JP2001318042A - Two-dimensional distribution measuring device of surface tension and viscosity coefficient of liquid - Google Patents

Two-dimensional distribution measuring device of surface tension and viscosity coefficient of liquid

Info

Publication number
JP2001318042A
JP2001318042A JP2000135595A JP2000135595A JP2001318042A JP 2001318042 A JP2001318042 A JP 2001318042A JP 2000135595 A JP2000135595 A JP 2000135595A JP 2000135595 A JP2000135595 A JP 2000135595A JP 2001318042 A JP2001318042 A JP 2001318042A
Authority
JP
Japan
Prior art keywords
light
liquid
incident
scattered
liquid surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000135595A
Other languages
Japanese (ja)
Inventor
Yuji Nagasaka
雄次 長坂
Takahiro Hayakawa
高弘 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2000135595A priority Critical patent/JP2001318042A/en
Publication of JP2001318042A publication Critical patent/JP2001318042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a two-dimensional distribution of the surface tension and the viscosity coefficient of liquid at high speed by detecting the two-dimensional distribution of Brillouin scattering caused by ripplon of the liquid sample surface. SOLUTION: A light source 21, a dividing means BS for bisecting light emitted therefrom, an incident light deflection means M3 for facing one divided incident light 2 toward the liquid surface 1 at a prescribed incident angle, a reference light deflection means M4 for facing the other reference light 5' toward the same position P on the liquid surface 1 at a different prescribed incident angle, a means M5 for allowing mirror-reflected reference light 5 from the liquid surface 1 and scattered light 4 scattered in the direction to enter a photo detector 22, and the photo detector 22 are fixed on a common substrate 20. The substrate 20 is mounted on a two-dimensional scanning means 13 for mechanically executing two-dimensional scanning within the horizontal plane on a sample stand 11 for loading a sample liquid 30. A light heterodyne signal from the photo detector 22 is inputted into a Fourier transform means 40.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体の表面張力と
粘性率の2次元分布測定装置に関し、特に、リプロンス
キャン技術を応用した表面張力と粘性率の2次元分布測
定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a two-dimensional distribution of surface tension and viscosity of a liquid, and more particularly to an apparatus for measuring two-dimensional distribution of surface tension and viscosity using a repron scan technique.

【0002】[0002]

【従来の技術】表面張力、粘性率あるいは熱伝導率等の
熱物性値(Thermophysical Prope
rties)の計測は、従来は、液体の1点での情報を
求めることによって行っていた。例えば、溶融シリコン
等の高温融体の表面張力は、セラミック板の上に溶融サ
ンプルを滴下し、その静止状態の形状を計測することに
より行っていた(静滴法)。
2. Description of the Related Art Thermophysical properties such as surface tension, viscosity or thermal conductivity are known.
Rties) has conventionally been measured by obtaining information at one point of the liquid. For example, the surface tension of a high-temperature melt such as molten silicon has been measured by dropping a molten sample on a ceramic plate and measuring the shape of the sample in a stationary state (static drop method).

【0003】これに対して、非接触で遠隔的にこれら熱
物性値を計測する技術として、リプロンによるブリリュ
アン散乱を利用する方法が知られている。
On the other hand, as a technique for measuring these thermophysical properties remotely without contact, a method utilizing Brillouin scattering by a ripron is known.

【0004】すなわち、液体の表面は、巨視的には一様
な温度であっても、微視的には熱的なゆらぎが常に存在
するため完全な平面ではなく、微細な変形が生じてい
る。この表面の変形は、熱的に励起されたランダムな表
面波の重ね合わせとして考えることができ、各々の波は
100μm程度の波長と1nm程度の振幅を持ってお
り、さざ波の量子としてリプロンと呼ばれている。図2
(a)に示すように、この液体表面1に入射光2として
レーザ光を照射すると、通常の鏡面反射成分3の周りに
散乱光4が観察される。この散乱光4にはリプロンの周
波数や減衰率の情報が含まれており、これを解析して分
散関係式を用いることにより、液体の表面張力と粘性率
を求めることが可能であることが知られている。
[0004] That is, even if the surface of the liquid is macroscopically uniform, microscopically, thermal fluctuations are always present, so that the surface of the liquid is not a perfect plane but is slightly deformed. . This surface deformation can be considered as a superposition of thermally excited random surface waves. Each wave has a wavelength of about 100 μm and an amplitude of about 1 nm, and is called a ripron as a ripple quantum. Have been. FIG.
As shown in (a), when the laser light is irradiated on the liquid surface 1 as the incident light 2, scattered light 4 is observed around a normal specular reflection component 3. The scattered light 4 contains information on the frequency and attenuation rate of the ripron, and it is known that it is possible to obtain the surface tension and viscosity of the liquid by analyzing this and using the dispersion relational expression. Have been.

【0005】従来、リプロンによる反射側へ出る散乱光
の周波数分布を光ヘテロダイン法により求め、その中心
周波数と半値幅とリプロンの波数とを求めることによ
り、液体サンプルの表面張力と粘性率を求める装置が提
案されている(日本機械学会論文集(B編)59巻56
0号(1993−4)pp.185〜191)。この場
合、ヘテロダイン検出のための参照光として、入射光か
ら回折格子により回折された回折光を用い、かつ、レン
ズにより再度その回折光が液面で入射光位置に集まるよ
うにして、リプロンの波数を求めやすくしている。
Conventionally, an apparatus for determining the surface tension and viscosity of a liquid sample by determining the frequency distribution of the scattered light emitted to the reflection side by the ripron by the optical heterodyne method, and determining the center frequency, half width and wavenumber of the ripron. (Transactions of the Japan Society of Mechanical Engineers (B) 59-56)
No. 0 (1993-4) pp. 185-191). In this case, as the reference light for heterodyne detection, the diffracted light diffracted from the incident light by the diffraction grating is used, and the diffracted light is collected again at the incident light position on the liquid surface by the lens so that the wave number of the replon is obtained. Is easy to seek.

【0006】また、透明試料のリプロンによる透過側へ
出る散乱光の周波数分布を光ヘテロダイン法により求
め、その中心周波数と半値幅とリプロンの波数とを求め
ることにより、同様に透明液体サンプルの表面張力と粘
性率を求める装置が提案されている(Rev.Sci.
Instrum.Vol.62,No.5,pp.11
92〜1195;Jpn.J.Appl.Phys.V
ol.36(1997),pp.2951〜295
4)。これらの場合、ヘテロダイン検出のための参照光
として入射光から分割された光を用い、反射鏡により再
度その参照光が液面で入射光位置に一致するようにして
いる。
Further, the frequency distribution of the scattered light emitted to the transmission side of the transparent sample by the replon is determined by the optical heterodyne method, and the center frequency, half width and wave number of the ripron are determined, thereby similarly obtaining the surface tension of the transparent liquid sample. And a device for determining the viscosity have been proposed (Rev. Sci.
Instrum. Vol. 62, No. 5, pp. 11
92-1195; Jpn. J. Appl. Phys. V
ol. 36 (1997), p. 2951-295
4). In these cases, light split from incident light is used as reference light for heterodyne detection, and the reference light is again adjusted to the incident light position on the liquid surface by a reflecting mirror.

