JP2001318004A - Device and method for measuring molten droplet temperature distribution in arc welding - Google Patents

Device and method for measuring molten droplet temperature distribution in arc welding

Info

Publication number
JP2001318004A
JP2001318004A JP2000133444A JP2000133444A JP2001318004A JP 2001318004 A JP2001318004 A JP 2001318004A JP 2000133444 A JP2000133444 A JP 2000133444A JP 2000133444 A JP2000133444 A JP 2000133444A JP 2001318004 A JP2001318004 A JP 2001318004A
Authority
JP
Japan
Prior art keywords
light
droplet
wavelength
temperature distribution
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000133444A
Other languages
Japanese (ja)
Inventor
Yoshinori Hirata
好則 平田
Hideyo Takeuchi
英世 竹内
Koji Mukumoto
厚司 椋本
Hisayoshi Ochi
尚義 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2000133444A priority Critical patent/JP2001318004A/en
Publication of JP2001318004A publication Critical patent/JP2001318004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure a temperature or a temperature distribution of a molten droplet. SOLUTION: A beam emitted from the molten droplet D in the arc welding is separated into two spectral beams by triangular prisms 14, 15 as beam splitters. The first filter 19 and the second filter 20 are arranged in spectral beam emitting sides of the beam splitters to transmit separately the spectral beams of two wavelengths λ1, λ2 neighoring each other. Brightness of the beam of the wavelength λ1 transmitted through the first filter is detected by a camera unit 3, and brightness of the beam of the wavewlength λ2 transmitted through the second filter is detected by another camera unit. The temperature distribution of the droplet is computed and output by a personal computor 5 based on brightness signals of the beams of the wavelengths λ1, λ2 provided by the two camera units 3, 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二色放射測温法を
利用したアーク溶接の溶滴温度分布測定装置と溶滴温度
分布測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring a droplet temperature distribution in arc welding using two-color radiation temperature measurement.

【0002】[0002]

【従来の技術】マグ溶接をはじめとするガスメタルアー
ク(GMA)溶接は、機械化・ロボット化に対応できる
溶接法で、また高能率であることから、自動車、車両、
造船、産業機械等の製造分野で軟鋼や高張力鋼等の溶接
に広く利用されている。GMA溶接では、溶接ワイヤが
アーク放電の電極となる。電極である溶接ワイヤはアー
ク熱により溶融し、溶滴を形成する。溶滴はワイヤ端を
離脱し母材へ移行し、開先部を埋めたり、余盛部形成
し、溶接金属となる。併せて、溶滴は融点以上に加熱さ
れているので、母材の溶融にも寄与し、溶込みなどの品
質に大きく関わる。また、高温の溶滴表面からは金属蒸
気が発生し、人体に有害なヒュームとなり、作業環境を
悪化させることが指摘されている。ヒュームを低減し、
安定な溶接品質を確保するためには、過入熱をおさえる
必要がある。そのためには溶接電流などのパラメータと
溶滴温度との相関性を明らかにすることが必要である。
2. Description of the Related Art Gas metal arc (GMA) welding such as mag welding is a welding method that can be used for mechanization and robotization, and is highly efficient.
It is widely used for welding mild steel and high-tensile steel in the field of manufacturing shipbuilding and industrial machinery. In GMA welding, a welding wire serves as an electrode for arc discharge. The welding wire as an electrode is melted by the arc heat to form droplets. The molten metal separates from the wire end and moves to the base metal, filling the groove or forming a surplus portion to become a weld metal. At the same time, since the droplet is heated to a temperature equal to or higher than the melting point, it also contributes to the melting of the base material and greatly affects quality such as penetration. In addition, it has been pointed out that metal vapor is generated from the surface of a high-temperature droplet, which becomes fumes harmful to the human body and deteriorates the working environment. Reduce fumes,
In order to ensure stable welding quality, it is necessary to suppress excessive heat input. For that purpose, it is necessary to clarify the correlation between parameters such as welding current and the droplet temperature.

