JP2001318209A - Optical element and molding tool for the same - Google Patents

Optical element and molding tool for the same

Info

Publication number
JP2001318209A
JP2001318209A JP2000136119A JP2000136119A JP2001318209A JP 2001318209 A JP2001318209 A JP 2001318209A JP 2000136119 A JP2000136119 A JP 2000136119A JP 2000136119 A JP2000136119 A JP 2000136119A JP 2001318209 A JP2001318209 A JP 2001318209A
Authority
JP
Japan
Prior art keywords
lens
optical
shape
diameter
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000136119A
Other languages
Japanese (ja)
Inventor
Shigeo Urai
茂雄 浦井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000136119A priority Critical patent/JP2001318209A/en
Publication of JP2001318209A publication Critical patent/JP2001318209A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/68Means for parting the die from the pressed glass other than by cooling or use of a take-out

Abstract

PROBLEM TO BE SOLVED: To facilitate the release of an optical element such as a convex lens or a convex meniscus from a molding tool by designing the shape of the transfer faces of the element, other than the region of the optical effective diameter. SOLUTION: In a biconvex lens or a meniscus, at least one of both lens faces deviates from the elongations of a curved line which sets the curved surface in the optical effective diameter toward the lens side, with respect to the optical axis direction in regions at the outsides of the optical effective diameter and has such a shape of a face as to be transferred that the reduction of lens thickness is made larger than that of lens thickness formed by the elongations, in accordance with the increase of diameter in directions orthogonal to the optical axis and the face to be transferred is formed up to at least the required outside diameter of the lens.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、互いに対向する型
部材によって、熱間で、ガラスをプレス成形することで
得られる光学素子およびその成形型に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element obtained by hot press-molding glass using mold members facing each other, and a mold for the optical element.

【0002】[0002]

【従来の技術】従来のプレス成形方法では、ゴブ容量の
ばらつきを吸収する目的で、レンズの光学有効径の領域
外で、レンズのコバ部となる余剰ガラス部分を、流動・
退避できるように成形するため、余裕の内部空間を持っ
た成形型の構造が用いられていた。ここで、余剰ガラス
部分とは、プレス成形時に、光学有効径の領域外にはみ
出したガラス部分を指すのであって、その概略が縦断面
図として、図7に示されている。なお、図中、22は上
型部材、23は下型部材、24は被成形品であるプレス
レンズである。
2. Description of the Related Art In a conventional press molding method, in order to absorb a variation in gob capacity, an excess glass portion serving as an edge portion of a lens is flowed out of a region of an optical effective diameter of the lens.
In order to form the mold so that it can be retracted, a structure of a mold having a sufficient internal space has been used. Here, the surplus glass portion refers to a glass portion that has protruded outside the region of the optical effective diameter during press molding, and is schematically shown in FIG. 7 as a longitudinal sectional view. In the drawing, reference numeral 22 denotes an upper mold member, 23 denotes a lower mold member, and 24 denotes a press lens as a molded product.

【0003】本発明が対象とする、コバ部の肉厚がレン
ズ中心厚に比して小さいレンズ形状、所謂、凸レンズ形
状の場合、前記余剰ガラス部分の周辺から発生するレン
ズのワレを防止するため、余剰ガラス部分がなるべく厚
くなるように設計されるのが通常であって、例えば、図
7に示すように、型部材の成形面は、光学有効径の領域
外から、型部材外周部にかけた転写成形部を、平坦な形
状とすることが多かった。
When the thickness of the edge portion of the present invention is a lens shape in which the thickness of the edge portion is smaller than the center thickness of the lens, that is, a so-called convex lens shape, it is necessary to prevent the lens from cracking around the surplus glass portion. Usually, the surplus glass portion is designed to be as thick as possible. For example, as shown in FIG. 7, the molding surface of the mold member is applied to the outer periphery of the mold member from outside the optically effective diameter region. In many cases, the transfer molding portion was formed into a flat shape.

【0004】しかしながら、凸レンズ形状の場合、レン
ズのコバ部よりも中心部の厚さが大きいため、冷却過程
において、双方の熱収縮量に差が生じる。例えば、図7
中のΔl中心およびΔlコバを、それぞれプレス軸方向
におけるレンズ中心部とコバ部の熱収縮量とすれば、Δ
l中心>Δlコバの関係が、冷却中、常に成り立つこと
になる。従って、冷却の過程で、上下型部材が上下に拘
束されていなければ、レンズの中心部とコバ部との熱収
縮量の差を、前記コバ部で支えるような応力状態、即
ち、上下型部材により、レンズのコバ部に対して、プレ
ス軸方向の圧縮力を負荷した状態となる。
However, in the case of a convex lens shape, the thickness of the central portion is larger than the edge portion of the lens, so that a difference occurs between the heat shrinkage amounts in the cooling process. For example, FIG.
If the Δl center and Δl edge in the above are the thermal contraction amounts of the lens center and the edge in the press axis direction, respectively, Δ
The relationship of 1 center> Δl edge always holds during cooling. Therefore, if the upper and lower mold members are not restrained up and down during the cooling process, a stress state in which the difference in the amount of thermal contraction between the center portion of the lens and the edge portion is supported by the edge portion, that is, the upper and lower mold members As a result, a state is obtained in which a compressive force in the press axis direction is applied to the edge portion of the lens.