【0007】[0007]

【発明が解決しようとする課題】上記の従来提案された
いる静滴法においても、リプロンによるブリリュアン散
乱を利用する方法においても、基本的には液体表面の1
点(あるいは、全体の平均値)の測定であり、表面張力
や粘性率等の熱物性値の2次元分布測定は、現在までの
ところ全く行われておらず、また、そのニーズもなかっ
たと言って過言でない。
In both the above-mentioned conventionally proposed static droplet method and the method utilizing Brillouin scattering by the ripron, basically, the surface of the liquid surface is reduced to one.
It is a measurement of points (or the average value of the whole), and it has been said that no two-dimensional distribution measurement of thermophysical properties such as surface tension and viscosity has been performed so far, and that there was no need for it. Not too much.

【0008】しかしながら、シリコン単結晶製造の高度
化に代表されるようなより高付加価値のモノづくりにお
いては、温度や圧力だけでは精緻なプロセス制御ができ
ない場合が出てくる。例えば、表面張力は温度だけでな
く組成によっても大きく変化するため、組成の不均一性
をモニターしたり、逆に、不均一性を積極的に付加する
ためには、表面張力や粘性率等の熱物性値の2次元分布
測定を高速に計測することが必要になる。
However, in high value-added manufacturing, as represented by the advancement of silicon single crystal manufacturing, there are cases where precise process control cannot be performed only by temperature and pressure. For example, since the surface tension varies greatly not only with the temperature but also with the composition, in order to monitor the non-uniformity of the composition or, conversely, in order to positively add the non-uniformity, the surface tension, viscosity, etc. It is necessary to measure the two-dimensional distribution of thermophysical property values at high speed.

【0009】本発明は従来技術のこのような状況に鑑み
てなされたものであり、その目的は、液体試料表面のリ
プロンによるブリリュアン散乱の2次元的分布を検出す
ることにより、液体の表面張力と粘性率の2次元分布を
高速に測定することができる装置を提供することであ
る。
The present invention has been made in view of such a situation of the prior art, and an object of the present invention is to detect the two-dimensional distribution of Brillouin scattering due to riprons on the surface of a liquid sample to thereby reduce the surface tension of the liquid. An object of the present invention is to provide a device capable of measuring a two-dimensional distribution of viscosity at high speed.

【0010】[0010]

【課題を解決するための手段】上記目的を達成する本発
明の液体の表面張力と粘性率の2次元分布測定装置は、
所定波長の光を2分して一方を入射光、他方を参照光と
して液体表面の同じ位置に相互に異なる入射角で入射さ
せ、液体表面から鏡面反射された参照光とその方向に散
乱された入射光の散乱光とを干渉させて光ヘテロダイン
信号を検出し、その光ヘテロダイン信号をフーリエ変換
して得られたパワースペクトルから液体面のリプロンの
周波数と減衰率とを求め、また、入射光の入射角と散乱
光の散乱角と入射光の波数とからリプロンの波数を求
め、求められたリプロンの周波数と減衰率と入射光の波
数とから液体の表面張力と粘性率を測定する装置におい
て、前記所定波長の光を発する光源と、前記所定波長の
光を2分する光線分割手段と、分割された一方の入射光
を所定の入射角で液体表面に向ける入射光偏向手段と、
分割された他方の参照光を入射光の入射角とは異なる所
定の入射角で液体表面の同じ位置に向ける参照光偏向手
段と、液体表面から鏡面反射された参照光とその方向に
散乱された入射光の散乱光とを光検出器に選択的に入射
させる手段と、光検出器とが共通の基板上に固定されて
おり、前記基板は、試料液体を載置する試料台上の水平
面内で機械的に2次元走査する2次元走査手段に取り付
けられており、前記光検出器からの光ヘテロダイン信号
がフーリエ変換手段に入力されるように構成されている
ことを特徴とするものである。
The two-dimensional distribution measuring device for the surface tension and the viscosity of the liquid according to the present invention, which achieves the above object, comprises:
The light having a predetermined wavelength is divided into two parts, one of which is incident light and the other is used as reference light, and is incident on the same position on the liquid surface at mutually different incident angles. The reference light is specularly reflected from the liquid surface and scattered in that direction. The optical heterodyne signal is detected by interfering with the scattered light of the incident light, and the frequency and the attenuation rate of the replon on the liquid surface are obtained from the power spectrum obtained by Fourier transforming the optical heterodyne signal. In a device for measuring the surface number and viscosity of the liquid from the angle of incidence and the scattering angle of the scattered light and the wave number of the incident light, the wave number of the ripron is obtained, and the frequency and the attenuation rate of the obtained ripron and the wave number of the incident light are obtained. A light source that emits the light of the predetermined wavelength, a light beam splitting unit that divides the light of the predetermined wavelength into two, and an incident light deflecting unit that directs one of the divided incident lights toward the liquid surface at a predetermined incident angle,
Reference light deflecting means for directing the other divided reference light to the same position on the liquid surface at a predetermined incident angle different from the incident angle of the incident light, and the reference light mirror-reflected from the liquid surface and scattered in the direction. The means for selectively causing the scattered light of the incident light to enter the photodetector, and the photodetector are fixed on a common substrate, and the substrate is located in a horizontal plane on a sample stage on which the sample liquid is placed. Wherein the optical heterodyne signal from the photodetector is input to a Fourier transforming means.

【0011】この場合に、入射光偏向手段と参照光偏向
手段とが角度調節可能であることが望ましい。
In this case, it is desirable that the angles of the incident light deflecting means and the reference light deflecting means can be adjusted.

【0012】なお、本発明の測定装置は、試料液体とし
て入射光に対して不透明な液体、例えば高温融体に適用
するのに適したものである。
The measuring apparatus of the present invention is suitable for being applied to a liquid opaque to incident light as a sample liquid, for example, a high-temperature melt.

