ 100 nm) and the third and fourth strain imparting layers (thickness t4; 1 nm ≦ t4 ≦ 100 nm) are provided on the first phase transformation layer and the first perpendicular magnetization electrode at around the operating temperature of the element. The metal and the alloy according to claim 7, which can impart an appropriate strain, wherein the metal and the alloy are an MBE method, a lithography method,
A form of a phase transformation magnetoresistive (PMR) element based on the principle of a magnetically induced phase transformation effect, which is produced by applying a strong external magnetic field and heat treatment, and a method for producing the same.
【請求項6】 図6に示すように、絶縁基板91(B成
分;厚さt0;0.1mm≦t0≦1mm)の上に、第
1ひずみ付与層61(J2成分)、第1垂直磁化増感層
31(A成分;厚さt1;1nm≦t1≦100n
m)、正電極である第2ひずみ付与層62(J2成
分)、その上に、酸素、あるいは、空気雰囲気中で、第
1クラスタ層111(K成分;厚さt5;0.5nm≦
t5≦100nm)を形成し(この場合、金属あるいは
合金クラスタは、絶縁酸化膜中に、容易にトンネル効果
が発現する距離で自然形成される)、その上に、負電極
である第3ひずみ付与層63(J2成分)、第2垂直磁
化増感層32(A成分;厚さt3;1nm≦t3≦10
0nm)、及び、最上層に第4ひずみ付与層64(J2
成分)を形成し、第1及び第2(厚さt2;1nm≦t
2≦100nm)、並びに、第3及び第4ひずみ付与層
(厚さt4;1nm≦t4≦100nm)は、第1垂直
磁化増感層及び第2垂直磁化増感層に、素子の使用温度
付近で、適切なひずみを付与して、垂直磁化を生じる構
造であり、請求項7に記載された各成分からなり、MB
E法(または、スパッター法、あるいは、その他の成膜
方法)、リソグラフィ法、強力な外部磁場の印加及び熱
処理により作製することを特徴とする、スピン依存トン
ネル効果の原理に基づく、トンネル磁気抵抗(TMR)
素子の形態及びその作製方法。
6. As shown in FIG. 6, on an insulating substrate 91 (B component; thickness t0; 0.1 mm ≦ t0 ≦ 1 mm), a first strain imparting layer 61 (J2 component) and a first perpendicular magnetization Sensitizing layer 31 (A component; thickness t1; 1 nm ≦ t1 ≦ 100 n
m), the second strain imparting layer 62 (J2 component) as a positive electrode, and the first cluster layer 111 (K component; thickness t5; 0.5 nm ≦ 0.5 nm) thereon in an oxygen or air atmosphere.
t5 ≦ 100 nm) (in this case, the metal or alloy cluster is naturally formed in the insulating oxide film at a distance where the tunnel effect easily appears), and a third strain, which is a negative electrode, is provided thereon. Layer 63 (J2 component), second perpendicular magnetization sensitizing layer 32 (A component; thickness t3; 1 nm ≦ t3 ≦ 10
0 nm) and a fourth strain applying layer 64 (J2
A first component and a second component (thickness t2; 1 nm ≦ t)
2 ≦ 100 nm) and the third and fourth strain imparting layers (thickness t4; 1 nm ≦ t4 ≦ 100 nm) are provided on the first and second perpendicular magnetization sensitizing layers near the device operating temperature. And a structure in which an appropriate strain is applied to generate perpendicular magnetization.
Tunneling magnetoresistance (based on the principle of spin-dependent tunneling, characterized by being produced by E method (or sputtering method or other film forming method), lithography method, application of strong external magnetic field and heat treatment, TMR)
Element forms and manufacturing methods thereof.