【0003】[0003]

【発明が解決しようとする課題】これまでに、溶接ワイ
ヤを陽極に、陰極側にディグトーチを用いてGMAアー
クを発生させて、溶滴を熱量計に捕集して温度を推定し
てきた。この方法により、溶滴の平均保有熱量について
は、電流値を高くすると増加する傾向をつかむことがで
きる。しかし、保有熱量から溶滴温度を推定するために
は、比熱や放射率などの値が必要となり、これらは温度
によって著しく変化するため、精度や信頼性を確保する
のが難しい。また、ワークの板厚や形状、溶接姿勢など
に応じて、溶接電流波形を制御して、クリーンな作業環
境で溶接品質を確保するためには、電流値などのパラメ
ータと溶滴温度との関係を明らかにする必要がある。そ
のためには、従来の方法では困難であり、溶接中の溶滴
温度をその場で計測する必要がある。
Heretofore, a GMA arc has been generated using a welding wire on the anode and a dig torch on the cathode side, and the droplet has been collected on a calorimeter to estimate the temperature. According to this method, it is possible to grasp the tendency that the average retained heat of the droplet increases as the current value is increased. However, in order to estimate the droplet temperature from the retained heat, values such as specific heat and emissivity are required. These values vary significantly depending on the temperature, and thus it is difficult to ensure accuracy and reliability. In addition, in order to control the welding current waveform according to the workpiece thickness, shape, welding posture, etc., and to ensure welding quality in a clean working environment, the relationship between parameters such as current value and droplet temperature is important. Need to be revealed. For that purpose, it is difficult with the conventional method, and it is necessary to measure the droplet temperature during welding on the spot.

【0004】本発明の目的は、非接触の光学的な手法に
基づいたアーク溶接の溶滴温度分布測定装置と溶滴温度
分布測定方法を提供することにある。
An object of the present invention is to provide an apparatus and a method for measuring a droplet temperature distribution of arc welding based on a non-contact optical method.

【0005】[0005]

【課題を解決するための手段】本願発明者らは、物体か
ら放射される熱放射のエネルギがその物体表面温度に依
存することに着目し、この関係をプランクの放射則と二
色放射測温法により解明して本発明の溶滴温度分布測定
装置と溶滴温度分布測定方法を確立するに至った。
The inventors of the present invention focused on the fact that the energy of thermal radiation radiated from an object depends on the surface temperature of the object, and described this relationship as Planck's radiation law and two-color radiation temperature measurement. By elucidation by the method, the droplet temperature distribution measuring apparatus and droplet temperature distribution measuring method of the present invention were established.

【0006】即ち、本発明に係るアーク溶接の溶滴温度
分布測定装置は、アーク溶接の溶滴から放射される光を
2つの光ビームに分光するビームスプリッタと、互いに
近接した2つの波長λ1とλ2の光ビームを別々に透過
するため前記ビームスプリッタの分光ビーム出射側に配
置された第1フィルタ及び第2フィルタと、前記波長λ
1の光ビームを透過する第1フィルタの出射側に配設さ
れて波長λ1の光ビームの輝度を検出する第1光検出手
段と、前記波長λ2の光ビームを透過する第2フィルタ
の出射側に配設されて波長λ2の光ビームの輝度を検出
する第2光検出手段と、前記第1及び第2光検出手段に
より得られた波長λ1とλ2の光の輝度信号を入力信号
として、次式に基づき溶滴の温度を演算出力する演算手
段とを具備することを特徴とする。
That is, the apparatus for measuring the temperature distribution of droplets of arc welding according to the present invention comprises a beam splitter for dispersing light emitted from droplets of arc welding into two light beams, and two wavelengths λ1 which are close to each other. a first filter and a second filter arranged on the spectral beam exit side of the beam splitter for separately transmitting the light beams of λ2;
First light detecting means disposed on the output side of the first filter transmitting the first light beam and detecting the luminance of the light beam of wavelength λ1, and the output side of the second filter transmitting the light beam of wavelength λ2 A second light detecting means disposed for detecting the luminance of the light beam having the wavelength λ2, and a luminance signal of the light having the wavelengths λ1 and λ2 obtained by the first and second light detecting means as an input signal. Calculating means for calculating and outputting the temperature of the droplet based on the formula.