【0005】即ち、余剰ガラス部分における型部材の成
形面の転写成形部が、プレス軸方向に垂直(図7では、
互いに対向する水平面)であれば、レンズ中心部分とコ
バ部分との熱収縮量の差によって生じたプレス軸方向の
圧縮力が、ガラス/成形型界面に対し、垂直に作用する
ことになる。そのため、余剰ガラス部分が上下型部材に
挟み込まれ、離型が困難となる問題が生じてくる。
That is, the transfer molding portion of the molding surface of the mold member in the surplus glass portion is perpendicular to the press axis direction (in FIG. 7,
If they face each other (horizontal planes), the compressive force in the press axis direction generated by the difference in the amount of thermal contraction between the lens center portion and the edge portion acts perpendicularly on the glass / mold interface. Therefore, a problem arises in that the surplus glass portion is sandwiched between the upper and lower mold members, making it difficult to release the mold.

【0006】これに加えて、図示のように、余剰ガラス
部分に平坦部と曲面部分との不連続な部位(上述の水平
面と、光学有効径の領域外に延びる曲線との交点)がで
きてしまうため、その部位における応力集中により、ガ
ラスのワレが発生し易くなる。よって、凸レンズ形状に
関しては、余剰ガラス部分を平坦とし、レンズコバ部を
なるべく厚くなるようにしても、根本的にワレを解決す
ることができない。
In addition to this, as shown in the figure, a portion where the flat portion and the curved portion are discontinuous (intersection between the above-mentioned horizontal plane and a curve extending outside the optical effective diameter area) is formed in the surplus glass portion. Therefore, cracking of the glass is likely to occur due to stress concentration at the site. Therefore, regarding the convex lens shape, even if the surplus glass portion is made flat and the lens edge portion is made as thick as possible, it is not possible to fundamentally solve the crack.

【0007】そこで、凸レンズのワレを防止するため、
レンズの外径を、光学有効径の領域内の曲面を設定する
曲線の延長線の届くレンズ成形面の直径よりも小さくす
る、即ち、上述のような不連続な部位を設けないレンズ
形状とする方法が、例えば、特開平4−46021号公
報で開示されている。
Therefore, in order to prevent the convex lens from cracking,
The outer diameter of the lens is made smaller than the diameter of the lens molding surface where the extension of the curve that sets the curved surface in the area of the optical effective diameter reaches, that is, a lens shape that does not provide the above-described discontinuous portion. The method is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-46021.

【0008】しかしながら、これによって、レンズ外周
部の離型性が改善されるわけではなく、不連続な部位で
のワレは防止できても、離型しないことによるワレを防
止することはできない。このように、今までの方法で
は、離型性を向上させ、しかもワレを防止するような、
余剰ガラス部分の形状についての有効な工夫は、提唱さ
れていない。
However, this does not necessarily improve the releasability of the outer peripheral portion of the lens. Even if cracks can be prevented at discontinuous portions, cracks due to non-releasing cannot be prevented. As described above, in the conventional methods, the releasability is improved, and furthermore, cracking is prevented.
An effective device for the shape of the surplus glass portion has not been proposed.

【0009】[0009]

【発明が解決しようとする課題】このように、上述した
従来技術においては、凸レンズ形状の場合、レンズの中
心部とコバ部とのガラスの熱収縮差により、プレス軸方
向の圧縮力がコバ部に負荷されるため、コバ部の離型性
が悪くなり、ワレが発生し易い。さらに、コバ部の厚み
を大きくしても、コバ部の形状が適切でなければ、ワレ
を防止できないという問題があった。
As described above, in the prior art described above, in the case of a convex lens shape, the compressive force in the press axis direction is reduced due to the difference in heat shrinkage of the glass between the center portion of the lens and the edge portion. , The releasability of the edge portion deteriorates, and cracks easily occur. Further, there is a problem that even if the thickness of the edge portion is increased, cracking cannot be prevented unless the shape of the edge portion is appropriate.

【0010】本発明は、上記事情に基づいてなされたも
ので、凸形状のレンズまたは凸メニスカスレンズのよう
な光学素子を対象とし、光学有効径の領域外の転写面の
形状を工夫して、離型し易くすることを目的とするもの
である。
The present invention has been made based on the above circumstances, and is directed to an optical element such as a convex lens or a convex meniscus lens, and devising a shape of a transfer surface outside an area of an optical effective diameter, The purpose is to facilitate release.

【0011】[0011]

【課題を解決するための手段】このため、本発明では、
光軸方向に関して対向する球面あるいは非球面のレンズ
面を有する両凸レンズまたは凸メニスカスレンズである
光学素子において、両レンズ面の内、少なくとも一方の
レンズ面が、その光学有効径の外側の領域では、光学有
効径内の曲面を設定する曲線の延長線から、光軸方向に
ついてレンズ側に外れて、前記光軸と直交する方向に関
する径の増大に伴って、前記延長線で形成されるよりレ
ンズ肉厚の減少量が大きくなるような被転写面形状を有
し、前記被転写面を、少なくとも所要のレンズ外径まで
形成していることを特徴とする。
Therefore, in the present invention,
In an optical element that is a biconvex lens or a convex meniscus lens having a spherical or aspherical lens surface facing in the optical axis direction, at least one of the two lens surfaces is in a region outside the optical effective diameter thereof. From the extension of the curve that sets the curved surface within the optical effective diameter, deviates toward the lens in the optical axis direction, and as the diameter in the direction perpendicular to the optical axis increases, the lens thickness formed by the extension increases. The transfer surface shape is such that the amount of reduction in thickness is large, and the transfer surface is formed to at least a required lens outer diameter.