【請求項7】 第1垂直磁化増感層31、及び、第2垂
直磁化増感層32を構成する、分極率の大きいA成分と
して、Fe、Co等の強磁性特性を持つ金属、及び、C
oCr、CoPt、NiFe、CoFe、NiFeCo
等の強磁性合金を使用し、絶縁基板91を構成するB成
分として、非磁性特性を持つアルミナ(Al23)及び
SiO2等、並びに、ペロブスカイト(perovskite)構
造を持つ、LaAlO3、NdGaO3及びSrTO3
それぞれ使用し、第1、第2電極81、82を構成する
G成分として、Cu、Al、Pt、Pd、Au、あるい
は、良導体非磁性金属または合金を使用し、第1相変態
層71構成するH成分として、L1-xxMnO3 、0≦
x≦1、(ここで、Lは、Gd、La、Nd及びPr等
の希土類金属、Lサイトを置換するQとして、Ca、S
r及びBa等がある)と表記する、ペロブスカイト(pe
rovskite)構造を持つ、マンガナイト、並びに、半金属
であるBi及びその合金、SmNiO3、PrNiO3
のニッケル基酸化物を使用し、第1及び第2、並びに、
第3及び第4ひずみ付与層61、62、63、64を構
成するJ1並びにJ2成分として、非磁性体、良導体で
あるCu、Al、Pt、Pd、その他の金属及び合金、
ド−プした半導体、並びに、L1-xxMnO3 、0≦x≦
1、(ここで、Lは、Gd、La、Nd及びPr等の希
土類金属、Lサイトを置換するQとして、Ca、Sr及
びBa等がある)と表記する、ペロブスカイト構造を持
つ、LaAlO3、NdGaO3及びSrTO3、及び、
マンガナイト、並びに、半金属であるBi及びその合
金、SmNiO3、PrNiO3等のニッケル基酸化物を
使用し、強磁性体のクラスタを含む第1クラスタ層を構
成する、K成分として、Co−Al−O、Ni−Si−
O、Co−Si−O、Fe−Mg−O、Fe−Hf−O
(以上は、酸素あるいは空気雰囲気中で、Co−Al、
Ni−Si、Co−Si、Fe−Mg、Fe−Hf合金
を、MBE法、スパッター法あるいはその他の方法で成
膜する)、及び、Fe−Mg−F系合金を使用すること
を特徴とし、磁気誘起相変態効果、または、スピン依存
トンネル効果を原理とする、請求項7以外の、前記各請
求項1、2、3、4、5、及び、6に記載したPMR素
子及びTMR素子形態並びに作製方法。
7. A metal having ferromagnetic properties, such as Fe or Co, as an A component having a large polarizability, constituting the first perpendicular magnetization sensitizing layer 31 and the second perpendicular magnetization sensitizing layer 32; C
oCr, CoPt, NiFe, CoFe, NiFeCo
Alumina (Al 2 O 3 ) and SiO 2 having non-magnetic properties, and LaAlO 3 , NdGaO having a perovskite structure are used as a B component constituting the insulating substrate 91 using a ferromagnetic alloy such as 3 and SrTO 3 , respectively, and Cu, Al, Pt, Pd, Au, or a good conductor non-magnetic metal or alloy as a G component constituting the first and second electrodes 81 and 82, and a first phase As the H component constituting the transformation layer 71, L 1-x Q x MnO 3 , 0 ≦
x ≦ 1, (where L is a rare earth metal such as Gd, La, Nd and Pr, and Q which substitutes for the L site is Ca, S
r, Ba, etc.), perovskite (pe
rovskite) structure, using a nickel-based oxide such as Bi and its alloys, SmNiO 3 , PrNiO 3, which are semimetals,
As the J1 and J2 components constituting the third and fourth strain applying layers 61, 62, 63, 64, non-magnetic materials, good conductors such as Cu, Al, Pt, Pd, other metals and alloys,
Doped semiconductor, and L 1-x Q x MnO 3 , 0 ≦ x ≦
LaAlO 3 having a perovskite structure, denoted as 1, (where L is a rare earth metal such as Gd, La, Nd, and Pr, and Q as a Q replacing the L site is Ca, Sr, and Ba). NdGaO 3 and SrTO 3 , and
Manganite and a semi-metal Bi and its alloys, nickel-based oxides such as SmNiO 3 and PrNiO 3 , and a first cluster layer containing a ferromagnetic cluster are used. Al-O, Ni-Si-
O, Co-Si-O, Fe-Mg-O, Fe-Hf-O
(The above are Co-Al,
Ni-Si, Co-Si, Fe-Mg, and Fe-Hf alloys are formed by MBE, sputtering, or other methods), and Fe-Mg-F alloys are used. The PMR element and the TMR element form according to each of claims 1, 2, 3, 4, 5, and 6, other than claim 7, which is based on a magnetically induced phase transformation effect or a spin-dependent tunnel effect. Production method.