【0007】[0007]

【数式5】 (Equation 5)

【0008】ここで、Here,

【0009】[0009]

【数式6】 (Equation 6)

【0010】E(λ,T):溶滴の分光放射発散度(W
/m3 ) ε(λ,T):分光放射率(0〜1) 黒体の場合は1 Eb:黒体の分光放射発散度(W/m3 )
E (λ, T): Spectral emission divergence of the droplet (W
/ M3) ε (λ, T): Spectral emissivity (0 to 1) 1 for black body Eb: Spectral emissivity of black body (W / m3)

【0011】[0011]

【数式7】 [Formula 7]

【0012】プランク定数h=6.6256×10−3
4 [J・s] ボルツマン定数k=1.38054×10−17 [J
・K−1] c1 =c2 h=5.9548 c2 =ch/k=0.014388[m・K] 実際の測定系ではビームスプリッタや第1及び第2フィ
ルタなどの光学系が使用される関係で、これら光学系に
より溶滴から放射された熱放射光が減衰する。そこで、
全光学系の光減衰特性を考慮した溶滴温度分布測定を行
なうために、前記溶滴の光が通過するビームスプリッタ
ーを含む全光学系の前記波長λ1とλ2の光に対する光
減衰特性を表す関数をF(λ)とし、放射照度の比R
(T)を表す次式に基づき前述の溶滴温度を演算する。
The Planck constant h = 6.6256 × 10−3
4 [J · s] Boltzmann's constant k = 1.38054 × 10−17 [J
· K-1] c1 = c2 h = 5.9548 c2 = ch / k = 0.014388 [m · K] In an actual measurement system, a relationship in which an optical system such as a beam splitter or first and second filters is used. Thus, the heat radiation light emitted from the droplet by these optical systems is attenuated. Therefore,
In order to measure the droplet temperature distribution in consideration of the light attenuation characteristics of all optical systems, a function representing the light attenuation characteristics of the all optical systems including the beam splitters through which the light of the droplets passes with respect to the light of the wavelengths λ1 and λ2 Is F (λ), and the irradiance ratio R
The above-mentioned droplet temperature is calculated based on the following equation representing (T).

【0013】[0013]

【数式8】 (Equation 8)

【0014】U:測定する波長の上限 L:測定する
波長の下限 なお、溶射皮膜の形成プロセスを分析する上で溶滴温度
と並んで溶滴速度も重要な粒子特性であるが、この溶滴
速度は前記第1又は第2光検出手段にカメラシャッタの
トリガ手段を組合せることで容易に測定可能である。
U: Upper limit of the wavelength to be measured L: Lower limit of the wavelength to be measured In analyzing the formation process of the thermal spray coating, the droplet speed is an important particle property as well as the droplet temperature. The speed can be easily measured by combining the first or second light detecting means with a trigger means for a camera shutter.

【0015】また本発明に係るアーク溶接の溶滴温度分
布測定方法は、アーク溶接の溶滴から放射される光を2
つのビームに分光する工程と、前記2つのビームから互
いに近接した2つの波長λ1とλ2の光を別々にフィル
タリングする工程と、前記波長λ1の光の輝度と前記波
長λ2の光の輝度を検出する工程と、前記波長λ1とλ
2の光の輝度信号を入力信号として、前記数式1〜3の
関係に基づき溶滴の温度分布を演算する工程とを具備す
る。溶滴の温度分布を演算する際には、光学系の光減衰
特性を考慮して前記数式4の関係に基づき温度分布を演
算する。
Further, the method for measuring the temperature distribution of droplets of arc welding according to the present invention is characterized in that the light radiated from the droplets of arc welding is reduced to two.
Splitting the light into two beams, separately filtering light of two wavelengths λ1 and λ2 close to each other from the two beams, and detecting the luminance of the light of the wavelength λ1 and the luminance of the light of the wavelength λ2. Process and the wavelengths λ1 and λ
Calculating the temperature distribution of the droplet based on the relationship of the above formulas 1 to 3 using the luminance signal of the light of No. 2 as an input signal. When calculating the temperature distribution of the droplet, the temperature distribution is calculated on the basis of the relationship of Equation 4 in consideration of the optical attenuation characteristics of the optical system.

【0016】[0016]

【発明の実施の形態】以下に本発明の一実施形態を図に
基づき説明する。図1は本発明に係るアーク溶接の溶滴
温度分布測定装置の概略図である。図中、1は集光レン
ズユニット、2は分光ユニット、3と4はカメラユニッ
ト、5は演算手段としてのコンピュータである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of an apparatus for measuring a droplet temperature distribution in arc welding according to the present invention. In the figure, 1 is a condenser lens unit, 2 is a spectral unit, 3 and 4 are camera units, and 5 is a computer as arithmetic means.