【0012】また、本発明では、互いに対向する2個の
型部材によって、光軸方向に関して対向する球面あるい
は非球面のレンズ面を有する両凸レンズまたは凸メニス
カスレンズである光学素子をプレス成形するための成形
型において、両レンズ面の内、少なくとも一方のレンズ
面が、その光学有効径の外側の領域では、光学有効径内
の曲面を設定する曲線の延長線から、光軸方向について
レンズ側に外れて、前記光軸と直交する方向に関する径
の増大に伴って、前記延長線で形成されるよりレンズ肉
厚の減少量が大きくなるような被転写面形状となるよう
に、少なくとも一方の型部材の成形面に、所定の光学有
効径の転写領域外において、前記被転写面のための転写
成形部を、少なくとも所要のレンズ外径まで形成してい
ることを特徴とする。
Further, according to the present invention, an optical element which is a biconvex lens or a convex meniscus lens having a spherical or aspherical lens surface facing in the optical axis direction is press-formed by two mold members facing each other. In the mold, at least one of the two lens surfaces deviates from the extension line of the curve defining the curved surface within the effective optical diameter toward the lens in the optical axis direction in a region outside the effective optical diameter. At least one of the mold members so that the transfer surface shape is such that the amount of decrease in lens thickness is greater than that formed by the extension line with an increase in the diameter in the direction orthogonal to the optical axis. A transfer molding portion for the surface to be transferred is formed at least to a required lens outer diameter outside the transfer area having a predetermined optical effective diameter on the molding surface of .

【0013】このような構成によれば、レンズ(光学素
子)のコバ部に対して作用するプレス軸方向の圧縮力
を、せん断応力もしくは引張応力に変換させることで、
離型に積極的に寄与する応力を増加させることが可能で
ある。なお、レンズのコバ部の形状を変化させて得られ
る効果の度合いは、その形状によって異なる。
According to this configuration, the compressive force acting on the edge of the lens (optical element) in the press axis direction is converted into a shear stress or a tensile stress,
It is possible to increase the stress that positively contributes to the release. The degree of the effect obtained by changing the shape of the edge portion of the lens differs depending on the shape.

【0014】即ち、コバ部に生じる圧縮応力をせん断応
力へ変換させることに関しては、コバ部の形状を、プレ
ス軸方向から45度傾いた面で構成すると、最大の効果
が得られる。この理由は、一般に、圧縮応力が負荷され
る方向から45度傾いた面上では、その圧縮応力が、全
てせん断応力に変換されるからである。
That is, with regard to converting the compressive stress generated in the edge portion into the shear stress, the maximum effect can be obtained by configuring the edge portion with a surface inclined by 45 degrees from the press axis direction. The reason for this is that generally, on a plane inclined at 45 degrees from the direction in which the compressive stress is applied, all the compressive stress is converted into a shear stress.

【0015】一方、コバ部に生じる圧縮応力を引張応力
へ変換させることに関しては、コバ部の形状を、プレス
軸と平行な面で構成すると、最大の効果が得られる。こ
の理由は、せん断応力の変換と同じく、圧縮応力が作用
する方向から90度傾いた面上では、その圧縮応力が全
て引張応力に変換されるため、および、レンズの径方向
の熱応力がコバ部に対して垂直に働くためである。
On the other hand, the greatest effect can be obtained by converting the compressive stress generated in the edge into a tensile stress by forming the edge in a plane parallel to the press axis. The reason for this is that, as in the case of the conversion of the shearing stress, on the surface inclined 90 degrees from the direction in which the compressive stress acts, all the compressive stress is converted into the tensile stress, and the thermal stress in the radial direction of the lens is reduced. This is because it works perpendicular to the part.

【0016】光学有効径の領域外において、光学有効径
の領域内の曲面を設定する曲線の延長線から外れ、光軸
と直交する方向に関する径の増大に伴って、前記延長線
で形成されるよりレンズ肉厚の減少量が大きくなるよう
な被転写面形状を有した光学素子の形状は、プレス軸方
向に生じた圧縮応力およびプレス軸直交方向のレンズの
熱収縮力を、少なくとも離型に有利な応力へと変換でき
る形状を示している。この変換は、ガラスの収縮による
力だけでなく、成形型を介して、プレスレンズを圧縮す
る外力に対しても有効である。
Outside the region of the optical effective diameter, the line deviates from the extension of the curve defining the curved surface within the region of the optical effective diameter, and is formed by the extension with the increase in the diameter in the direction orthogonal to the optical axis. The shape of the optical element having the transferred surface shape such that the reduction amount of the lens thickness becomes larger, the compressive stress generated in the press axis direction and the heat shrinkage force of the lens in the direction perpendicular to the press axis can be at least released. Shown are shapes that can be converted to advantageous stresses. This conversion is effective not only for the force due to the shrinkage of the glass but also for the external force that compresses the press lens via the mold.

【0017】以上のように、本発明では、光学有効径の
領域外での、レンズ(光学素子)の被転写面形状によ
り、離型性を向上させることで、コバ部でのワレを防止
するのである。
As described above, in the present invention, cracks in the edge portion are prevented by improving the releasability by the transfer surface shape of the lens (optical element) outside the optical effective diameter region. It is.

【0018】[0018]

【発明の実施の形態】(第1の実施の形態)以下、本発
明の実施の形態を、図面を参照して具体的に説明する。
図1は、第1の実施の形態におけるプレス成形装置での
成形型の構造を概略的に示したものである。ここで、1
は上型部材、2は下型部材である。これらの型部材に使
用する材料は、セラミック、金属など、いずれの材料を
用いても良い。但し、その弾性率は、より高い方が、成
形型の変形が抑えられ、離型に有利な応力が発生し易い
点で優れている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) An embodiment of the present invention will be specifically described below with reference to the drawings.
FIG. 1 schematically shows the structure of a molding die in the press molding apparatus according to the first embodiment. Where 1
Is an upper mold member, and 2 is a lower mold member. As the material used for these mold members, any material such as ceramic and metal may be used. However, the higher the elastic modulus, the better the deformation of the molding die is suppressed, and the more advantageous the stress for releasing the mold is.