【0013】本発明の液体の表面張力と粘性率の2次元
分布測定装置においては、上記のように、所定波長の光
を発する光源と、その所定波長の光を2分する光線分割
手段と、分割された一方の入射光を所定の入射角で液体
表面に向ける入射光偏向手段と、分割された他方の参照
光を入射光の入射角とは異なる所定の入射角で液体表面
の同じ位置に向ける参照光偏向手段と、液体表面から鏡
面反射された参照光とその方向に散乱された入射光の散
乱光とを光検出器に選択的に入射させる手段と、光検出
器とが共通の基板上に固定されており、その基板は、試
料液体を載置する試料台上の水平面内で機械的に2次元
走査する2次元走査手段に取り付けられており、光検出
器からの光ヘテロダイン信号がフーリエ変換手段に入力
されるように構成されているので、今までニーズもなく
試みられることもなかった試料液体の表面張力と粘性率
の2次元分布測定が軽量で簡単な装置により可能にな
る。本発明の装置は、例えば、実際のチョクラルスキー
法の炉に設置することにより、チョクラルスキー法にお
ける溶融シリコン等の不透明で高温の融体の表面張力分
布を結晶成長の段階で測定することができ、均一な結晶
を得るのに資することができる。
In the apparatus for measuring the two-dimensional distribution of the surface tension and the viscosity of a liquid according to the present invention, as described above, a light source for emitting light of a predetermined wavelength, a beam splitting means for dividing the light of the predetermined wavelength into two, Incident light deflecting means for directing one of the divided incident lights toward the liquid surface at a predetermined incident angle, and the other divided reference light at the same position on the liquid surface at a predetermined incident angle different from the incident angle of the incident light. A reference light deflecting unit for directing, a unit for selectively causing the reference light specularly reflected from the liquid surface and the scattered light of the incident light scattered in that direction to the photodetector, and a photodetector common substrate The substrate is attached to a two-dimensional scanning unit that mechanically performs two-dimensional scanning in a horizontal plane on a sample stage on which a sample liquid is placed, and an optical heterodyne signal from a photodetector is provided. Configured to be input to Fourier transform means Since the two-dimensional distribution measurement of surface tension and viscosity of the sample liquid also did the need also attempted without becomes possible by a simple device lightweight ever. The apparatus of the present invention is, for example, installed in an actual Czochralski method furnace to measure the surface tension distribution of an opaque and high-temperature melt such as molten silicon in the Czochralski method at the stage of crystal growth. And can contribute to obtaining uniform crystals.

【0014】[0014]

【発明の実施の形態】以下、本発明の液体の表面張力と
粘性率の2次元分布測定装置について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an apparatus for measuring a two-dimensional distribution of surface tension and viscosity of a liquid according to the present invention will be described.

【0015】実施例の説明の前に本発明の測定原理を説
明する。図2(a)に示すように、液体表面1に入射光
2としてレーザ光を照射すると、通常の鏡面反射成分3
の周りに散乱光4が観察される。前記したように、この
散乱光4にはリプロンの周波数や減衰率の情報が含まれ
ており、これを解析して表面波の分散関係式を用いるこ
とにより、液体の表面張力と粘性率を求めることが可能
である。
Before describing the embodiments, the measurement principle of the present invention will be described. As shown in FIG. 2A, when the liquid surface 1 is irradiated with a laser beam as the incident light 2, a normal specular reflection component 3
Scattered light 4 is observed around. As described above, the scattered light 4 contains information on the frequency and the attenuation rate of the ripron, and the scattered light 4 is analyzed to obtain the surface tension and the viscosity of the liquid by using the dispersion relational expression of the surface wave. It is possible.

【0016】リプロンの進行方向をx軸にとると、リプ
ロンの液面の変位ζは、時間をtとすると、以下のよう
に表すことができる。
If the traveling direction of the ripron is taken on the x-axis, the displacement ζ of the liquid surface of the ripron can be expressed as follows, where t is the time.

【0017】 ζ(x,t)=ζ0 cos(kx)・exp(αt) ・・・(1) ここで、ζ0 は初期振幅、kはリプロンの波数、αは次
式で表される複素角周波数である。
Ζ (x, t) = ζ 0 cos (kx) · exp (αt) (1) where ζ 0 is the initial amplitude, k is the wave number of the repron, and α is represented by the following equation. Complex angular frequency.

【0018】 α=−iω0 −Γ ・・・(2) 上式(2)で、ω0 ,Γ>0は、それぞれリプロンの角
周波数と減衰率である。このkとαの関係(分散関係
式)は、Navier−Stokesの式と連続の式を
液体表面に適用し、(1)波長に比べて振幅が十分に小
さい、(2)液深くでは運動が生じていない、(3)表
面の剪断応力はない、(4)波長が短く重力の項が無視
できる、という条件の下でLambとLevichによ
り以下のように導かれている。
Α = −iω 0 −Γ (2) In the above equation (2), ω 0 and Γ> 0 are the angular frequency and the attenuation rate of the repron, respectively. The relation between k and α (dispersion relation equation) is obtained by applying the Navier-Stokes equation and the equation of continuity to the liquid surface, (1) the amplitude is sufficiently smaller than the wavelength, and (2) the motion is deep in the liquid. It is derived as follows by Lamb and Levich under the condition that there is no generation, (3) no surface shear stress, and (4) the wavelength is short and the gravitational term is negligible.

【0019】 ω0 2 =(σ/ρ)k3 ・・・(3) Γ=2(η/ρ)k2 ・・・(4) ここで、σは表面張力、ρは液体の密度、ηは粘性率で
ある。
Ω 0 2 = (σ / ρ) k 3 (3) Γ = 2 (η / ρ) k 2 (4) where σ is the surface tension, ρ is the density of the liquid, η is the viscosity.

【0020】したがって、リプロンの角周波数ω0 、減
衰率Γ、及び、波数kを測定し、液体の密度ρを既知と
すれば、表面張力σと粘性率ηを求めることができる。
Therefore, the surface tension σ and the viscosity η can be obtained by measuring the angular frequency ω 0 , the attenuation rate Γ, and the wave number k of the ripron and assuming that the density ρ of the liquid is known.

【0021】まず、リプロンの角周波数ω0 、減衰率Γ
を求めるために光ヘテロダイン法による散乱光の検知を
行う。図2(a)に示したように、液体表面1に入射光
2としてレーザ光を照射すると、わずかであるが鏡面反
射成分3の周りに散乱光4が生じる。これはリプロンが
振幅型の回折格子の作用をするためであり、散乱光4は
リプロンのスペクトルに応じた周波数シフトを受け(ブ
リリュアン散乱)、リプロンの波長に応じた散乱角で散
乱される。この周波数シフトと散乱角を求めれば、リプ
ロンのスペクトルと波長を知ることができるが、リプロ
ンによる散乱光4は微弱である上に、光の周波数に比べ
てシフト量(kHz〜MHz)はわずかなため、直接検
知することは難しい。
First, the angular frequency ω 0 of the ripron and the attenuation rate Γ
Scattered light is detected by the optical heterodyne method in order to obtain As shown in FIG. 2A, when a laser light is irradiated on the liquid surface 1 as the incident light 2, scattered light 4 is slightly generated around the specular reflection component 3. This is because the ripron acts as an amplitude-type diffraction grating, and the scattered light 4 undergoes a frequency shift according to the spectrum of the ripron (Brillouin scattering) and is scattered at a scattering angle corresponding to the wavelength of the ripron. If the frequency shift and the scattering angle are determined, the spectrum and wavelength of the ripron can be known. However, the scattered light 4 due to the ripron is weak and the shift amount (kHz to MHz) is small compared to the frequency of the light. Therefore, it is difficult to detect directly.