【0017】集光レンズユニット1は複数のレンズを光
軸方向に組合わせたもので、アーク溶接の溶滴から放射
される放射光を集光して分光ユニット2に導入するもの
である。分光ユニット2はL字状の筐体6と、この筐体
6内部に収納された複数のレンズ7〜13、プリズム1
4〜18及びフィルタ19,20で構成される。詳しく
は、集光レンズユニット1に対向して第1レンズ7が配
設され、この第1レンズ7の二次側にビームスプリッタ
を構成する一対の三角プリズム14,15が配設されて
いる。三角プリズム14,15で分光され直角に反射さ
れた一方の光ビームは、第2レンズ8、第3レンズ9、
三角プリズム16、第1フィルタ19及び第4レンズを
通して第1光検出手段としてのカメラユニット3に導入
されるようになっている。また、三角プリズム14,1
5で分光された他方の光ビームは、そのまま直進して第
5レンズ11、三角プリズム17及び18、第6レンズ
12、第2フィルタ20及び第7レンズ13を通して第
2光検出手段としての別のカメラユニット4に導入され
るようになっている。
The condensing lens unit 1 is a combination of a plurality of lenses in the optical axis direction. The condensing lens unit 1 condenses radiated light radiated from a droplet of arc welding and introduces the radiated light into the spectroscopic unit 2. The spectral unit 2 includes an L-shaped housing 6, a plurality of lenses 7 to 13 housed inside the housing 6, and a prism 1.
4 to 18 and filters 19 and 20. More specifically, a first lens 7 is provided to face the condenser lens unit 1, and a pair of triangular prisms 14 and 15 constituting a beam splitter are provided on the secondary side of the first lens 7. One of the light beams that have been split by the triangular prisms 14 and 15 and reflected at right angles is the second lens 8, the third lens 9,
The light is introduced into the camera unit 3 as first light detection means through the triangular prism 16, the first filter 19, and the fourth lens. In addition, the triangular prisms 14 and 1
The other light beam split by 5 goes straight as it is and passes through the fifth lens 11, the triangular prisms 17 and 18, the sixth lens 12, the second filter 20, and the seventh lens 13 to another light beam as second light detecting means. It is designed to be introduced into the camera unit 4.

【0018】それぞれのカメラユニット3,4は高速高
感度の白黒撮像型CCD素子を有し、一画面(例えば7
68画素×493画素)の中から任意の画素(例えば1
00画素×100画素)の輝度データを取込んでパーソ
ナルコンピュータに出力できるようになっている。
Each of the camera units 3 and 4 has a high-speed and high-sensitivity black-and-white imaging type CCD device, and has
Any pixel (for example, 1 pixel out of 68 pixels × 493 pixels)
The luminance data of (00 pixels × 100 pixels) can be taken in and output to a personal computer.

【0019】以上のように構成された溶滴温度分布測定
装置は、集光レンズユニット1を図1のように溶接トー
チTのワイヤ先端部に向けてセットされる。溶接トーチ
Tの電極Eのワイヤ先端部に溶滴が形成されるから、そ
れをカメラユニット3,4のCCD素子によって撮像す
る。
In the droplet temperature distribution measuring apparatus configured as described above, the condenser lens unit 1 is set to face the tip of the wire of the welding torch T as shown in FIG. Since a droplet is formed at the wire tip of the electrode E of the welding torch T, the droplet is imaged by the CCD elements of the camera units 3 and 4.

【0020】溶滴から放射される光の波長その発散度
(輝度)との間には、溶滴表面の温度毎に特有の相関関
係がある。図2は黒体から放射される熱放射光について
プランクの放射則に従ってこの相関関係の一例を示した
もので、同じ波長でも温度毎に発散度が異なり、高温に
なる程発散度も高くなることが分かる。通常の物体は黒
体ではなく、放射エネルギの波長依存性は図2とは異な
り同一温度の黒体が発するエネルギよりも小さく、次式
で与えられる。
There is a specific correlation between the wavelength of light emitted from the droplet and its divergence (luminance) for each temperature of the droplet surface. Figure 2 shows an example of this correlation for the heat radiation emitted from a black body in accordance with Planck's radiation law. Even at the same wavelength, the divergence differs for each temperature, and the divergence increases as the temperature increases. I understand. A normal object is not a black body, and the wavelength dependence of radiant energy is smaller than the energy emitted by a black body at the same temperature, unlike FIG. 2, and is given by the following equation.