【0019】3は光学素子としてのプレス成形レンズで
あり、特に、材料の種類に限定はない。この実施の形態
では、SK−12(Tg=550℃)を用いている。4
は型部材1,2を案内するための胴型であり、使用する
材料は、耐熱性に優れていれば、特に限定しない。胴型
4の内部には、符号5で示す抵抗発熱体が内蔵され、ゴ
ブを軟化温度にまで加熱できるようになっている。
Reference numeral 3 denotes a press-molded lens as an optical element, and there is no particular limitation on the type of material. In this embodiment, SK-12 (Tg = 550 ° C.) is used. 4
Is a barrel die for guiding the mold members 1 and 2, and the material used is not particularly limited as long as it has excellent heat resistance. A resistance heating element indicated by reference numeral 5 is built in the body mold 4 so that the gob can be heated to a softening temperature.

【0020】なお、型部材1,2は、プレス軸方向には
固定されておらず、胴型4内を自由に上下摺動可能であ
る。また、プレス成形は窒素雰囲気中で行い、成形型と
ガラスの反応を抑制している。
The mold members 1 and 2 are not fixed in the direction of the press axis, and can freely slide up and down in the body mold 4. Press molding is performed in a nitrogen atmosphere to suppress the reaction between the mold and the glass.

【0021】この実施の形態でのレンズ(光学素子)の
成形工程は、大きく分けると、次の2工程となる。
The lens (optical element) forming step in this embodiment can be roughly divided into the following two steps.

【0022】(1)加熱・軟化したガラスゴブに、光学
機能面(光学有効径の領域)を転写させる押圧プレス工
程 (2)押圧プレス後のレンズを冷却する工程 図2は、上記成形工程の(2)の段階での成形型の概略
構成を示している。ここで、符号6,7は、それぞれ、
上型部材、下型部材である。また、符号8はプレス成形
レンズ、細い破線で示した部分9は、光学有効径の領域
内の曲面を設定する曲線の延長線である。また、太い破
線で示した部分10は、光学有効径の領域外において、
前記延長線から、レンズの光軸方向についてレンズ側に
外れて、光軸と直交する方向に関する径の増大に伴っ
て、前記延長線で形成されるよりレンズ肉厚の減少量が
大きくなるような被転写面形状の領域を示しており、前
記被転写面は、少なくとも所要のレンズ外径まで形成さ
れている。なお、符号11は押圧プレス時に残したガラ
スの自由表面であって、上下型部材の成形面の形状は転
写されていない。
(1) A pressing press step of transferring an optically functional surface (a region of an effective optical diameter) to a heated and softened glass gob. (2) A step of cooling a lens after the pressing press. The schematic configuration of the mold at the stage 2) is shown. Here, symbols 6 and 7 are respectively
An upper mold member and a lower mold member. Reference numeral 8 denotes a press-molded lens, and a portion 9 indicated by a thin broken line denotes an extension of a curve that sets a curved surface within the area of the optical effective diameter. In addition, the portion 10 indicated by the thick broken line is outside the region of the optical effective diameter.
From the extension, the lens deviates to the lens side in the optical axis direction of the lens, and as the diameter in the direction orthogonal to the optical axis increases, the amount of decrease in lens thickness becomes larger than that formed by the extension. The figure shows an area of a transfer surface shape, and the transfer surface is formed at least to a required lens outer diameter. Reference numeral 11 denotes a free surface of the glass left at the time of pressing and pressing, and the shape of the molding surface of the upper and lower mold members is not transferred.

【0023】図2に示す状態から冷却されると、この実
施の形態のレンズは、凸形状であるため、レンズのコバ
部に対するプレス軸方向の圧縮力が大きくなる。このプ
レス軸方向の圧縮力は、前記コバ部がプレス軸に対して
垂直な平面(図中、互いに平行な水平な面)間に形成さ
れていれば、離型を妨げる応力成分となるが、そのコバ
部全体が符号10の領域にあれば、ガラス/金型界面に
対するせん断または引張応力に変換できる。このように
して、発生したせん断もしくは引張応力により、ガラス
と型部材とを離型した場合、ワレのないレンズ(光学素
子)が得られる。
When cooled from the state shown in FIG. 2, since the lens of this embodiment has a convex shape, the compressive force in the press axis direction on the edge portion of the lens increases. If the edge portion is formed between planes perpendicular to the press axis (horizontal planes parallel to each other in the figure), the compression force in the press axis direction becomes a stress component that hinders mold release. If the entire edge is in the region indicated by reference numeral 10, it can be converted into shear or tensile stress on the glass / mold interface. In this way, when the glass and the mold member are separated from each other by the generated shear or tensile stress, a lens (optical element) without cracks can be obtained.