【0022】そこで、この散乱光4の検知法として、信
号強度を強め、低周波での解析が可能となる光ヘテロダ
イン法を用いる。光ヘテロダイン法は、散乱光4と基準
となる他の光である参照光5との周波数混合を行い、こ
れにより発生する光ビート信号から散乱光4の情報を知
る技術である。散乱光4に関する添字をS、参照光5に
関する添字をRとすると、散乱光4と参照光5の電場を
それぞれ、 ES (t)=AS exp{i(ΩS t+φS )} ・・・(5) ER (t)=AR exp{i(ΩR t+φR )} ・・・(6) で表すと、これらを干渉させた場合の光の強度Iは、 I(t)=|ES (t)+ER (t)|2 =AS 2 +AR 2 +2AS R cos{(ΩS −ΩR )t+(φS −φR )} ・・・(7) となる。ここで、Ωは光の周波数、φは光の位相、Aは
振幅である。
Therefore, as a method of detecting the scattered light 4, an optical heterodyne method is used, which can increase the signal intensity and enables analysis at a low frequency. The optical heterodyne method is a technique for performing frequency mixing of the scattered light 4 and a reference light 5 which is another reference light, and knowing information of the scattered light 4 from an optical beat signal generated thereby. Subscript relates to the scattered light 4 S, when the subscript associated with the reference beam 5 is R, respectively scattered light 4 of the reference beam 5 an electrical field, E S (t) = A S exp {i (Ω S t + φ S)} ·· - (5) is represented by E R (t) = a R exp {i (Ω R t + φ R)} ··· (6), the light intensity I in the case of causing interference thereof, I (t) = | E S (t) + E R (t) | 2 = A S 2 + A R 2 + 2A S A R cos {(Ω S −Ω R ) t + (φ S −φ R )} (7) . Here, Ω is the frequency of light, φ is the phase of light, and A is the amplitude.

【0023】式(7)の第3項が振幅2AS R 、角周
波数(ΩS −ΩR )で振動する光ヘテロダイン信号とな
る。したがって、参照光5に散乱光4よりも強い光を用
いれば、散乱光4の変動成分を増幅することが可能であ
る。
[0023] the optical heterodyne signal third term is vibrated at an amplitude 2A S A R, the angular frequency (Omega S - [omega] R) of the formula (7). Therefore, if light that is stronger than the scattered light 4 is used as the reference light 5, it is possible to amplify the fluctuation component of the scattered light 4.

【0024】ところで、このビート信号の角周波数(Ω
S −ΩR )はリプロンの角周波数ω 0 と等しい。この点
を説明する。図3に示すように、入射光2が、入射角ψ
で、液面1に速度vで伝搬しているリプロン10に入射
した場合、ドップラー効果により周波数シフトし、 f’=(c−vsinψ)/c×f ・・・(8) となる。ここで、fは入射光2の周波数である。
Incidentally, the angular frequency (Ω) of the beat signal
S−ΩR) Is the angular frequency of the apron ω 0Is equal to This point
Will be described. As shown in FIG. 3, the incident light 2 has an incident angle ψ
Incident on the ripron 10 propagating at the velocity v on the liquid surface 1
In this case, the frequency is shifted by the Doppler effect, and f ′ = (c−vsinψ) / c × f (8) Here, f is the frequency of the incident light 2.

【0025】この周波数f’の光はリプロン10でブリ
リュアン散乱されるが、今度は液面1が光源であると考
えると、固定された光検出器が受ける周波数はさらなる
ドップラーシフトにより、 f”=c/{c−vsin(ψ+θ)}×f’ =(c−vsinψ)/{c−vsin(ψ+θ)}×f ・・・(9) となる。ここで、θは入射光2の鏡面反射成分3に対し
て参照光5がなす角度、あるいは、入射光2に対して液
面に入射する前の参照光5’がなす角度である。
The light of this frequency f 'is Brillouin scattered by the ripron 10, but now assuming that the liquid surface 1 is a light source, the frequency received by the fixed photodetector is f ″ = c / {c−vsin (ψ + θ)} × f ′ = (c−vsinψ) / {c−vsin (ψ + θ)} × f (9) where θ is the specular reflection of the incident light 2 This is the angle formed by the reference light 5 with respect to the component 3 or the angle formed by the reference light 5 ′ before entering the liquid surface with respect to the incident light 2.

【0026】この周波数f”の散乱光4と、周波数fの
参照光5のビート信号の周波数Fは、 F=|f”−f| =|(c−vsinψ)/{c−vsin(ψ+θ)}−1|×f =|{−vsinψ+vsin(ψ+θ)}/ {c−vsin(ψ+θ)}|×f ・・・(10) となる。c≫v、λ・f=c(λは光の波長)より、 F=v/λ×|sinψ−sin(ψ+θ)| ・・・(11) となる。
The frequency F of the beat signal of the scattered light 4 having the frequency f ″ and the beat signal of the reference light 5 having the frequency f is as follows: F = | f ″ −f | = | (c−vsinψ) / {c−vsin (ψ + θ) {-1 | × f = | {−vsin} + vsin (ψ + θ)} / {c−vsin (ψ + θ)} | × f (10) From c≫v, λ · f = c (where λ is the wavelength of light), F = v / λ × | sins−sin (ψ + θ) | (11)

【0027】一方、図4に示すように、リプロン10の
波長λ0 を回折格子の格子間隔と考えると、入射光2が
入射角ψの斜め入射の場合、散乱光4は、回折の式か
ら、 λ=|λ0 sinψ−λ0 sin(ψ+θ)| ・・・(12) を満たす。リプロン10は速度vで伝搬している波なの
で、 λ0 ・f0 =v ・・・(13) である。式(12)と(13)より、 f0 =v/λ×|sinψ−sin(ψ+θ)| ・・・(14) が得られる。式(14)のf0 (リプロンの周波数)と
式(11)のF(ビート信号の周波数)が一致すること
から、ビート信号の角周波数(ΩS −ΩR )はリプロン
の角周波数ω0 と等しいことが分かる。
On the other hand, as shown in FIG. 4, when the wavelength λ 0 of the ripron 10 is considered as the grating interval of the diffraction grating, when the incident light 2 is obliquely incident at the incident angle ψ, the scattered light 4 , Λ = | λ 0 sinψ−λ 0 sin (ψ + θ) | (12) Since the replon 10 is a wave propagating at the velocity v, λ 0 · f 0 = v (13) From Expressions (12) and (13), f 0 = v / λ × | sinψ−sin (ψ + θ) | (14) is obtained. Since f 0 (frequency of the ripron) in the equation (14) matches F (frequency of the beat signal) in the equation (11), the angular frequency (Ω S −Ω R ) of the beat signal is equal to the angular frequency ω 0 of the replon. It turns out that it is equal to.