【0021】[0021]

【数式9】 (Equation 9)

【0022】E(λ,T):溶滴の分光放射発散度(W
/m3 ) ε(λ,T):分光放射率(0〜1) 黒体の場合は1 Eb:黒体の分光放射発散度(W/m3 ) ここで、右辺のEb(λ,T)は次式で表される。
E (λ, T): Spectral radiant emittance of the droplet (W
/ M3) ε (λ, T): Spectral emissivity (0 to 1) 1 for black body Eb: Spectral emission divergence of black body (W / m3) where Eb (λ, T) on the right side is It is expressed by the following equation.

【0023】[0023]

【数式10】 [Formula 10]

【0024】プランク定数h=6.6256×10−3
4 [J・s] ボルツマン定数k=1.38054×10−17 [J
・K−1] c1 =c2 h=5.9548 c2 =ch/k=0.014388[m・K] 放射率は同じ材質でも温度、波長、雰囲気、表面状態な
どによっても変化するため、一般的には予め求めておく
必要がある。しかし、以下に述べる二色放射測温法は、
放射率が未知の物体でも狭い波長帯域で分光放射率が一
定とみなせる場合、2つの波長の光を選択し、各々の放
射発散度の比から温度を求めることができるものであ
る。すなわち、温度Tの物体の分光放射率は波長によっ
て異なるが、2つの波長λ1とλ2が近接していれば、
ε(λ1,T)=ε(λ2,T)と仮定することができ
るので、数式2と数式3を用いて次式にて放射発散度の
比から溶滴温度(分布)を求めることができる。
Planck constant h = 6.6256 × 10−3
4 [J · s] Boltzmann's constant k = 1.38054 × 10−17 [J
· K-1] c1 = c2 h = 5.9548 c2 = ch / k = 0.014388 [m · K] Since the emissivity varies depending on the temperature, wavelength, atmosphere, surface condition, etc. even for the same material, it is general. Must be obtained in advance. However, the two-color radiation thermometry described below
If the emissivity of an object whose unknown emissivity can be regarded as constant in a narrow wavelength band, light of two wavelengths can be selected, and the temperature can be determined from the ratio of the respective radiant emittance. That is, the spectral emissivity of the object at the temperature T differs depending on the wavelength, but if the two wavelengths λ1 and λ2 are close to each other,
Since it can be assumed that ε (λ1, T) = ε (λ2, T), the droplet temperature (distribution) can be obtained from the ratio of the radiation divergence by the following expression using Expressions 2 and 3. .

【0025】[0025]

【数式11】 [Equation 11]

【0026】しかし、実際の測定系では特定の波長を選
択するために各種レンズ、フィルタ、プリズムなどを用
いているので、溶滴から放射された熱放射光はこれらを
通して減衰されてカメラユニット3,4に導入される。
レンズ等の光学素子はそれぞれ図3(A)〜(C)のよ
うに波長依存性を有し、例えばカメラユニット3,4は
図3(A)のような波長対感度の特性曲線を有し、第2
フィルタ20は図3(B)のような波長依存特性を示
し、第1フィルタ19は図3(C)のような波長依存特
性を示す。このため測定系全体を通して観測される放射
照度の比R(T)は、次式にて表される。
However, in an actual measurement system, various lenses, filters, prisms, and the like are used to select a specific wavelength, so that the heat radiation emitted from the droplet is attenuated through these, and the camera unit 3, 4 is introduced.
Optical elements such as lenses have wavelength dependence as shown in FIGS. 3A to 3C. For example, the camera units 3 and 4 have characteristic curves of wavelength versus sensitivity as shown in FIG. , Second
The filter 20 has a wavelength dependence as shown in FIG. 3B, and the first filter 19 has a wavelength dependence as shown in FIG. Therefore, the ratio of irradiance R (T) observed throughout the measurement system is expressed by the following equation.

【0027】[0027]

【数式12】 (Equation 12)

【0028】ここでUは測定する波長の上限であり、L
は測定する波長の下限である。
Here, U is the upper limit of the wavelength to be measured, and L
Is the lower limit of the wavelength to be measured.