【0024】以下に、光学有効径の領域外に平坦部分を
含む従来のレンズ形状と、図2に示した光学有効径の領
域外において、光学有効径の領域内の曲面を設定する曲
線の延長線から外れ、光軸と直交する方向に関する径の
増大に伴って、前記延長線で形成されるよりレンズ肉厚
の減少量が大きくなるような被転写面形状を有するレン
ズ形状とについて、それらの離型温度、ワレ発生率を比
較する。そして、その結果を以下に示す。
The conventional lens shape including a flat portion outside the optical effective diameter region and the extension of a curve for setting a curved surface within the optical effective diameter region outside the optical effective diameter region shown in FIG. Deviated from the line, with the increase in the diameter in the direction perpendicular to the optical axis, the lens shape having a transferred surface shape such that the amount of reduction in lens thickness becomes greater than that formed by the extension line, Compare the release temperature and cracking rate. The results are shown below.

【0025】図3に示すのが、図2のレンズ形状(これ
をA形状とする)に平坦部分(ハッチングで示す部分1
4)を付け加えた形状(これをB形状とする)である。
即ち、符号12が平坦部であり、13はA形状のコバ部
被転写面形状である。
FIG. 3 shows a flat portion (part 1 shown by hatching) in the lens shape of FIG.
4) is added (this is referred to as B shape).
That is, reference numeral 12 denotes a flat portion, and reference numeral 13 denotes an A-shaped edge portion transfer surface shape.

【0026】このように、ハッチング部分14を付け加
えると、比較対象とした、光学有効径の領域外に平坦部
分を有するレンズ形状、即ち、B形状となる。プレス成
形に際しての、各成形条件については、双方とも、押圧
プレス温度を614℃、冷却速度は10℃/minとし
た。
As described above, when the hatched portion 14 is added, a lens shape having a flat portion outside the region of the effective optical diameter, that is, a B shape, which is a comparison object, is obtained. Regarding each molding condition at the time of press molding, in both cases, the pressing press temperature was 614 ° C., and the cooling rate was 10 ° C./min.

【0027】以上の条件により行ったプレス成形の実験
の結果を表1に示す。なお、離型温度は、離型が生じた
ときの成形型の温度であり、ワレの発生率は100個の
試料により算出した。その結果、本発明のA形状の方
が、B形状に比して離型温度が高く、レンズのワレ防止
に対して効果があった。
Table 1 shows the results of the press molding experiments performed under the above conditions. The mold release temperature is the temperature of the mold when mold release occurs, and the cracking rate was calculated from 100 samples. As a result, the shape A of the present invention had a higher mold release temperature than the shape B, and was more effective in preventing cracking of the lens.

【0028】[0028]

【表1】 (第2の実施の形態)図4は、本発明の第2の実施の形
態で用いた成形型の形状を示す。ここでは、凸メニスカ
ス形状のレンズ15を成形している。このレンズ15に
おいて、太い破線で示した光学有効径の領域外を構成す
る曲面16は、光学有効径内の曲面を設定する曲線(例
えば、一定の曲率半径で描く曲線)の延長線(細い破線
で示す)から、光軸方向についてレンズ側に外れて、光
軸と直交する方向に関する径の増大に伴って、前記延長
線で形成されるよりレンズ肉厚の減少量が大きくなるよ
うな被転写面形状に形成され、その被転写面を、少なく
とも所要のレンズ外径(成形時の自由表面)まで形成し
ている。
[Table 1] (Second Embodiment) FIG. 4 shows a shape of a molding die used in a second embodiment of the present invention. Here, the convex meniscus lens 15 is formed. In the lens 15, the curved surface 16 that constitutes the area outside the optical effective diameter indicated by the thick broken line is an extension of the curve (for example, a curve drawn with a constant radius of curvature) that sets the curved surface within the optical effective diameter (thin broken line). ), The transferred image is deviated to the lens side in the optical axis direction, and as the diameter in the direction perpendicular to the optical axis increases, the amount of decrease in the lens thickness becomes larger than that formed by the extension line. The transfer surface is formed at least to a required lens outer diameter (free surface during molding).

【0029】この実施の形態においては、冷却プレスに
より、レンズのコバ部に負荷されるプレス軸方向の圧縮
力が、曲面16で、離型に寄与する応力に変換され、離
型が促進されるか否かを検討した。そのため、押圧プレ
ス後のレンズ外縁部には、自由表面部17を残し、冷却
中のプレス代(レンズ厚)を確保している。
In this embodiment, the compression press converts the compressive force applied to the edge of the lens in the axial direction of the press into a stress contributing to mold release on the curved surface 16 to promote mold release. We examined whether or not. For this reason, the free surface portion 17 is left on the outer edge of the lens after the pressing, so that the press allowance (lens thickness) during cooling is secured.

【0030】図5は、この際の温度と時間との関係で示
された、冷却プレス工程を含む成形工程図である。ここ
で、押圧プレス温度は614℃、冷却速度は10℃/m
in、冷却プレス温度領域は580〜550℃である。
この成形工程に基づき、図4に示した本発明のレンズ形
状と、従来のレンズ形状とで、離型温度とワレの発生率
の差を比較した。さらに、図4の形状については、冷却
プレスを行わない場合の検討も行った。
FIG. 5 is a molding process diagram including a cooling press process, showing the relationship between temperature and time at this time. Here, the pressing press temperature is 614 ° C., and the cooling rate is 10 ° C./m.
in, the cooling press temperature range is 580-550 ° C.
Based on this molding process, the difference between the mold release temperature and the crack generation rate was compared between the lens shape of the present invention shown in FIG. 4 and the conventional lens shape. Further, as for the shape shown in FIG. 4, the case where the cooling press is not performed was also examined.