【0028】さて、上記のような光ヘテロダイン信号を
フーリエ変換して一定回以上の平均を取ると、リプロン
10の次式のようなパワースペクトルP(ω)が求めら
れる。
When the above-mentioned optical heterodyne signal is Fourier-transformed and averaged over a certain number of times, a power spectrum P (ω) of the following formula of the repron 10 is obtained.

【0029】 P(ω)=Γ/{(ω−ω0 2 +Γ2 } ・・・(15) これはロレンツ分布と呼ばれるもので、図2(b)のよ
うな中心角周波数ω0 、半値幅2Γを持つスペクトルを
示す。
P (ω) = Γ / {(ω−ω 0 ) 2 + { 2 } (15) This is called a Lorentz distribution, and a central angular frequency ω 0 , as shown in FIG. 2 shows a spectrum having a half width of 2 °.

【0030】したがって、液体表面1からの散乱光4の
スペクトルを解析することにより、式(3)、(4)の
波数k以外の、リプロンの角周波数ω0 と減衰率Γを求
めることができる。
Therefore, by analyzing the spectrum of the scattered light 4 from the liquid surface 1, the angular frequency ω 0 of the ripron and the attenuation rate の other than the wave number k in the equations (3) and (4) can be obtained. .

【0031】次に、リプロンの波数kの求め方を説明す
る。図3において、液体表面1で入射光2のフォトンが
リプロン10と弾性衝突するものと考えている。波数と
散乱角の関係について考える。波数ベクトルKinの入射
光2が入射角ψで入射し、この光が波数ベクトルkのリ
プロン10により散乱角θで散乱され、波数ベクトルK
scの散乱光4になったと考える。ここで、液面1に沿う
たx軸方向の運動量の保存を考える。Kin、Kscのx軸
成分をそれぞれKin-x、Ksc-xとすると、それぞれの運
動量は波数とプランク定数により、hKin-x、hk、h
sc-xと表される。これより、運動量の保存は次のよう
に表される。
Next, a method of obtaining the wave number k of the replon will be described. In FIG. 3, it is considered that the photons of the incident light 2 elastically collide with the ripron 10 on the liquid surface 1. Consider the relationship between wave number and scattering angle. The incident light 2 of the wave vector K in is incident at an incident angle 、, and this light is scattered by the replon 10 of the wave vector k at the scattering angle θ, and the wave vector K in
It is considered that the scattered light 4 of the sc has been reached. Here, storage of momentum in the x-axis direction along the liquid surface 1 is considered. Assuming that the x-axis components of K in and K sc are K in-x and K sc-x , respectively, the respective momentums are hK in-x , hk, h by the wave number and Planck's constant.
Expressed as K sc-x . From this, conservation of momentum is expressed as follows.

【0032】 hKin-x+hk=hKsc-x ・・・(16) ∴ Kin-x+k=Ksc-x ・・・(17) 式(17)をkについて解くと、 k2 =Kin-x 2 −2Kin-xsc-x+Ksc-x 2 =Kin 2 sin2 ψ+Ksc 2 sin2 (ψ+θ) −2Kinscsinψ・sin(ψ+θ) ・・・(18) ここで、kはKin、Kscに比べて非常に小さいので、K
in≒Kscとすると、式(18)は次式のようになる。
HK in-x + hk = hK sc-x (16) ∴K in-x + k = K sc-x (17) When equation (17) is solved for k, k 2 = K in-x 2 -2K in-x K sc-x + K sc-x 2 = K in 2 sin 2 ψ + K sc 2 sin 2 (ψ + θ) -2K in K sc sinψ · sin (ψ + θ) (18) here in, because k is K in, very small compared to the K sc, K
If in inK sc , equation (18) becomes the following equation.

【0033】 k=Kin|sinψ−sin(ψ+θ)| ・・・(19) この式から分かるように、リプロン10の波数kは、入
射光2の波数ベクトルK in、入射角ψ、散乱角θから求
めることができる。
K = Kin| Sinψ−sin (ψ + θ) | (19) As can be seen from this equation, the wave number k of the
Wave number vector K of light 2 in, Incident angle ψ, scattering angle θ
Can be

【0034】また、 k=2π/λ0 ・・・(20) であるから、これより、 λ0 =λ/|sinψ−sin(ψ+θ)| ・・・(21) と表すことができ、この式(21)に従ってリプロン1
0の波長λ0 (波数k)を決定することができる。
Since k = 2π / λ 0 (20), it can be expressed as follows: λ 0 = λ / | sinθ−sin (ψ + θ) | (21) Riplon 1 according to equation (21)
The wavelength λ 0 (wave number k) of 0 can be determined.

【0035】さて、以上のような測定原理を実施するた
めの本発明による液体の表面張力と粘性率の2次元分布
測定装置の実施例について説明する。図1に示すよう
に、本発明の測定装置は、例えば坩堝31中で溶融して
いる溶融シリカのような測定光に対して不透明な液体サ
ンプル30を載置する試料台11と、その試料台11か
ら垂直方向に起立している壁部材12と、その壁部材1
2の頂辺に設けた水平なレール14を介して紙面に垂直
なY軸方向へ移動自在に取り付けられている梁部材13
と、梁部材13に対して紙面内の水平なX軸方向へ移動
自在に取り付けられた基板20とを含み、この基板20
の垂直な面上には測定系の光学系と光源及び光検出器が
固定されている。
Now, an embodiment of the apparatus for measuring the two-dimensional distribution of surface tension and viscosity of a liquid according to the present invention for implementing the above-described measurement principle will be described. As shown in FIG. 1, a measuring apparatus according to the present invention includes a sample table 11 on which a liquid sample 30 opaque to measurement light such as fused silica melted in a crucible 31, 11, a wall member 12 standing vertically from the wall member 1, and the wall member 1
2 is a beam member 13 movably attached via a horizontal rail 14 provided on the top side of FIG.
And a substrate 20 movably attached to the beam member 13 in the horizontal X-axis direction in the plane of the drawing.
The optical system of the measurement system, the light source, and the photodetector are fixed on the vertical plane.