【0029】[0029]

【発明の効果】本発明は前述した如く、アーク溶接の溶
滴から放射される熱放射光から近接2波長の光ビームを
取出し、これら光ビームの分光放射発散度(輝度)の比
から放射率を算出するすることなく溶滴温度(分布)を
測定することができるので、ヒューム発生プロセスを分
析する上で有益なデータを得ることができ、クリーンな
作業環境で溶接品質を確保するのに役立つ。
As described above, according to the present invention, light beams of two adjacent wavelengths are extracted from the heat radiation emitted from the droplets of arc welding, and the emissivity is determined from the ratio of the spectral radiation emittance (brightness) of these light beams. The droplet temperature (distribution) can be measured without having to calculate the fog, which can provide useful data for analyzing the fume generation process and help to ensure welding quality in a clean work environment. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す溶滴温度分布測定装
置の概略構成図。
FIG. 1 is a schematic configuration diagram of a droplet temperature distribution measuring device showing an embodiment of the present invention.

【図2】波長対分光放射発散度(輝度)の関係曲線図。FIG. 2 is a graph showing the relationship between wavelength and spectral radiation divergence (luminance).

【図3】(A)カメラユニットの波長対感度の特性曲
線、(B)は第1フィルタの波長依存特性を示す波長対
光透過率の関係曲線、(C)は第2フィルタの波長依存
特性を示す波長対光透過率の関係曲線。
3A is a characteristic curve of wavelength versus sensitivity of a camera unit, FIG. 3B is a curve showing a wavelength dependence of light transmittance of a first filter, and FIG. 3C is a wavelength dependence of a second filter; Is a relationship curve of wavelength versus light transmittance, which indicates

【符号の説明】[Explanation of symbols]