【0031】ここで、上記従来の形状とは、図4の形状
に対し、光学有効径の領域外を形成する成形面の被転写
部が、光学有効径の領域内の曲面を設定する曲線の延長
線で形成される被転写面形状のことを指し、また、その
直径は、本発明の場合と同じに設定した。なお、成形に
用いたガラス素材は、SK12(Tg=550℃)とし
た。
Here, the above-mentioned conventional shape is different from the shape shown in FIG. 4 in that the transferred portion of the molding surface that forms the area outside the optically effective diameter has a curved surface that sets a curved surface within the optically effective diameter area. It refers to the shape of the transfer surface formed by the extension line, and the diameter is set to be the same as in the case of the present invention. The glass material used for molding was SK12 (Tg = 550 ° C.).

【0032】以上の条件により、実験を行い、得られた
結果を表2に示す。なお、離型温度は、離型が生じたと
きの成形型の温度であり、ワレの発生率は100個のサ
ンプルにより算出している。離型温度を比較すると、冷
却プレスを行った本発明のレンズ形状が最も高く、その
次は、冷却プレスを行わない本発明のレンズ形状、最も
低かったのは、冷却プレスを行った従来のレンズ形状で
あった。
An experiment was conducted under the above conditions, and the results obtained are shown in Table 2. The mold release temperature is the temperature of the mold when mold release occurs, and the crack generation rate is calculated from 100 samples. Comparing the mold release temperatures, the lens shape of the present invention subjected to the cooling press was the highest, the second was the lens shape of the present invention without the cooling press, and the lowest was the conventional lens subjected to the cooling press. It was a shape.

【0033】[0033]

【表2】 その結果からすると、従来の形状に対して冷却プレスを
行っても離型温度が低かったことから、冷却プレスで離
型温度が高くなったのではなく、本発明のレンズ形状に
対して冷却プレスを行うことで、離型温度が高くなった
ことが明らかである。即ち、冷却プレスにより生じるプ
レス軸方向の圧縮力が、曲面16で示す部分で、離型に
寄与する応力に変換されたと言える。
[Table 2] According to the results, the mold release temperature was low even when the cooling press was performed on the conventional shape, so the release temperature was not increased by the cooling press, but the cooling press was performed on the lens shape of the present invention. It is clear that the release temperature was increased by performing. That is, it can be said that the compression force in the press axis direction generated by the cooling press was converted into the stress contributing to the release at the portion indicated by the curved surface 16.

【0034】レンズのワレは、離型温度の最も低かった
従来のレンズ形状でのみ発生しており、本発明の形状に
より離型温度が高くなった形状では、ワレが完全に防止
できている。
Cracking of the lens occurs only in the conventional lens shape having the lowest release temperature, and in the shape in which the release temperature is increased by the shape of the present invention, cracking can be completely prevented.

【0035】(第3の実施の形態)図6は、本発明の第
3の実施の形態で用いた成形型の概略図である。即ち、
片方の被転写面を平面、もう一方の被転写面を凸面とし
た、凸メニスカスレンズ形状の成形を上下型部材で行っ
たのである。図中、符号18はプレスレンズ、19は凹
面に加工された上型部材の転写面(成形面)、20は平
面に加工された下型部材の転写面(成形面)である。こ
こで成形されたレンズは、その光学有効径の領域外の部
分21が、光学有効径の領域内の曲面を設定する曲線の
延長線(細い点線で示す)から、光軸方向についてレン
ズ側に外れて、光軸と直交する方向に関する径の増大に
伴って、前記延長線で形成されるよりレンズ肉厚の減少
量が大きくなるような被転写面形状を有し、前記被転写
面を、少なくとも所要のレンズ外径まで形成している。
(Third Embodiment) FIG. 6 is a schematic diagram of a molding die used in a third embodiment of the present invention. That is,
The upper and lower mold members were used to form a convex meniscus lens shape in which one transfer surface was a flat surface and the other transfer surface was a convex surface. In the figure, reference numeral 18 denotes a press lens, 19 denotes a transfer surface (molding surface) of an upper die member processed into a concave surface, and 20 denotes a transfer surface (molding surface) of a lower die member processed into a flat surface. In the lens formed here, the portion 21 outside the region of the optical effective diameter is shifted from the extension line (indicated by a thin dotted line) of the curve defining the curved surface within the region of the optical effective diameter to the lens side in the optical axis direction. Deviated, with an increase in the diameter in the direction perpendicular to the optical axis, has a transferred surface shape such that the amount of decrease in lens thickness is greater than that formed by the extension line, the transferred surface, It is formed to at least the required lens outer diameter.

【0036】ここでは、上型部材にのみ、離型性向上の
ための、上述の転写面形状を設定している。このレンズ
形状(図6を参照)とした効果を比較するため、光学有
効径の領域外の成形面の転写面部分が、前記光学有効径
の領域内の曲面を設定する曲線19の延長線であるとこ
ろの、従来の形状についても成形を行った。
Here, the above-described transfer surface shape is set only on the upper mold member to improve the releasability. In order to compare the effect of this lens shape (see FIG. 6), the transfer surface portion of the molding surface outside the region of the optical effective diameter is an extension of the curve 19 that sets the curved surface within the region of the optical effective diameter. Molding was also performed on a conventional shape.

【0037】第1の実施の形態における工程と同様で、
この実施の形態について、レンズを成形すると、成形型
が540℃となったときに、凸面において離型が生じ、
480℃のときに平面が離型した。このとき、ワレの発
生はなかった。一方、比較例とした従来の形状では、3
80℃のときに凸面および平面の両面が離型し、成形品
にはワレが発生した。
Similar to the steps in the first embodiment,
For this embodiment, when the lens is molded, when the mold reaches 540 ° C., mold release occurs on the convex surface,
The plane was released at 480 ° C. At this time, no crack was generated. On the other hand, in the conventional shape of the comparative example, 3
At 80 ° C., both the convex surface and the flat surface were released, and cracks occurred in the molded product.