【0036】基板20上には、光源としての例えばYA
Gレーザ21が取り付けられており、その光路を折り曲
げるミラーM1と、ミラーM1で折り曲げられた光路中
にビームスプリッタープリズムBSが取り付けられてお
り、そのビームスプリッタープリズムBSで反射された
光路を折り曲げるミラーM2と、ミラーM2で折り曲げ
られた光路中で角度調節自在になっているミラーM3と
が基板20上に取り付けられていて、図2(a)の入射
光2の光路を形成している。一方、ビームスプリッター
プリズムBSを透過した光路中には角度調節自在のミラ
ーM4が基板20上に取り付けられていて、図2(a)
の参照光5’の光路を形成している。さらに、液体サン
プル30の液面1で正反射された参照光5とその方向に
進む散乱光4とを取り込むための光路を形成する角度調
節自在のミラーM5が基板20上に取り付けられてお
り、その光路中にフォトマルチプライヤー等の光検出器
22が取り付けられている。そして、これら角度調節自
在のミラーM3、M4、M5は、入射光2の液面1に対
する入射角ψと、入射光2が液面1で鏡面反射された成
分3に対して液面1で正反射された参照光5がなす角度
θとが所定の値に精密に設定できるように構成されてい
る。
On the substrate 20, for example, YA as a light source
A G laser 21 is mounted, a mirror M1 for bending the optical path, and a mirror M2 for mounting a beam splitter prism BS in the optical path bent by the mirror M1, and bending the optical path reflected by the beam splitter prism BS. A mirror M3 whose angle can be freely adjusted in the optical path bent by the mirror M2 is mounted on the substrate 20, and forms an optical path of the incident light 2 in FIG. 2A. On the other hand, a mirror M4 whose angle can be adjusted is mounted on the substrate 20 in the optical path that has passed through the beam splitter prism BS.
The optical path of the reference light 5 ′ is formed. Further, an angle-adjustable mirror M5 that forms an optical path for taking in the reference light 5 specularly reflected on the liquid surface 1 of the liquid sample 30 and the scattered light 4 traveling in that direction is mounted on the substrate 20. A photodetector 22 such as a photomultiplier is attached in the optical path. The angle-adjustable mirrors M3, M4, and M5 are provided at the incident angle ψ of the incident light 2 with respect to the liquid surface 1 and at the liquid surface 1 with respect to the component 3 at which the incident light 2 is specularly reflected at the liquid surface 1. The angle θ formed by the reflected reference light 5 can be precisely set to a predetermined value.

【0037】そして、この測定光学系等が一体に取り付
けられた基板20は、梁部材13に沿って水平なX軸方
向へ不図示の駆動系により移動され、入射光2と参照光
5’の交点(測定点)Pが液体サンプル30の液面1上
を主走査することになる。一方、梁部材13は、壁部材
12の頂辺に沿って水平なY軸方向へ不図示の駆動系に
よって主走査と同期して移動され、測定点Pが液体サン
プル30の液面1上を副走査することになる。そのため
に、このX軸方向の主走査とY軸方向の副走査とを連携
させて測定点Pを液体サンプル30の液面1上をラスタ
ースキャンさせながら、光検出器22から光ヘテロダイ
ン信号を検出し、その信号をパソコン40に取り込んで
高速フーリエ変換をして一定回以上の平均を取ることに
より、例えば基板20と梁部材13の駆動系から入力さ
れる測定点Pの液面1上の座標(x,y)におけるパワ
ースペクトルP(ω)が順次求まり、式(15)から、
その位置(x,y)のリプロンの角周波数ω0 (x,
y)と減衰率(x,y)が求まる。
Then, the substrate 20 on which the measuring optical system and the like are integrally mounted is moved along the beam member 13 in the horizontal X-axis direction by a drive system (not shown), and the incident light 2 and the reference light 5 ′ are The intersection (measurement point) P performs main scanning on the liquid surface 1 of the liquid sample 30. On the other hand, the beam member 13 is moved in the horizontal Y-axis direction along the top side of the wall member 12 in synchronization with the main scanning by a drive system (not shown), and the measurement point P moves on the liquid surface 1 of the liquid sample 30. Sub-scanning will be performed. For this purpose, the main scanning in the X-axis direction and the sub-scanning in the Y-axis direction are coordinated, and the optical heterodyne signal is detected from the photodetector 22 while the measurement point P is raster-scanned on the liquid surface 1 of the liquid sample 30. Then, the signal is taken into the personal computer 40 and subjected to a fast Fourier transform to take an average over a certain number of times, so that, for example, the coordinates of the measurement point P input from the drive system of the substrate 20 and the beam member 13 on the liquid surface 1 The power spectrum P (ω) at (x, y) is sequentially obtained, and from equation (15),
The angular frequency ω 0 (x, y) of the repron at that position (x, y)
y) and the attenuation rate (x, y) are obtained.

【0038】一方、入射光2の波数Kinが決まってお
り、基板20上の光学系等の固定配置から入射光2の入
射角ψと散乱角θが決まっているから、式(19)か
ら、リプロンの波数kが求まる。
On the other hand, it is predetermined wave number K in the incident light 2, since scattering angle and ψ incident angle of the incident light 2 theta is determined from the fixed arrangement of the optical system or the like on the substrate 20, from the equation (19) , The wave number k of the ripron is obtained.

【0039】したがって、式(3)と式(4)から、液
体サンプル30の液面1上の表面張力2次元分布σ
(x,y)と粘性率2次元分布η(x,y)が求められ
ることになる。
Therefore, from the equations (3) and (4), the two-dimensional distribution σ of the surface tension on the liquid surface 1 of the liquid sample 30 is obtained.
(X, y) and the two-dimensional distribution of viscosity η (x, y) are obtained.

【0040】このように、本発明においては、試料液体
30を載置する試料台11上の水平面内で機械的に2次
元走査される基板20上に測定系を構成する光学系と光
源21と光検出器22とが固定されて一体化され、その
一体化された基板20が液面1に沿って2次元移動され
るので、液面1における表面張力と粘性率の2次元分布
を高速に簡単に測定することができる。しかも、測定装
置の構成が簡単で軽量なものとすることができる。
As described above, according to the present invention, the optical system and the light source 21 constitute a measuring system on the substrate 20 which is mechanically two-dimensionally scanned in a horizontal plane on the sample stage 11 on which the sample liquid 30 is placed. The photodetector 22 is fixed and integrated, and the integrated substrate 20 is moved two-dimensionally along the liquid surface 1, so that the two-dimensional distribution of the surface tension and the viscosity at the liquid surface 1 can be rapidly increased. It can be easily measured. In addition, the configuration of the measuring device can be made simple and lightweight.

【0041】以上、本発明の液体の表面張力と粘性率の
2次元分布測定装置を実施例に基づいて説明してきた
が、本発明は上記実施例に限定されず種々の変形が可能
である。
The apparatus for measuring the two-dimensional distribution of the surface tension and the viscosity of the liquid according to the present invention has been described above based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications are possible.