1 集光レンズユニット 2 分光ユニット 3,4 カメラユニット(第1及び第2の光検出手段) 5 パーソナルコンピュータ 6 筐体 7〜13 レンズ 14〜18 三角プリズム T 溶接トーチ E 電極 DESCRIPTION OF SYMBOLS 1 Condensing lens unit 2 Spectrum unit 3, 4 Camera unit (1st and 2nd light detection means) 5 Personal computer 6 Housing 7-13 Lens 14-18 Triangular prism T Welding torch E Electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B23K 31/00 B23K 31/00 K (72)発明者 椋本 厚司 大阪府池田市桃園2丁目1番1号 ダイハ ツ工業株式会社内 (72)発明者 黄地 尚義 大阪府吹田市山田丘2−1 大阪大学大学 院工学研究科内 Fターム(参考) 2G066 AA04 AC20 BA14 BA23 BC15 CA02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B23K 31/00 B23K 31/00 K (72) Inventor Atsushi Muramoto 2-1-1 Taoyuan, Ikeda-shi, Osaka No. 1 Daihatsu Industry Co., Ltd. (72) Inventor Naoyoshi Koji 2-1 Yamadaoka, Suita-shi, Osaka Prefecture F-term (Reference) 2G066 AA04 AC20 BA14 BA23 BC15 CA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アーク溶接の溶滴から放射される光を2
つの光ビームに分光するビームスプリッタと、 互いに近接した2つの波長λ1とλ2の光ビームを別々
に透過するため前記ビームスプリッタの分光ビーム出射
側に配置された第1フィルタ及び第2フィルタと、 前記波長λ1の光ビームを透過する第1フィルタの出射
側に配設されて波長λ1の光ビームの輝度を検出する第
1光検出手段と、 前記波長λ2の光ビームを透過する第2フィルタの出射
側に配設されて波長λ2の光ビームの輝度を検出する第
2光検出手段と、 前記第1及び第2光検出手段により得られた波長λ1と
λ2の光の輝度信号を入力信号として、次式に基づき溶
滴の温度分布を演算出力する演算手段とを具備すること
を特徴とするアーク溶接の溶滴温度分布測定装置。 【数式1】 ここで、 【数式2】 E(λ,T):溶滴の分光放射発散度(W/m3 ) ε(λ,T):分光放射率(0〜1) 黒体の場合は1 Eb:黒体の分光放射発散度(W/m3 ) 【数式3】 プランク定数h=6.6256×10−34 [J・
s] ボルツマン定数k=1.38054×10−17 [J
・K−1] c1 =c2 h=5.9548 c2 =ch/k=0.014388[m・K]
1. The light emitted from a droplet of arc welding is applied to
A beam splitter that splits the light into two light beams, a first filter and a second filter that are disposed on a spectral beam output side of the beam splitter to separately transmit light beams of two wavelengths λ1 and λ2 that are close to each other; First light detection means disposed on the emission side of the first filter that transmits the light beam of wavelength λ1 to detect the brightness of the light beam of wavelength λ1, and emission of the second filter that transmits the light beam of wavelength λ2 A second light detecting means disposed on the side for detecting the luminance of the light beam having the wavelength λ2; and a luminance signal of the light having the wavelengths λ1 and λ2 obtained by the first and second light detecting means as an input signal. And a calculating means for calculating and outputting the temperature distribution of the droplet based on the following equation. [Formula 1] Where: E (λ, T): Spectral radiant emittance of droplet (W / m3) ε (λ, T): Spectral emissivity (0 to 1) 1 for black body Eb: Spectral radiant emittance of black body ( W / m3) [Formula 3] Planck constant h = 6.6256 × 10−34 [J ·
s] Boltzmann's constant k = 1.38054 × 10−17 [J
· K-1] c1 = c2 h = 5.9548 c2 = ch / k = 0.014388 [m · K]
【請求項2】 前記溶滴の光が通過するビームスプリッ
ターを含む全光学系の前記波長λ1とλ2の光に対する
光減衰特性を表す関数をF(λ)としたときに、放射照
度の比R(T)を表す次式に基づき請求項1の溶滴温度
を演算するようにしたことを特徴とするアーク溶接の溶
滴温度分布測定装置。 【数式4】 U:測定する波長の上限 L:測定する波長の下限
2. When the function representing the light attenuation characteristic of the entire optical system including the beam splitter through which the light of the droplet passes with respect to the light of the wavelengths λ1 and λ2 is F (λ), the irradiance ratio R 2. A droplet temperature distribution measuring apparatus for arc welding according to claim 1, wherein the droplet temperature is calculated based on the following equation representing (T). (Equation 4) U: Upper limit of wavelength to be measured L: Lower limit of wavelength to be measured
【請求項3】 前記第1又は第2光検出手段とカメラシ
ャッタのトリガ手段とを組合せて溶滴温度分布と共に溶
滴速度を測定するようにしたことを特徴とする請求項1
記載のアーク溶接の溶滴温度分布測定装置。
3. The droplet temperature distribution and droplet velocity are measured by combining said first or second light detecting means and a trigger means of a camera shutter.
The droplet temperature distribution measuring device for arc welding according to the above.
【請求項4】 アーク溶接の溶滴から放射される光を2
つのビームに分光する工程と、 前記2つのビームから互いに近接した2つの波長λ1と
λ2の光を別々にフィルタリングする工程と、 前記波長λ1の光の輝度と前記波長λ2の光の輝度を検
出する工程と、 前記波長λ1とλ2の光の輝度信号を入力信号として、
請求項1の数式1〜3の関係に基づき溶滴の温度分布を
演算する工程とを具備することを特徴とするアーク溶接
の溶滴温度分布測定方法。
4. The light radiated from the droplets of the arc welding is set to 2
Splitting the light into two beams, separately filtering light of two wavelengths λ1 and λ2 close to each other from the two beams, detecting the luminance of the light of the wavelength λ1 and the luminance of the light of the wavelength λ2 A luminance signal of the light having the wavelengths λ1 and λ2 as an input signal;
Calculating a temperature distribution of the droplets based on the relations of Expressions 1 to 3 of claim 1.
【請求項5】 請求項2の数式4の関係に基づき溶滴温
度分布を演算する工程を具備することを特徴とする請求
項4記載のアーク溶接の溶滴温度分布測定方法。
5. The method for measuring a droplet temperature distribution of arc welding according to claim 4, further comprising a step of calculating a droplet temperature distribution based on the relationship of the mathematical expression 4 of claim 2.
JP2000133444A 2000-05-02 2000-05-02 Device and method for measuring molten droplet temperature distribution in arc welding Pending JP2001318004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133444A JP2001318004A (en) 2000-05-02 2000-05-02 Device and method for measuring molten droplet temperature distribution in arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133444A JP2001318004A (en) 2000-05-02 2000-05-02 Device and method for measuring molten droplet temperature distribution in arc welding