JP2001051464A 2000-03-02 2001-02-27 Structure of magneto resistance(mr) element and its manufacturing method Pending JP2001320109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001051464A JP2001320109A (en) 2000-03-02 2001-02-27 Structure of magneto resistance(mr) element and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-57058 2000-03-02
JP2000057058 2000-03-02
JP2001051464A JP2001320109A (en) 2000-03-02 2001-02-27 Structure of magneto resistance(mr) element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001320109A true JP2001320109A (en) 2001-11-16

Family

ID=26586602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001051464A Pending JP2001320109A (en) 2000-03-02 2001-02-27 Structure of magneto resistance(mr) element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001320109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338360B1 (en) * 2012-04-04 2013-12-06 광주과학기술원 Selection device and nonvolatile memory cell including the same and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338360B1 (en) * 2012-04-04 2013-12-06 광주과학기술원 Selection device and nonvolatile memory cell including the same and method of fabricating the same

Similar Documents

Publication Publication Date Title
CN108292703B (en) Spin current magnetization reversal element, magnetoresistance effect element, and magnetic memory
US10749105B2 (en) Monocrystalline magneto resistance element, method for producing the same and method for using same
JP5599738B2 (en) Magnetoresistive element and method for forming the same
JP3565268B2 (en) Magnetoresistive element, magnetic head, and magnetic reproducing device
US20090027810A1 (en) High performance MTJ element for STT-RAM and method for making the same
JP3603771B2 (en) Magnetic resistance element, magnetic sensor and memory device using the same
EP2434556A1 (en) Ferromagnetic tunnel junction structure and magnetoresistive element using same
JP2010074171A (en) Tmr device and method of forming the same
JP2004179219A (en) Magnetic device and magnetic memory using the same
JP6857421B2 (en) Ferromagnetic tunnel junction, spintronics device using it, and method for manufacturing ferromagnetic tunnel junction
JP2003324225A (en) Laminated ferrimagnetic thin film, and magneto- resistance effect element and ferromagnetic tunnel element using the same
JP2018093059A (en) Spin current magnetization reversal element, magnetoresistive effect element, and magnetic memory
US6590268B2 (en) Magnetic control device, and magnetic component and memory apparatus using the same
JP2001339110A (en) Magnetism control element, magnetic component using the same and memory device
JP7066222B2 (en) Planar current giant magnetoresistive element, its precursor, and its manufacturing method
JP2001320109A (en) Structure of magneto resistance(mr) element and its manufacturing method
JP3206582B2 (en) Spin polarization element
JP2003197872A (en) Memory using magneto-resistance effect film
JP2001127357A (en) Structure of magnetic-resistance (mr) element, and its manufacturing method
JP2007221086A (en) Tunnel-type magnetism detection element and method of manufacturing same
KR19980080727A (en) Magnetoresistive effect sensor and manufacturing method
JP2001291914A (en) Structure of magnetoresistance(mr) element and its manufacturing method
JP2001189504A (en) Structure of magnetoresistive(mr) element and manufacturing method therefor
JP2001358382A (en) Structure and manufacturing method of magnetic resistance(mr) element
JP2005286350A (en) Tunnel magnetoresistive element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530