【0042】[0042]

【発明の効果】以上の説明から明らかなように、本発明
の液体の表面張力と粘性率の2次元分布測定装置による
と、所定波長の光を発する光源と、その所定波長の光を
2分する光線分割手段と、分割された一方の入射光を所
定の入射角で液体表面に向ける入射光偏向手段と、分割
された他方の参照光を入射光の入射角とは異なる所定の
入射角で液体表面の同じ位置に向ける参照光偏向手段
と、液体表面から鏡面反射された参照光とその方向に散
乱された入射光の散乱光とを光検出器に選択的に入射さ
せる手段と、光検出器とが共通の基板上に固定されてお
り、その基板は、試料液体を載置する試料台上の水平面
内で機械的に2次元走査する2次元走査手段に取り付け
られており、光検出器からの光ヘテロダイン信号がフー
リエ変換手段に入力されるように構成されているので、
今までニーズもなく試みられることもなかった試料液体
の表面張力と粘性率の2次元分布測定が軽量で簡単な装
置により可能になる。本発明の装置は、例えば、実際の
チョクラルスキー法の炉に設置することにより、チョク
ラルスキー法における溶融シリコン等の不透明で高温の
融体の表面張力分布を結晶成長の段階で測定することが
でき、均一な結晶を得るのに資することができる。
As is apparent from the above description, according to the apparatus for measuring the two-dimensional distribution of the surface tension and the viscosity of a liquid according to the present invention, a light source for emitting light of a predetermined wavelength and a light of the predetermined wavelength for two minutes are provided. Beam splitting means, incident light deflecting means for directing one of the split incident lights toward the liquid surface at a predetermined incident angle, and the other split reference light at a predetermined incident angle different from the incident angle of the incident light. Reference light deflecting means for directing the liquid to the same position on the liquid surface, means for selectively inputting the reference light specularly reflected from the liquid surface and the scattered light of the incident light scattered in the direction to the light detector, and light detection And a detector are fixed on a common substrate, and the substrate is attached to two-dimensional scanning means for mechanically two-dimensionally scanning a horizontal plane on a sample stage on which a sample liquid is placed, and a photodetector. Heterodyne signal from the input to the Fourier transform means Which is configured such that,
The two-dimensional distribution measurement of the surface tension and the viscosity of the sample liquid, which has never been required or attempted, can be performed by a lightweight and simple device. The apparatus of the present invention is, for example, installed in an actual Czochralski method furnace to measure the surface tension distribution of an opaque and high-temperature melt such as molten silicon in the Czochralski method at the stage of crystal growth. And can contribute to obtaining uniform crystals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による液体の表面張力と粘性率の2次元
分布測定装置の1実施例の構成を説明するための図であ
る。
FIG. 1 is a diagram for explaining a configuration of an embodiment of a two-dimensional distribution measuring device for surface tension and viscosity of a liquid according to the present invention.

【図2】本発明の基本原理を説明するための図である。FIG. 2 is a diagram for explaining a basic principle of the present invention.

【図3】本発明の基本原理を説明するための各種パラメ
ータを示す図である。
FIG. 3 is a diagram showing various parameters for explaining a basic principle of the present invention.

【図4】リプロンを回折格子とした場合の散乱光を示す
図である。
FIG. 4 is a diagram showing scattered light when a ripron is used as a diffraction grating.

【符号の説明】[Explanation of symbols]

1…液体表面(液面) 2…入射光 3…入射光の液面での鏡面反射成分 4…散乱光 5…参照光 5’…液面に入射する前の参照光 10…リプロン 11…試料台 12…垂直起立壁部材 13…水平梁部材 14…水平レール 20…基板 21…YAGレーザ 22…光検出器 30…液体サンプル 31…坩堝 40…パソコン BS…ビームスプリッタープリズム M1、M2…光路折り曲げミラー M3、M4、M5…角度調節自在ミラー P…入射光と参照光の交点(測定点) DESCRIPTION OF SYMBOLS 1 ... Liquid surface (liquid surface) 2 ... Incident light 3 ... Specular reflection component of incident light on the liquid surface 4 ... Scattered light 5 ... Reference light 5 '... Reference light before being incident on a liquid surface 10 ... Riplon 11 ... Sample Table 12 Vertical upright wall member 13 Horizontal beam member 14 Horizontal rail 20 Substrate 21 YAG laser 22 Photodetector 30 Liquid sample 31 Crucible 40 Personal computer BS Beam splitter prism M1, M2 Optical path bending mirror M3, M4, M5: Angle adjustable mirror P: Intersection (measurement point) of incident light and reference light