Publications (1)

Publication Number Publication Date
JP2001318004A true JP2001318004A (en) 2001-11-16

Family

ID=18641940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133444A Pending JP2001318004A (en) 2000-05-02 2000-05-02 Device and method for measuring molten droplet temperature distribution in arc welding

Country Status (1)

Country Link
JP (1) JP2001318004A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025709A1 (en) * 2008-09-03 2010-03-11 Technische Universitaet Berlin Method for regulating energy input of a pulsed arc plasma during a joining process and apparatus
CN104954739A (en) * 2015-05-15 2015-09-30 北京石油化工学院 GMAW (Gas metal arc welding) globular transfer image shooting system used in underwater dry type high-pressure environment
JP2016166543A (en) * 2015-03-09 2016-09-15 富士電機株式会社 Hardening treatment method of treated member and hardening treatment device
JP2017156138A (en) * 2016-02-29 2017-09-07 国立大学法人九州大学 Apparatus and method for measuring temperature and speed of space movement group
CN108225569A (en) * 2017-12-31 2018-06-29 北京工业大学 A kind of normal temperature method based on double spectral line characteristics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025709A1 (en) * 2008-09-03 2010-03-11 Technische Universitaet Berlin Method for regulating energy input of a pulsed arc plasma during a joining process and apparatus
JP2016166543A (en) * 2015-03-09 2016-09-15 富士電機株式会社 Hardening treatment method of treated member and hardening treatment device
CN104954739A (en) * 2015-05-15 2015-09-30 北京石油化工学院 GMAW (Gas metal arc welding) globular transfer image shooting system used in underwater dry type high-pressure environment
JP2017156138A (en) * 2016-02-29 2017-09-07 国立大学法人九州大学 Apparatus and method for measuring temperature and speed of space movement group
CN108225569A (en) * 2017-12-31 2018-06-29 北京工业大学 A kind of normal temperature method based on double spectral line characteristics
CN108225569B (en) * 2017-12-31 2019-10-29 北京工业大学 A kind of normal temperature method based on double spectral line characteristics

Similar Documents

Publication Publication Date Title
Cheng et al. Real-time sensing of gas metal arc welding process–A literature review and analysis
US10632566B2 (en) System and method for controlling the input energy from an energy point source during metal processing
Mazzoleni et al. Real-time observation of melt pool in selective laser melting: spatial, temporal, and wavelength resolution criteria
US7186947B2 (en) Process monitor for laser and plasma materials processing of materials
US9089926B2 (en) Process monitoring the processing of a material
US7863544B2 (en) Arrangement and method for the on-line monitoring of the quality of a laser process exerted on a workpiece
JP3227650B2 (en) Laser welding machine and laser welding condition monitoring method
JP5354335B2 (en) Laser processing quality determination method and apparatus
US20100133247A1 (en) Monitoring of a welding process
JP2013528495A (en) Laser cutting head and method for cutting a workpiece using a laser cutting head
US20230073549A1 (en) Method for analysing a weld during laser welding of workpieces
Levichev et al. Real-time monitoring of fiber laser cutting of thick plates by means of photodiodes
Levichev et al. Coaxial camera-based monitoring of fiber laser cutting of thick plates
Sibillano et al. Correlation analysis in laser welding plasma
Gibson et al. Melt pool monitoring for control and data analytics in large-scale metal additive manufacturing
JP2001318004A (en) Device and method for measuring molten droplet temperature distribution in arc welding
Levichev et al. Monitoring opportunities in fiber laser flame cutting
JP2007192579A (en) Temperature measuring device and method
KR20030043425A (en) Method for monitoring the size variation and the focus shift of a weld pool in laser welding
Dorsch et al. Online characterization of laser beam welds by NIR-camera observation
JP7382952B2 (en) Temperature measurement system, temperature measurement method and laser processing equipment
Volpp et al. Observing melt pool temperature fields for process characterization
EP0542542A1 (en) Method and apparatus for monitoring the temperature and velocity of plasma sprayed particles
Bardin et al. Real-time temperature measurement for process monitoring of laser conduction welding
Golubev et al. Diagnostics of laser radiance penetration into material by multi-channel pyrometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Effective date: 20040301

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040624