【0038】この結果から、片面が離型し、ガラス内の
熱ひずみが解放されると、レンズのワレは発生し難いこ
とがわかる。このように、上下いずれかの被転写面形状
を、光学有効径の領域外において、光学有効径の領域内
の曲面を設定する曲線の延長線から、光軸方向について
レンズ側に外れて、前記光軸と直交する方向に関する径
の増大に伴って、前記延長線で形成されるよりレンズ肉
厚の減少量が大きくなるような被転写面形状を有し、前
記被転写面を、少なくとも所要のレンズ外径まで形成し
ている場合には、離型性が向上し、レンズのワレが防止
できる。
From these results, it can be seen that when one side is released and the thermal strain in the glass is released, cracking of the lens hardly occurs. In this way, any one of the upper and lower transfer surface shapes is outside the optically effective diameter area, from the extension of the curve that sets the curved surface within the optically effective diameter area, deviating toward the lens in the optical axis direction, As the diameter in the direction perpendicular to the optical axis increases, the transfer surface shape has a shape in which the amount of reduction in lens thickness is greater than that formed by the extension line, and the transfer surface is at least a required surface. When the lens is formed up to the outer diameter of the lens, the releasability is improved, and cracking of the lens can be prevented.

【0039】[0039]

【発明の効果】本発明は、以上説明したように、特定し
た光学素子の形状に成形を行うと、プレス軸方向の圧縮
応力が、ガラス/成形型界面において、せん断または引
張応力に変換され、離型が生じ易くなる効果が得られ
る。さらに、レンズ外縁部を成形時に自由表面とすれ
ば、プレス軸方向の外力を、レンズのコバ部に対して負
荷することができ、離型が促進される。
As described above, according to the present invention, when the optical element is molded into the specified shape, the compressive stress in the press axis direction is converted into shear or tensile stress at the glass / mold interface. The effect that the mold release easily occurs is obtained. Further, when the outer edge of the lens is a free surface during molding, an external force in the press axis direction can be applied to the edge of the lens, and the mold release is promoted.

【0040】このようにして、光学有効径の領域外が離
型すると、光学有効径内の領域についての離型が生じ易
くなり、レンズのワレ防止に効果がある。また、離型が
より高い温度で生じるので、成形全体のサイクルタイム
が短縮でき、よって、型耐久も向上し、安価で、高精度
な光学素子が大量に製造できるようになる。
As described above, when the area outside the optically effective diameter is released from the mold, the area within the optically effective diameter is easily released, which is effective in preventing the lens from cracking. In addition, since the mold release occurs at a higher temperature, the cycle time of the entire molding can be shortened, so that the mold durability can be improved, and inexpensive, high-precision optical elements can be mass-produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態で用いた成形型の構
造を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a structure of a molding die used in a first embodiment of the present invention.

【図2】同じく、本発明に該当した両凸レンズ形状の例
を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing an example of a biconvex lens shape corresponding to the present invention.

【図3】同じく、第1の実施の形態で用いたレンズ形状
に平坦部分を加えた状態を図解した、両凸レンズ形状を
示す図である。
FIG. 3 is a diagram illustrating a biconvex lens shape, similarly illustrating a state where a flat portion is added to the lens shape used in the first embodiment.

【図4】本発明の第2の実施の形態における凸メニスカ
スレンズ形状を示す縦断面図である。
FIG. 4 is a longitudinal sectional view showing a convex meniscus lens shape according to a second embodiment of the present invention.

【図5】同じく、その成形の工程図である。FIG. 5 is a process chart of the molding.

【図6】本発明の第3の実施の形態における凸メニスカ
スレンズ形状を示す縦断面図である。
FIG. 6 is a longitudinal sectional view showing a convex meniscus lens shape according to a third embodiment of the present invention.

【図7】従来の問題点を含む余剰ガラス部分を有する凸
レンズ形状の概略縦断面図である。
FIG. 7 is a schematic longitudinal sectional view of a convex lens shape having a surplus glass portion including a conventional problem.

【符号の説明】[Explanation of symbols]