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F064 AA09 FF02 GG12 GG22 HH05 JJ05 JJ15 2G059 AA03 BB04 CC20 DD13 EE02 EE09 FF09 GG01 JJ05 JJ12 JJ13 JJ22 KK01 KK02 MM03 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F064 AA09 FF02 GG12 GG22 HH05 JJ05 JJ15 2G059 AA03 BB04 CC20 DD13 EE02 EE09 FF09 GG01 JJ05 JJ12 JJ13 JJ22 KK01 KK02 MM03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定波長の光を2分して一方を入射光、
他方を参照光として液体表面の同じ位置に相互に異なる
入射角で入射させ、液体表面から鏡面反射された参照光
とその方向に散乱された入射光の散乱光とを干渉させて
光ヘテロダイン信号を検出し、その光ヘテロダイン信号
をフーリエ変換して得られたパワースペクトルから液体
面のリプロンの周波数と減衰率とを求め、また、入射光
の入射角と散乱光の散乱角と入射光の波数とからリプロ
ンの波数を求め、求められたリプロンの周波数と減衰率
と入射光の波数とから液体の表面張力と粘性率を測定す
る装置において、 前記所定波長の光を発する光源と、前記所定波長の光を
2分する光線分割手段と、分割された一方の入射光を所
定の入射角で液体表面に向ける入射光偏向手段と、分割
された他方の参照光を入射光の入射角とは異なる所定の
入射角で液体表面の同じ位置に向ける参照光偏向手段
と、液体表面から鏡面反射された参照光とその方向に散
乱された入射光の散乱光とを光検出器に選択的に入射さ
せる手段と、光検出器とが共通の基板上に固定されてお
り、 前記基板は、試料液体を載置する試料台上の水平面内で
機械的に2次元走査する2次元走査手段に取り付けられ
ており、 前記光検出器からの光ヘテロダイン信号がフーリエ変換
手段に入力されるように構成されていることを特徴とす
る液体の表面張力と粘性率の2次元分布測定装置。
1. A light having a predetermined wavelength is divided into two parts, one of which is incident light,
The other light is incident on the same position on the liquid surface as the reference light at different angles of incidence, and the reference light reflected specularly from the liquid surface and the scattered light of the incident light scattered in that direction interfere with each other to generate an optical heterodyne signal. Detect the frequency, determine the frequency and attenuation of the replon on the liquid surface from the power spectrum obtained by Fourier transforming the optical heterodyne signal, and calculate the incident angle of the incident light, the scattering angle of the scattered light, and the wave number of the incident light. In the apparatus for measuring the wave number of the ripron from the obtained, the surface tension and the viscosity of the liquid from the frequency and attenuation rate of the obtained ripron and the wave number of the incident light, a light source that emits light of the predetermined wavelength, Beam splitting means for splitting the light into two, incident light deflecting means for directing one of the split incident lights to the liquid surface at a predetermined incident angle, and a predetermined splitting of the other split reference light which is different from the incident angle of the incident light of Reference light deflecting means for directing the same position on the liquid surface at an incident angle, and means for selectively causing the reference light specularly reflected from the liquid surface and the scattered light of the incident light scattered in that direction to the photodetector. And a photodetector are fixed on a common substrate, and the substrate is attached to two-dimensional scanning means that mechanically two-dimensionally scans in a horizontal plane on a sample stage on which the sample liquid is placed, An apparatus for measuring a two-dimensional distribution of surface tension and viscosity of a liquid, wherein an optical heterodyne signal from the photodetector is input to a Fourier transform unit.
【請求項2】 前記入射光偏向手段と前記参照光偏向手
段とが角度調節可能であることを特徴とする請求項1記
載の液体の表面張力と粘性率の2次元分布測定装置。
2. An apparatus according to claim 1, wherein said incident light deflecting means and said reference light deflecting means are adjustable in angle.
【請求項3】 試料液体が入射光に対して不透明な液体
からなることを特徴とする請求項1又は2記載の液体の
表面張力と粘性率の2次元分布測定装置。
3. The two-dimensional distribution measuring apparatus according to claim 1, wherein the sample liquid is a liquid opaque to incident light.
【請求項4】 試料液体が高温融体からなることを特徴
とする請求項3記載の液体の表面張力と粘性率の2次元
分布測定装置。
4. The two-dimensional distribution measuring apparatus according to claim 3, wherein the sample liquid is a high-temperature melt.
JP2000135595A 2000-05-09 2000-05-09 Two-dimensional distribution measuring device of surface tension and viscosity coefficient of liquid Pending JP2001318042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135595A JP2001318042A (en) 2000-05-09 2000-05-09 Two-dimensional distribution measuring device of surface tension and viscosity coefficient of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135595A JP2001318042A (en) 2000-05-09 2000-05-09 Two-dimensional distribution measuring device of surface tension and viscosity coefficient of liquid

Publications (1)

Publication Number Publication Date
JP2001318042A true JP2001318042A (en) 2001-11-16

Family

ID=18643648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135595A Pending JP2001318042A (en) 2000-05-09 2000-05-09 Two-dimensional distribution measuring device of surface tension and viscosity coefficient of liquid

Country Status (1)

Country Link
JP (1) JP2001318042A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241323A (en) * 2007-03-26 2008-10-09 Keio Gijuku Liquid surface viscosity/elasticity measurement head, and liquid surface viscosity/elasticity measurement device using it
JP2008256365A (en) * 2007-03-30 2008-10-23 Morinaga Milk Ind Co Ltd Scanning device of coagulation detection sensor, and scanning method using the same
JP2009276292A (en) * 2008-05-16 2009-11-26 Fujifilm Corp Method for evaluating anisotropy of surface property of liquid, and device used therefor
CN108760684A (en) * 2018-05-03 2018-11-06 太原理工大学 A kind of sensor measuring fluid boundary property
CN113281221A (en) * 2021-05-19 2021-08-20 太原理工大学 Method and system for measuring viscosity and surface tension of high-temperature molten mass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241323A (en) * 2007-03-26 2008-10-09 Keio Gijuku Liquid surface viscosity/elasticity measurement head, and liquid surface viscosity/elasticity measurement device using it
JP2008256365A (en) * 2007-03-30 2008-10-23 Morinaga Milk Ind Co Ltd Scanning device of coagulation detection sensor, and scanning method using the same
JP2009276292A (en) * 2008-05-16 2009-11-26 Fujifilm Corp Method for evaluating anisotropy of surface property of liquid, and device used therefor
CN108760684A (en) * 2018-05-03 2018-11-06 太原理工大学 A kind of sensor measuring fluid boundary property
CN113281221A (en) * 2021-05-19 2021-08-20 太原理工大学 Method and system for measuring viscosity and surface tension of high-temperature molten mass
CN113281221B (en) * 2021-05-19 2023-07-25 太原理工大学 Method and system for measuring viscosity and surface tension of high-temperature melt

Similar Documents

Publication Publication Date Title
US7649632B2 (en) Characterization of micro- and nano scale materials by acoustic wave generation with a CW modulated laser
EP0413330B1 (en) Method and apparatus for detecting photoacoustic signal
KR100641271B1 (en) Optical method and system for the characterization of integrated circuits
JP3288672B2 (en) Equipment for measuring physical properties of samples
US20010028460A1 (en) Optical stress generator and detector
US10113861B2 (en) Optical system and methods for the determination of stress in a substrate
US8284406B2 (en) Displacement measurement method and apparatus thereof, stage apparatus, and probe microscope
JP4094503B2 (en) Laser ultrasonic inspection apparatus and inspection method
US11237105B2 (en) System for measuring the absorption of a laser emission by a sample
US20120084045A1 (en) Temperature measuring method, storage medium, and program
Grünsteidl et al. Spatial and temporal frequency domain laser-ultrasound applied in the direct measurement of dispersion relations of surface acoustic waves
KR20090111809A (en) Picosecond ultrasonic system incorporating an optical cavity
TW200827702A (en) Apparatus and method for detecting surface plasmon resonance
JP3288671B2 (en) Equipment for measuring physical properties of samples
JP2001318042A (en) Two-dimensional distribution measuring device of surface tension and viscosity coefficient of liquid
Nishio et al. Simultaneous measurement of surface tension and kinematic viscosity using thermal fluctuations
WO2001061321A1 (en) Instrument for measuring physical property of sample
US20150268200A1 (en) Noninvasive measuring method for probing an interface
Farbaniec et al. Thermoreflectance-based approach for surface temperature measurements of thin-film gold sensors
JP3150239B2 (en) Measuring device for micro-periodic vibration displacement
Becerril et al. Active stabilization of a pseudoheterodyne scattering scanning near field optical microscope
WO2012172524A1 (en) Method and photothermal apparatus for contactless determination of thermal and optical properties of material
WO2011007168A2 (en) Microspectroscopy apparatus and method
JPH09257755A (en) Laser ultrasonic inspection apparatus and method therefor
JP2008164627A (en) Laser ultrasonic inspection apparatus