1 上型部材 2 下型部材 3 プレス成形レンズ(両凸形状) 4 胴型 5 抵抗発熱体 6 上型部材 7 下型部材 8 プレス成形レンズ(両凸形状) 9 光学有効径の領域内の曲面を設定する曲線の延長線 10 本発明に該当する転写面形状 11 自由表面部 12 プレス軸に垂直な平坦部分 13 図2のレンズ形状のコバ部 14 図2の形状と図3の形状とで異なる領域 15 プレス成形レンズ(凸メニスカス形状) 16 本発明に該当する転写面形状 17 自由表面部 18 プレスレンズ(凸メニスカス形状) 19 上成形型の転写面 20 下成形型の転写面 21 本発明に該当する転写面形状例 22 上成形型 23 下成形型 24 プレスレンズ(両凸形状) REFERENCE SIGNS LIST 1 upper mold member 2 lower mold member 3 press-molded lens (biconvex) 4 body mold 5 resistance heating element 6 upper mold member 7 lower mold member 8 press-molded lens (biconvex) 9 curved surface in optical effective diameter area 10 A transfer surface shape corresponding to the present invention 11 Free surface portion 12 Flat portion perpendicular to the press axis 13 Edge portion of the lens shape of FIG. 2 14 Different between the shape of FIG. 2 and the shape of FIG. Area 15 Press-molded lens (convex meniscus shape) 16 Transfer surface shape applicable to the present invention 17 Free surface portion 18 Press lens (convex meniscus shape) 19 Transfer surface of upper mold 20 Transfer surface of lower mold 21 Applicable to the present invention Transfer surface shape example 22 Upper mold 23 Lower mold 24 Press lens (biconvex)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光軸方向に関して対向する球面あるいは
非球面のレンズ面を有する両凸レンズまたは凸メニスカ
スレンズである光学素子において、両レンズ面の内、少
なくとも一方のレンズ面が、その光学有効径の外側の領
域では、光学有効径内の曲面を設定する曲線の延長線か
ら、光軸方向についてレンズ側に外れて、前記光軸と直
交する方向に関する径の増大に伴って、前記延長線で形
成されるよりレンズ肉厚の減少量が大きくなるような被
転写面形状を有し、前記被転写面を、少なくとも所要の
レンズ外径まで形成していることを特徴とする光学素
子。
In an optical element which is a biconvex lens or a convex meniscus lens having a spherical or aspherical lens surface facing in the optical axis direction, at least one of the lens surfaces has an optical effective diameter. In the outer region, the lens is deviated from the extension line of the curve defining the curved surface within the optical effective diameter toward the lens in the optical axis direction, and is formed by the extension line with an increase in the diameter in the direction orthogonal to the optical axis. An optical element having a shape of a transferred surface such that the amount of reduction in lens thickness is larger than required, and wherein the transferred surface is formed to at least a required lens outer diameter.
【請求項2】 レンズの外縁部には、成形時に自由表面
部として形成される部分が存在することを特徴とする請
求項1に記載の光学素子。
2. The optical element according to claim 1, wherein the outer edge of the lens has a portion formed as a free surface portion during molding.
【請求項3】 互いに対向する2個の型部材によって、
光軸方向に関して対向する球面あるいは非球面のレンズ
面を有する両凸レンズまたは凸メニスカスレンズである
光学素子をプレス成形するための成形型において、両レ
ンズ面の内、少なくとも一方のレンズ面が、その光学有
効径の外側の領域では、光学有効径内の曲面を設定する
曲線の延長線から、光軸方向についてレンズ側に外れ
て、前記光軸と直交する方向に関する径の増大に伴っ
て、前記延長線で形成されるよりレンズ肉厚の減少量が
大きくなるような被転写面形状となるように、少なくと
も一方の型部材の成形面に、所定の光学有効径の転写領
域外において、前記被転写面のための転写成形部を、少
なくとも所要のレンズ外径まで形成していることを特徴
とする成形型。
3. The two mold members facing each other,
In a molding die for press-molding an optical element which is a biconvex lens or a convex meniscus lens having a spherical or aspherical lens surface facing in the optical axis direction, at least one of the two lens surfaces has its optical surface. In the region outside the effective diameter, the extension from the extension of the curve that sets the curved surface within the optical effective diameter deviates toward the lens in the optical axis direction, and the extension increases with an increase in the diameter in the direction orthogonal to the optical axis. The transfer surface is formed on a molding surface of at least one of the mold members outside a transfer region having a predetermined effective optical diameter so that the transfer surface shape is such that the amount of reduction in lens thickness is greater than that formed by a line. A molding die, wherein a transfer molding part for a surface is formed at least to a required lens outer diameter.
JP2000136119A 2000-05-09 2000-05-09 Optical element and molding tool for the same Pending JP2001318209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136119A JP2001318209A (en) 2000-05-09 2000-05-09 Optical element and molding tool for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136119A JP2001318209A (en) 2000-05-09 2000-05-09 Optical element and molding tool for the same

Publications (1)

Publication Number Publication Date
JP2001318209A true JP2001318209A (en) 2001-11-16

Family

ID=18644111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136119A Pending JP2001318209A (en) 2000-05-09 2000-05-09 Optical element and molding tool for the same

Country Status (1)

Country Link
JP (1) JP2001318209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022905A (en) * 2005-06-16 2007-02-01 Sony Corp Optical element device manufacturing method, optical element device and forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022905A (en) * 2005-06-16 2007-02-01 Sony Corp Optical element device manufacturing method, optical element device and forming apparatus

Similar Documents

Publication Publication Date Title
US10252930B2 (en) Bent glass plate for optical use and fabrication method thereof
JP5458822B2 (en) Optical element molding die and optical element molding method
US7746574B2 (en) Bonded optical element
JP2001318209A (en) Optical element and molding tool for the same
US5601627A (en) Method for molding optical element
JP4559784B2 (en) Optical element manufacturing method
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
JP4426910B2 (en) Mold press mold, optical element manufacturing method, and mold press lens
JP4744352B2 (en) Method for manufacturing composite optical element
JP4477518B2 (en) Method and apparatus for manufacturing optical element
US10077202B2 (en) Method for manufacturing optical element
JP4472568B2 (en) Mold, mold manufacturing method and optical element molding method
JP2004307330A (en) Method of manufacturing lens
JP2002338272A (en) Manufacturing aperture and manufacturing method for optical element
JP2003063832A (en) Mold for forming optical element
JP2533889B2 (en) Optical element manufacturing method
JP3939157B2 (en) Optical element molding method
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JPH04317427A (en) Spherical formed lens
JP5100790B2 (en) Optical element manufacturing method
JP4751818B2 (en) Mold for forming and manufacturing method thereof
JP3131584B2 (en) Method for molding optical element and optical element
JP2935903B2 (en) Optical element molding method
JP3938107B2 (en) Hybrid mold
JPH0524860A (en) Forming of optical element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705